...

Source file src/cmd/compile/internal/noder/reader.go

Documentation: cmd/compile/internal/noder

     1  // Copyright 2021 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package noder
     6  
     7  import (
     8  	"encoding/hex"
     9  	"fmt"
    10  	"go/constant"
    11  	"internal/buildcfg"
    12  	"internal/pkgbits"
    13  	"path/filepath"
    14  	"strings"
    15  
    16  	"cmd/compile/internal/base"
    17  	"cmd/compile/internal/dwarfgen"
    18  	"cmd/compile/internal/inline"
    19  	"cmd/compile/internal/inline/interleaved"
    20  	"cmd/compile/internal/ir"
    21  	"cmd/compile/internal/objw"
    22  	"cmd/compile/internal/reflectdata"
    23  	"cmd/compile/internal/staticinit"
    24  	"cmd/compile/internal/typecheck"
    25  	"cmd/compile/internal/types"
    26  	"cmd/internal/notsha256"
    27  	"cmd/internal/obj"
    28  	"cmd/internal/objabi"
    29  	"cmd/internal/src"
    30  )
    31  
    32  // This file implements cmd/compile backend's reader for the Unified
    33  // IR export data.
    34  
    35  // A pkgReader reads Unified IR export data.
    36  type pkgReader struct {
    37  	pkgbits.PkgDecoder
    38  
    39  	// Indices for encoded things; lazily populated as needed.
    40  	//
    41  	// Note: Objects (i.e., ir.Names) are lazily instantiated by
    42  	// populating their types.Sym.Def; see objReader below.
    43  
    44  	posBases []*src.PosBase
    45  	pkgs     []*types.Pkg
    46  	typs     []*types.Type
    47  
    48  	// offset for rewriting the given (absolute!) index into the output,
    49  	// but bitwise inverted so we can detect if we're missing the entry
    50  	// or not.
    51  	newindex []pkgbits.Index
    52  }
    53  
    54  func newPkgReader(pr pkgbits.PkgDecoder) *pkgReader {
    55  	return &pkgReader{
    56  		PkgDecoder: pr,
    57  
    58  		posBases: make([]*src.PosBase, pr.NumElems(pkgbits.RelocPosBase)),
    59  		pkgs:     make([]*types.Pkg, pr.NumElems(pkgbits.RelocPkg)),
    60  		typs:     make([]*types.Type, pr.NumElems(pkgbits.RelocType)),
    61  
    62  		newindex: make([]pkgbits.Index, pr.TotalElems()),
    63  	}
    64  }
    65  
    66  // A pkgReaderIndex compactly identifies an index (and its
    67  // corresponding dictionary) within a package's export data.
    68  type pkgReaderIndex struct {
    69  	pr        *pkgReader
    70  	idx       pkgbits.Index
    71  	dict      *readerDict
    72  	methodSym *types.Sym
    73  
    74  	synthetic func(pos src.XPos, r *reader)
    75  }
    76  
    77  func (pri pkgReaderIndex) asReader(k pkgbits.RelocKind, marker pkgbits.SyncMarker) *reader {
    78  	if pri.synthetic != nil {
    79  		return &reader{synthetic: pri.synthetic}
    80  	}
    81  
    82  	r := pri.pr.newReader(k, pri.idx, marker)
    83  	r.dict = pri.dict
    84  	r.methodSym = pri.methodSym
    85  	return r
    86  }
    87  
    88  func (pr *pkgReader) newReader(k pkgbits.RelocKind, idx pkgbits.Index, marker pkgbits.SyncMarker) *reader {
    89  	return &reader{
    90  		Decoder: pr.NewDecoder(k, idx, marker),
    91  		p:       pr,
    92  	}
    93  }
    94  
    95  // A reader provides APIs for reading an individual element.
    96  type reader struct {
    97  	pkgbits.Decoder
    98  
    99  	p *pkgReader
   100  
   101  	dict *readerDict
   102  
   103  	// TODO(mdempsky): The state below is all specific to reading
   104  	// function bodies. It probably makes sense to split it out
   105  	// separately so that it doesn't take up space in every reader
   106  	// instance.
