func AddInt32(addr *int32, delta int32) (new int32)
AddInt32 atomically adds delta to *addr and returns the new value. Consider using the more ergonomic and less error-prone Int32.Add instead.
func AddInt64(addr *int64, delta int64) (new int64)
AddInt64 atomically adds delta to *addr and returns the new value. Consider using the more ergonomic and less error-prone Int64.Add instead (particularly if you target 32-bit platforms; see the bugs section).
func AddUint32(addr *uint32, delta uint32) (new uint32)
AddUint32 atomically adds delta to *addr and returns the new value. To subtract a signed positive constant value c from x, do AddUint32(&x, ^uint32(c-1)). In particular, to decrement x, do AddUint32(&x, ^uint32(0)). Consider using the more ergonomic and less error-prone Uint32.Add instead.
func AddUint64(addr *uint64, delta uint64) (new uint64)
AddUint64 atomically adds delta to *addr and returns the new value. To subtract a signed positive constant value c from x, do AddUint64(&x, ^uint64(c-1)). In particular, to decrement x, do AddUint64(&x, ^uint64(0)). Consider using the more ergonomic and less error-prone Uint64.Add instead (particularly if you target 32-bit platforms; see the bugs section).
func AddUintptr(addr *uintptr, delta uintptr) (new uintptr)
AddUintptr atomically adds delta to *addr and returns the new value. Consider using the more ergonomic and less error-prone Uintptr.Add instead.
func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)
CompareAndSwapInt32 executes the compare-and-swap operation for an int32 value. Consider using the more ergonomic and less error-prone Int32.CompareAndSwap instead.
func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)
CompareAndSwapInt64 executes the compare-and-swap operation for an int64 value. Consider using the more ergonomic and less error-prone Int64.CompareAndSwap instead (particularly if you target 32-bit platforms; see the bugs section).
func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
CompareAndSwapPointer executes the compare-and-swap operation for a unsafe.Pointer value. Consider using the more ergonomic and less error-prone Pointer.CompareAndSwap instead.
func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool)
CompareAndSwapUint32 executes the compare-and-swap operation for a uint32 value. Consider using the more ergonomic and less error-prone Uint32.CompareAndSwap instead.
func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)
CompareAndSwapUint64 executes the compare-and-swap operation for a uint64 value. Consider using the more ergonomic and less error-prone Uint64.CompareAndSwap instead (particularly if you target 32-bit platforms; see the bugs section).
func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool)
CompareAndSwapUintptr executes the compare-and-swap operation for a uintptr value. Consider using the more ergonomic and less error-prone Uintptr.CompareAndSwap instead.
func LoadInt32(addr *int32) (val int32)
LoadInt32 atomically loads *addr. Consider using the more ergonomic and less error-prone Int32.Load instead.
func LoadInt64(addr *int64) (val int64)
LoadInt64 atomically loads *addr. Consider using the more ergonomic and less error-prone Int64.Load instead (particularly if you target 32-bit platforms; see the bugs section).
func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)
LoadPointer atomically loads *addr. Consider using the more ergonomic and less error-prone Pointer.Load instead.
func LoadUint32(addr *uint32) (val uint32)
LoadUint32 atomically loads *addr. Consider using the more ergonomic and less error-prone Uint32.Load instead.
func LoadUint64(addr *uint64) (val uint64)
LoadUint64 atomically loads *addr. Consider using the more ergonomic and less error-prone Uint64.Load instead (particularly if you target 32-bit platforms; see the bugs section).
func LoadUintptr(addr *uintptr) (val uintptr)
LoadUintptr atomically loads *addr. Consider using the more ergonomic and less error-prone Uintptr.Load instead.
func StoreInt32(addr *int32, val int32)
StoreInt32 atomically stores val into *addr. Consider using the more ergonomic and less error-prone Int32.Store instead.
func StoreInt64(addr *int64, val int64)
StoreInt64 atomically stores val into *addr. Consider using the more ergonomic and less error-prone Int64.Store instead (particularly if you target 32-bit platforms; see the bugs section).