   107  
   108  	curfn       *ir.Func
   109  	locals      []*ir.Name
   110  	closureVars []*ir.Name
   111  
   112  	// funarghack is used during inlining to suppress setting
   113  	// Field.Nname to the inlined copies of the parameters. This is
   114  	// necessary because we reuse the same types.Type as the original
   115  	// function, and most of the compiler still relies on field.Nname to
   116  	// find parameters/results.
   117  	funarghack bool
   118  
   119  	// methodSym is the name of method's name, if reading a method.
   120  	// It's nil if reading a normal function or closure body.
   121  	methodSym *types.Sym
   122  
   123  	// dictParam is the .dict param, if any.
   124  	dictParam *ir.Name
   125  
   126  	// synthetic is a callback function to construct a synthetic
   127  	// function body. It's used for creating the bodies of function
   128  	// literals used to curry arguments to shaped functions.
   129  	synthetic func(pos src.XPos, r *reader)
   130  
   131  	// scopeVars is a stack tracking the number of variables declared in
   132  	// the current function at the moment each open scope was opened.
   133  	scopeVars         []int
   134  	marker            dwarfgen.ScopeMarker
   135  	lastCloseScopePos src.XPos
   136  
   137  	// === details for handling inline body expansion ===
   138  
   139  	// If we're reading in a function body because of inlining, this is
   140  	// the call that we're inlining for.
   141  	inlCaller    *ir.Func
   142  	inlCall      *ir.CallExpr
   143  	inlFunc      *ir.Func
   144  	inlTreeIndex int
   145  	inlPosBases  map[*src.PosBase]*src.PosBase
   146  
   147  	// suppressInlPos tracks whether position base rewriting for
   148  	// inlining should be suppressed. See funcLit.
   149  	suppressInlPos int
   150  
   151  	delayResults bool
   152  
   153  	// Label to return to.
   154  	retlabel *types.Sym
   155  }
   156  
   157  // A readerDict represents an instantiated "compile-time dictionary,"
   158  // used for resolving any derived types needed for instantiating a
   159  // generic object.
   160  //
   161  // A compile-time dictionary can either be "shaped" or "non-shaped."
   162  // Shaped compile-time dictionaries are only used for instantiating
   163  // shaped type definitions and function bodies, while non-shaped
   164  // compile-time dictionaries are used for instantiating runtime
   165  // dictionaries.
   166  type readerDict struct {
   167  	shaped bool // whether this is a shaped dictionary
   168  
   169  	// baseSym is the symbol for the object this dictionary belongs to.
   170  	// If the object is an instantiated function or defined type, then
   171  	// baseSym is the mangled symbol, including any type arguments.
   172  	baseSym *types.Sym
   173  
   174  	// For non-shaped dictionaries, shapedObj is a reference to the
   175  	// corresponding shaped object (always a function or defined type).
   176  	shapedObj *ir.Name
   177  
   178  	// targs holds the implicit and explicit type arguments in use for
   179  	// reading the current object. For example:
   180  	//
   181  	//	func F[T any]() {
   182  	//		type X[U any] struct { t T; u U }
   183  	//		var _ X[string]
   184  	//	}
   185  	//
   186  	//	var _ = F[int]
   187  	//
   188  	// While instantiating F[int], we need to in turn instantiate
   189  	// X[string]. [int] and [string] are explicit type arguments for F
   190  	// and X, respectively; but [int] is also the implicit type
   191  	// arguments for X.
   192  	//
   193  	// (As an analogy to function literals, explicits are the function
   194  	// literal's formal parameters, while implicits are variables
   195  	// captured by the function literal.)
   196  	targs []*types.Type
   197  
   198  	// implicits counts how many of types within targs are implicit type
   199  	// arguments; the rest are explicit.
   200  	implicits int
   201  
   202  	derived      []derivedInfo // reloc index of the derived type's descriptor
   203  	derivedTypes []*types.Type // slice of previously computed derived types
   204  
   205  	// These slices correspond to entries in the runtime dictionary.