func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)
StorePointer atomically stores val into *addr. Consider using the more ergonomic and less error-prone Pointer.Store instead.
func StoreUint32(addr *uint32, val uint32)
StoreUint32 atomically stores val into *addr. Consider using the more ergonomic and less error-prone Uint32.Store instead.
func StoreUint64(addr *uint64, val uint64)
StoreUint64 atomically stores val into *addr. Consider using the more ergonomic and less error-prone Uint64.Store instead (particularly if you target 32-bit platforms; see the bugs section).
func StoreUintptr(addr *uintptr, val uintptr)
StoreUintptr atomically stores val into *addr. Consider using the more ergonomic and less error-prone Uintptr.Store instead.
func SwapInt32(addr *int32, new int32) (old int32)
SwapInt32 atomically stores new into *addr and returns the previous *addr value. Consider using the more ergonomic and less error-prone Int32.Swap instead.
func SwapInt64(addr *int64, new int64) (old int64)
SwapInt64 atomically stores new into *addr and returns the previous *addr value. Consider using the more ergonomic and less error-prone Int64.Swap instead (particularly if you target 32-bit platforms; see the bugs section).
func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer)
SwapPointer atomically stores new into *addr and returns the previous *addr value. Consider using the more ergonomic and less error-prone Pointer.Swap instead.
func SwapUint32(addr *uint32, new uint32) (old uint32)
SwapUint32 atomically stores new into *addr and returns the previous *addr value. Consider using the more ergonomic and less error-prone Uint32.Swap instead.
func SwapUint64(addr *uint64, new uint64) (old uint64)
SwapUint64 atomically stores new into *addr and returns the previous *addr value. Consider using the more ergonomic and less error-prone Uint64.Swap instead (particularly if you target 32-bit platforms; see the bugs section).
func SwapUintptr(addr *uintptr, new uintptr) (old uintptr)
SwapUintptr atomically stores new into *addr and returns the previous *addr value. Consider using the more ergonomic and less error-prone Uintptr.Swap instead.
A Bool is an atomic boolean value. The zero value is false.
type Bool struct {
// contains filtered or unexported fields
}
func (x *Bool) CompareAndSwap(old, new bool) (swapped bool)
CompareAndSwap executes the compare-and-swap operation for the boolean value x.
func (x *Bool) Load() bool
Load atomically loads and returns the value stored in x.
func (x *Bool) Store(val bool)
Store atomically stores val into x.
func (x *Bool) Swap(new bool) (old bool)
Swap atomically stores new into x and returns the previous value.
An Int32 is an atomic int32. The zero value is zero.
type Int32 struct {
// contains filtered or unexported fields
}
func (x *Int32) Add(delta int32) (new int32)
Add atomically adds delta to x and returns the new value.
func (x *Int32) CompareAndSwap(old, new int32) (swapped bool)
CompareAndSwap executes the compare-and-swap operation for x.
func (x *Int32) Load() int32
Load atomically loads and returns the value stored in x.
func (x *Int32) Store(val int32)
Store atomically stores val into x.
func (x *Int32) Swap(new int32) (old int32)
Swap atomically stores new into x and returns the previous value.
An Int64 is an atomic int64. The zero value is zero.
type Int64 struct {
// contains filtered or unexported fields
}
func (x *Int64) Add(delta int64) (new int64)
Add atomically adds delta to x and returns the new value.
func (x *Int64) CompareAndSwap(old, new int64) (swapped bool)
CompareAndSwap executes the compare-and-swap operation for x.
func (x *Int64) Load() int64
Load atomically loads and returns the value stored in x.
func (x *Int64) Store(val int64)
Store atomically stores val into x.
func (x *Int64) Swap(new int64) (old int64)
Swap atomically stores new into x and returns the previous value.