   206  	typeParamMethodExprs []readerMethodExprInfo
   207  	subdicts             []objInfo
   208  	rtypes               []typeInfo
   209  	itabs                []itabInfo
   210  }
   211  
   212  type readerMethodExprInfo struct {
   213  	typeParamIdx int
   214  	method       *types.Sym
   215  }
   216  
   217  func setType(n ir.Node, typ *types.Type) {
   218  	n.SetType(typ)
   219  	n.SetTypecheck(1)
   220  }
   221  
   222  func setValue(name *ir.Name, val constant.Value) {
   223  	name.SetVal(val)
   224  	name.Defn = nil
   225  }
   226  
   227  // @@@ Positions
   228  
   229  // pos reads a position from the bitstream.
   230  func (r *reader) pos() src.XPos {
   231  	return base.Ctxt.PosTable.XPos(r.pos0())
   232  }
   233  
   234  // origPos reads a position from the bitstream, and returns both the
   235  // original raw position and an inlining-adjusted position.
   236  func (r *reader) origPos() (origPos, inlPos src.XPos) {
   237  	r.suppressInlPos++
   238  	origPos = r.pos()
   239  	r.suppressInlPos--
   240  	inlPos = r.inlPos(origPos)
   241  	return
   242  }
   243  
   244  func (r *reader) pos0() src.Pos {
   245  	r.Sync(pkgbits.SyncPos)
   246  	if !r.Bool() {
   247  		return src.NoPos
   248  	}
   249  
   250  	posBase := r.posBase()
   251  	line := r.Uint()
   252  	col := r.Uint()
   253  	return src.MakePos(posBase, line, col)
   254  }
   255  
   256  // posBase reads a position base from the bitstream.
   257  func (r *reader) posBase() *src.PosBase {
   258  	return r.inlPosBase(r.p.posBaseIdx(r.Reloc(pkgbits.RelocPosBase)))
   259  }
   260  
   261  // posBaseIdx returns the specified position base, reading it first if
   262  // needed.
   263  func (pr *pkgReader) posBaseIdx(idx pkgbits.Index) *src.PosBase {
   264  	if b := pr.posBases[idx]; b != nil {
   265  		return b
   266  	}
   267  
   268  	r := pr.newReader(pkgbits.RelocPosBase, idx, pkgbits.SyncPosBase)
   269  	var b *src.PosBase
   270  
   271  	absFilename := r.String()
   272  	filename := absFilename
   273  
   274  	// For build artifact stability, the export data format only
   275  	// contains the "absolute" filename as returned by objabi.AbsFile.
   276  	// However, some tests (e.g., test/run.go's asmcheck tests) expect
   277  	// to see the full, original filename printed out. Re-expanding
   278  	// "$GOROOT" to buildcfg.GOROOT is a close-enough approximation to
   279  	// satisfy this.
   280  	//
   281  	// The export data format only ever uses slash paths
   282  	// (for cross-operating-system reproducible builds),
   283  	// but error messages need to use native paths (backslash on Windows)
   284  	// as if they had been specified on the command line.
   285  	// (The go command always passes native paths to the compiler.)
   286  	const dollarGOROOT = "$GOROOT"
   287  	if buildcfg.GOROOT != "" && strings.HasPrefix(filename, dollarGOROOT) {
   288  		filename = filepath.FromSlash(buildcfg.GOROOT + filename[len(dollarGOROOT):])
   289  	}
   290  
   291  	if r.Bool() {
   292  		b = src.NewFileBase(filename, absFilename)
   293  	} else {
   294  		pos := r.pos0()
   295  		line := r.Uint()
   296  		col := r.Uint()
   297  		b = src.NewLinePragmaBase(pos, filename, absFilename, line, col)
   298  	}
   299  
   300  	pr.posBases[idx] = b
   301  	return b
   302  }
   303  
   304  // inlPosBase returns the inlining-adjusted src.PosBase corresponding
   305  // to oldBase, which must be a non-inlined position. When not
   306  // inlining, this is just oldBase.
   307  func (r *reader) inlPosBase(oldBase *src.PosBase) *src.PosBase {
   308  	if index := oldBase.InliningIndex(); index >= 0 {
   309  		base.Fatalf("oldBase %v already has inlining index %v", oldBase, index)
   310  	}
   311  
   312  	if r.inlCall == nil || r.suppressInlPos != 0 {
   313  		return oldBase
   314  	}
   315  
   316  	if newBase, ok := r.inlPosBases[oldBase]; ok {
   317  		return newBase
   318  	}
   319  
   320  	newBase := src.NewInliningBase(oldBase, r.inlTreeIndex)
   321  	r.inlPosBases[oldBase] = newBase
   322  	return newBase
   323  }
   324  
   325  // inlPos returns the inlining-adjusted src.XPos corresponding to
   326  // xpos, which must be a non-inlined position. When not inlining, this
   327  // is just xpos.
   328  func (r *reader) inlPos(xpos src.XPos) src.XPos {
   329  	pos := base.Ctxt.PosTable.Pos(xpos)
   330  	pos.SetBase(r.inlPosBase(pos.Base()))
   331  	return base.Ctxt.PosTable.XPos(pos)
   332  }
   333  
   334  // @@@ Packages
   335  
   336  // pkg reads a package reference from the bitstream.
   337  func (r *reader) pkg() *types.Pkg {
   338  	r.Sync(pkgbits.SyncPkg)
   339  	return r.p.pkgIdx(r.Reloc(pkgbits.RelocPkg))
   340  }
   341  
   342  // pkgIdx returns the specified package from the export data, reading
   343  // it first if needed.
   344  func (pr *pkgReader) pkgIdx(idx pkgbits.Index) *types.Pkg {
   345  	if pkg := pr.pkgs[idx]; pkg != nil {
   346  		return pkg
   347  	}
   348  
   349  	pkg := pr.newReader(pkgbits.RelocPkg, idx, pkgbits.SyncPkgDef).doPkg()
   350  	pr.pkgs[idx] = pkg
   351  	return pkg
   352  }
   353  
   354  // doPkg reads a package definition from the bitstream.
   355  func (r *reader) doPkg() *types.Pkg {
   356  	path := r.String()
   357  	switch path {
   358  	case "":
   359  		path = r.p.PkgPath()
   360  	case "builtin":
   361  		return types.BuiltinPkg
   362  	case "unsafe":
   363  		return types.UnsafePkg
   364  	}
   365  
   366  	name := r.String()
   367  
   368  	pkg := types.NewPkg(path, "")
   369  
   370  	if pkg.Name == "" {
   371  		pkg.Name = name
   372  	} else {
   373  		base.Assertf(pkg.Name == name, "package %q has name %q, but want %q", pkg.Path, pkg.Name, name)
   374  	}
   375  
   376  	return pkg
   377  }
   378  
   379  // @@@ Types
   380  
   381  func (r *reader) typ() *types.Type {
   382  	return r.typWrapped(true)
   383  }
   384  
   385  // typWrapped is like typ, but allows suppressing generation of
   386  // unnecessary wrappers as a compile-time optimization.
   387  func (r *reader) typWrapped(wrapped bool) *types.Type {
   388  	return r.p.typIdx(r.typInfo(), r.dict, wrapped)
   389  }
   390  
   391  func (r *reader) typInfo() typeInfo {
   392  	r.Sync(pkgbits.SyncType)
   393  	if r.Bool() {
   394  		return typeInfo{idx: pkgbits.Index(r.Len()), derived: true}
   395  	}
   396  	return typeInfo{idx: r.Reloc(pkgbits.RelocType), derived: false}
   397  }
   398  
   399  // typListIdx returns a list of the specified types, resolving derived
   400  // types within the given dictionary.
   401  func (pr *pkgReader) typListIdx(infos []typeInfo, dict *readerDict) []*types.Type {
   402  	typs := make([]*types.Type, len(infos))
   403  	for i, info := range infos {
   404  		typs[i] = pr.typIdx(info, dict, true)
   405  	}
   406  	return typs
   407  }
   408  
   409  // typIdx returns the specified type. If info specifies a derived
   410  // type, it's resolved within the given dictionary. If wrapped is
   411  // true, then method wrappers will be generated, if appropriate.