A Pointer is an atomic pointer of type *T. The zero value is a nil *T.
type Pointer[T any] struct { // contains filtered or unexported fields }
func (x *Pointer[T]) CompareAndSwap(old, new *T) (swapped bool)
CompareAndSwap executes the compare-and-swap operation for x.
func (x *Pointer[T]) Load() *T
Load atomically loads and returns the value stored in x.
func (x *Pointer[T]) Store(val *T)
Store atomically stores val into x.
func (x *Pointer[T]) Swap(new *T) (old *T)
Swap atomically stores new into x and returns the previous value.
A Uint32 is an atomic uint32. The zero value is zero.
type Uint32 struct {
// contains filtered or unexported fields
}
func (x *Uint32) Add(delta uint32) (new uint32)
Add atomically adds delta to x and returns the new value.
func (x *Uint32) CompareAndSwap(old, new uint32) (swapped bool)
CompareAndSwap executes the compare-and-swap operation for x.
func (x *Uint32) Load() uint32
Load atomically loads and returns the value stored in x.
func (x *Uint32) Store(val uint32)
Store atomically stores val into x.
func (x *Uint32) Swap(new uint32) (old uint32)
Swap atomically stores new into x and returns the previous value.
A Uint64 is an atomic uint64. The zero value is zero.
type Uint64 struct {
// contains filtered or unexported fields
}
func (x *Uint64) Add(delta uint64) (new uint64)
Add atomically adds delta to x and returns the new value.
func (x *Uint64) CompareAndSwap(old, new uint64) (swapped bool)
CompareAndSwap executes the compare-and-swap operation for x.
func (x *Uint64) Load() uint64
Load atomically loads and returns the value stored in x.
func (x *Uint64) Store(val uint64)
Store atomically stores val into x.
func (x *Uint64) Swap(new uint64) (old uint64)
Swap atomically stores new into x and returns the previous value.
A Uintptr is an atomic uintptr. The zero value is zero.
type Uintptr struct {
// contains filtered or unexported fields
}
func (x *Uintptr) Add(delta uintptr) (new uintptr)
Add atomically adds delta to x and returns the new value.
func (x *Uintptr) CompareAndSwap(old, new uintptr) (swapped bool)
CompareAndSwap executes the compare-and-swap operation for x.
func (x *Uintptr) Load() uintptr
Load atomically loads and returns the value stored in x.
func (x *Uintptr) Store(val uintptr)
Store atomically stores val into x.
func (x *Uintptr) Swap(new uintptr) (old uintptr)
Swap atomically stores new into x and returns the previous value.
A Value provides an atomic load and store of a consistently typed value. The zero value for a Value returns nil from Load. Once Store has been called, a Value must not be copied.
A Value must not be copied after first use.
type Value struct {
// contains filtered or unexported fields
}
▹ Example (Config)
▹ Example (ReadMostly)
func (v *Value) CompareAndSwap(old, new any) (swapped bool)
CompareAndSwap executes the compare-and-swap operation for the Value.
All calls to CompareAndSwap for a given Value must use values of the same concrete type. CompareAndSwap of an inconsistent type panics, as does CompareAndSwap(old, nil).
func (v *Value) Load() (val any)
Load returns the value set by the most recent Store. It returns nil if there has been no call to Store for this Value.
func (v *Value) Store(val any)
Store sets the value of the Value v to val. All calls to Store for a given Value must use values of the same concrete type. Store of an inconsistent type panics, as does Store(nil).
func (v *Value) Swap(new any) (old any)
Swap stores new into Value and returns the previous value. It returns nil if the Value is empty.
All calls to Swap for a given Value must use values of the same concrete type. Swap of an inconsistent type panics, as does Swap(nil).
On 386, the 64-bit functions use instructions unavailable before the Pentium MMX.
On non-Linux ARM, the 64-bit functions use instructions unavailable before the ARMv6k core.
On ARM, 386, and 32-bit MIPS, it is the caller's responsibility to arrange for 64-bit alignment of 64-bit words accessed atomically via the primitive atomic functions (types Int64 and Uint64 are automatically aligned). The first word in an allocated struct, array, or slice; in a global variable; or in a local variable (because the subject of all atomic operations will escape to the heap) can be relied upon to be 64-bit aligned.