   412  func (pr *pkgReader) typIdx(info typeInfo, dict *readerDict, wrapped bool) *types.Type {
   413  	idx := info.idx
   414  	var where **types.Type
   415  	if info.derived {
   416  		where = &dict.derivedTypes[idx]
   417  		idx = dict.derived[idx].idx
   418  	} else {
   419  		where = &pr.typs[idx]
   420  	}
   421  
   422  	if typ := *where; typ != nil {
   423  		return typ
   424  	}
   425  
   426  	r := pr.newReader(pkgbits.RelocType, idx, pkgbits.SyncTypeIdx)
   427  	r.dict = dict
   428  
   429  	typ := r.doTyp()
   430  	assert(typ != nil)
   431  
   432  	// For recursive type declarations involving interfaces and aliases,
   433  	// above r.doTyp() call may have already set pr.typs[idx], so just
   434  	// double check and return the type.
   435  	//
   436  	// Example:
   437  	//
   438  	//     type F = func(I)
   439  	//
   440  	//     type I interface {
   441  	//         m(F)
   442  	//     }
   443  	//
   444  	// The writer writes data types in following index order:
   445  	//
   446  	//     0: func(I)
   447  	//     1: I
   448  	//     2: interface{m(func(I))}
   449  	//
   450  	// The reader resolves it in following index order:
   451  	//
   452  	//     0 -> 1 -> 2 -> 0 -> 1
   453  	//
   454  	// and can divide in logically 2 steps:
   455  	//
   456  	//  - 0 -> 1     : first time the reader reach type I,
   457  	//                 it creates new named type with symbol I.
   458  	//
   459  	//  - 2 -> 0 -> 1: the reader ends up reaching symbol I again,
   460  	//                 now the symbol I was setup in above step, so
   461  	//                 the reader just return the named type.
   462  	//
   463  	// Now, the functions called return, the pr.typs looks like below:
   464  	//
   465  	//  - 0 -> 1 -> 2 -> 0 : [<T> I <T>]
   466  	//  - 0 -> 1 -> 2      : [func(I) I <T>]
   467  	//  - 0 -> 1           : [func(I) I interface { "".m(func("".I)) }]
   468  	//
   469  	// The idx 1, corresponding with type I was resolved successfully
   470  	// after r.doTyp() call.
   471  
   472  	if prev := *where; prev != nil {
   473  		return prev
   474  	}
   475  
   476  	if wrapped {
   477  		// Only cache if we're adding wrappers, so that other callers that
   478  		// find a cached type know it was wrapped.
   479  		*where = typ
   480  
   481  		r.needWrapper(typ)
   482  	}
   483  
   484  	if !typ.IsUntyped() {
   485  		types.CheckSize(typ)
   486  	}
   487  
   488  	return typ
   489  }
   490  
   491  func (r *reader) doTyp() *types.Type {
   492  	switch tag := pkgbits.CodeType(r.Code(pkgbits.SyncType)); tag {
   493  	default:
   494  		panic(fmt.Sprintf("unexpected type: %v", tag))
   495  
   496  	case pkgbits.TypeBasic:
   497  		return *basics[r.Len()]
   498  
   499  	case pkgbits.TypeNamed:
   500  		obj := r.obj()
   501  		assert(obj.Op() == ir.OTYPE)
   502  		return obj.Type()
   503  
   504  	case pkgbits.TypeTypeParam:
   505  		return r.dict.targs[r.Len()]
   506  
   507  	case pkgbits.TypeArray:
   508  		len := int64(r.Uint64())
   509  		return types.NewArray(r.typ(), len)
   510  	case pkgbits.TypeChan:
   511  		dir := dirs[r.Len()]
   512  		return types.NewChan(r.typ(), dir)
   513  	case pkgbits.TypeMap:
   514  		return types.NewMap(r.typ(), r.typ())
   515  	case pkgbits.TypePointer:
   516  		return types.NewPtr(r.typ())
   517  	case pkgbits.TypeSignature:
   518  		return r.signature(nil)
   519  	case pkgbits.TypeSlice:
   520  		return types.NewSlice(r.typ())
   521  	case pkgbits.TypeStruct:
   522  		return r.structType()
   523  	case pkgbits.TypeInterface:
   524  		return r.interfaceType()
   525  	case pkgbits.TypeUnion:
   526  		return r.unionType()
   527  	}
   528  }
   529  
   530  func (r *reader) unionType() *types.Type {
   531  	// In the types1 universe, we only need to handle value types.
   532  	// Impure interfaces (i.e., interfaces with non-trivial type sets
   533  	// like "int | string") can only appear as type parameter bounds,
   534  	// and this is enforced by the types2 type checker.
   535  	//
   536  	// However, type unions can still appear in pure interfaces if the
   537  	// type union is equivalent to "any". E.g., typeparam/issue52124.go
   538  	// declares variables with the type "interface { any | int }".
   539  	//
   540  	// To avoid needing to represent type unions in types1 (since we
   541  	// don't have any uses for that today anyway), we simply fold them
   542  	// to "any".
   543  
   544  	// TODO(mdempsky): Restore consistency check to make sure folding to
   545  	// "any" is safe. This is unfortunately tricky, because a pure
   546  	// interface can reference impure interfaces too, including
   547  	// cyclically (#60117).
   548  	if false {
   549  		pure := false
   550  		for i, n := 0, r.Len(); i < n; i++ {
   551  			_ = r.Bool() // tilde
   552  			term := r.typ()
   553  			if term.IsEmptyInterface() {
   554  				pure = true
   555  			}
   556  		}
   557  		if !pure {
   558  			base.Fatalf("impure type set used in value type")
   559  		}
   560  	}
   561  
   562  	return types.Types[types.TINTER]
   563  }
   564  
   565  func (r *reader) interfaceType() *types.Type {
   566  	nmethods, nembeddeds := r.Len(), r.Len()
   567  	implicit := nmethods == 0 && nembeddeds == 1 && r.Bool()
   568  	assert(!implicit) // implicit interfaces only appear in constraints
   569  
   570  	fields := make([]*types.Field, nmethods+nembeddeds)
   571  	methods, embeddeds := fields[:nmethods], fields[nmethods:]
   572  
   573  	for i := range methods {
   574  		methods[i] = types.NewField(r.pos(), r.selector(), r.signature(types.FakeRecv()))
   575  	}
   576  	for i := range embeddeds {
   577  		embeddeds[i] = types.NewField(src.NoXPos, nil, r.typ())
   578  	}
   579  
   580  	if len(fields) == 0 {
   581  		return types.Types[types.TINTER] // empty interface
   582  	}
   583  	return types.NewInterface(fields)
   584  }
   585  
   586  func (r *reader) structType() *types.Type {
   587  	fields := make([]*types.Field, r.Len())
   588  	for i := range fields {
   589  		field := types.NewField(r.pos(), r.selector(), r.typ())
   590  		field.Note = r.String()
   591  		if r.Bool() {
   592  			field.Embedded = 1
   593  		}
   594  		fields[i] = field
   595  	}
   596  	return types.NewStruct(fields)
   597  }
   598  
   599  func (r *reader) signature(recv *types.Field) *types.Type {
   600  	r.Sync(pkgbits.SyncSignature)
   601  
   602  	params := r.params()
   603  	results := r.params()
   604  	if r.Bool() { // variadic
   605  		params[len(params)-1].SetIsDDD(true)
   606  	}
   607  
   608  	return types.NewSignature(recv, params, results)
   609  }
   610  
   611  func (r *reader) params() []*types.Field {
   612  	r.Sync(pkgbits.SyncParams)
   613  	params := make([]*types.Field, r.Len())
   614  	for i := range params {
   615  		params[i] = r.param()
   616  	}
   617  	return params
   618  }
   619  
   620  func (r *reader) param() *types.Field {
   621  	r.Sync(pkgbits.SyncParam)
   622  	return types.NewField(r.pos(), r.localIdent(), r.typ())
   623  }
   624  
   625  // @@@ Objects
   626  
   627  // objReader maps qualified identifiers (represented as *types.Sym) to
   628  // a pkgReader and corresponding index that can be used for reading
   629  // that object's definition.
   630  var objReader = map[*types.Sym]pkgReaderIndex{}
   631  
   632  // obj reads an instantiated object reference from the bitstream.
   633  func (r *reader) obj() ir.Node {
   634  	return r.p.objInstIdx(r.objInfo(), r.dict, false)
   635  }
   636  
   637  // objInfo reads an instantiated object reference from the bitstream
   638  // and returns the encoded reference to it, without instantiating it.
   639  func (r *reader) objInfo() objInfo {
   640  	r.Sync(pkgbits.SyncObject)
   641  	assert(!r.Bool()) // TODO(mdempsky): Remove; was derived func inst.
   642  	idx := r.Reloc(pkgbits.RelocObj)
   643  
   644  	explicits := make([]typeInfo, r.Len())
   645  	for i := range explicits {
   646  		explicits[i] = r.typInfo()
   647  	}
   648  
   649  	return objInfo{idx, explicits}
   650  }
   651  
   652  // objInstIdx returns the encoded, instantiated object. If shaped is
   653  // true, then the shaped variant of the object is returned instead.
   654  func (pr *pkgReader) objInstIdx(info objInfo, dict *readerDict, shaped bool) ir.Node {
   655  	explicits := pr.typListIdx(info.explicits, dict)
   656  
   657  	var implicits []*types.Type
   658  	if dict != nil {
   659  		implicits = dict.targs
   660  	}
   661  
   662  	return pr.objIdx(info.idx, implicits, explicits, shaped)
   663  }
   664  
   665  // objIdx returns the specified object, instantiated with the given
   666  // type arguments, if any.
   667  // If shaped is true, then the shaped variant of the object is returned
   668  // instead.
   669  func (pr *pkgReader) objIdx(idx pkgbits.Index, implicits, explicits []*types.Type, shaped bool) ir.Node {
   670  	n, err := pr.objIdxMayFail(idx, implicits, explicits, shaped)
   671  	if err != nil {
   672  		base.Fatalf("%v", err)
   673  	}
   674  	return n
   675  }
   676  
   677  // objIdxMayFail is equivalent to objIdx, but returns an error rather than
   678  // failing the build if this object requires type arguments and the incorrect
   679  // number of type arguments were passed.
   680  //
   681  // Other sources of internal failure (such as duplicate definitions) still fail
   682  // the build.
   683  func (pr *pkgReader) objIdxMayFail(idx pkgbits.Index, implicits, explicits []*types.Type, shaped bool) (ir.Node, error) {
   684  	rname := pr.newReader(pkgbits.RelocName, idx, pkgbits.SyncObject1)
   685  	_, sym := rname.qualifiedIdent()
   686  	tag := pkgbits.CodeObj(rname.Code(pkgbits.SyncCodeObj))
   687  
   688  	if tag == pkgbits.ObjStub {
   689  		assert(!sym.IsBlank())
   690  		switch sym.Pkg {
   691  		case types.BuiltinPkg, types.UnsafePkg:
   692  			return sym.Def.(ir.Node), nil
   693  		}
   694  		if pri, ok := objReader[sym]; ok {
   695  			return pri.pr.objIdxMayFail(pri.idx, nil, explicits, shaped)
   696  		}
   697  		if sym.Pkg.Path == "runtime" {
   698  			return typecheck.LookupRuntime(sym.Name), nil
   699  		}
   700  		base.Fatalf("unresolved stub: %v", sym)
   701  	}
   702  
   703  	dict, err := pr.objDictIdx(sym, idx, implicits, explicits, shaped)
   704  	if err != nil {
   705  		return nil, err
   706  	}
   707  
   708  	sym = dict.baseSym
   709  	if !sym.IsBlank() && sym.Def != nil {
   710  		return sym.Def.(*ir.Name), nil
   711  	}
   712  
   713  	r := pr.newReader(pkgbits.RelocObj, idx, pkgbits.SyncObject1)
   714  	rext := pr.newReader(pkgbits.RelocObjExt, idx, pkgbits.SyncObject1)
   715  
   716  	r.dict = dict
   717  	rext.dict = dict
   718  
   719  	do := func(op ir.Op, hasTParams bool) *ir.Name {
   720  		pos := r.pos()
   721  		setBasePos(pos)
   722  		if hasTParams {
   723  			r.typeParamNames()
   724  		}
   725  
   726  		name := ir.NewDeclNameAt(pos, op, sym)
   727  		name.Class = ir.PEXTERN // may be overridden later
   728  		if !sym.IsBlank() {
   729  			if sym.Def != nil {
   730  				base.FatalfAt(name.Pos(), "already have a definition for %v", name)
   731  			}
   732  			assert(sym.Def == nil)
   733  			sym.Def = name
   734  		}
   735  		return name
   736  	}
   737  
   738  	switch tag {
   739  	default:
   740  		panic("unexpected object")
   741  
   742  	case pkgbits.ObjAlias:
   743  		name := do(ir.OTYPE, false)
   744  		setType(name, r.typ())
   745  		name.SetAlias(true)
   746  		return name, nil
   747  
   748  	case pkgbits.ObjConst:
   749  		name := do(ir.OLITERAL, false)
   750  		typ := r.typ()
   751  		val := FixValue(typ, r.Value())
   752  		setType(name, typ)
   753  		setValue(name, val)
   754  		return name, nil
   755  
   756  	case pkgbits.ObjFunc:
   757  		if sym.Name == "init" {
   758  			sym = Renameinit()
   759  		}
   760  
   761  		npos := r.pos()
   762  		setBasePos(npos)
   763  		r.typeParamNames()
   764  		typ := r.signature(nil)
   765  		fpos := r.pos()
   766  
   767  		fn := ir.NewFunc(fpos, npos, sym, typ)
   768  		name := fn.Nname
   769  		if !sym.IsBlank() {
   770  			if sym.Def != nil {
   771  				base.FatalfAt(name.Pos(), "already have a definition for %v", name)
   772  			}
   773  			assert(sym.Def == nil)
   774  			sym.Def = name
   775  		}
   776  
   777  		if r.hasTypeParams() {
   778  			name.Func.SetDupok(true)
   779  			if r.dict.shaped {
   780  				setType(name, shapeSig(name.Func, r.dict))
   781  			} else {
   782  				todoDicts = append(todoDicts, func() {
   783  					r.dict.shapedObj = pr.objIdx(idx, implicits, explicits, true).(*ir.Name)
   784  				})
   785  			}
   786  		}
   787  
   788  		rext.funcExt(name, nil)
   789  		return name, nil
   790  
   791  	case pkgbits.ObjType:
   792  		name := do(ir.OTYPE, true)
   793  		typ := types.NewNamed(name)
   794  		setType(name, typ)
   795  		if r.hasTypeParams() && r.dict.shaped {
   796  			typ.SetHasShape(true)
   797  		}
   798  
   799  		// Important: We need to do this before SetUnderlying.
   800  		rext.typeExt(name)
   801  
   802  		// We need to defer CheckSize until we've called SetUnderlying to
   803  		// handle recursive types.
   804  		types.DeferCheckSize()
   805  		typ.SetUnderlying(r.typWrapped(false))
   806  		types.ResumeCheckSize()
   807  
   808  		if r.hasTypeParams() && !r.dict.shaped {
   809  			todoDicts = append(todoDicts, func() {
   810  				r.dict.shapedObj = pr.objIdx(idx, implicits, explicits, true).(*ir.Name)
   811  			})
   812  		}
   813  
   814  		methods := make([]*types.Field, r.Len())
   815  		for i := range methods {
   816  			methods[i] = r.method(rext)
   817  		}
   818  		if len(methods) != 0 {
   819  			typ.SetMethods(methods)
   820  		}
   821  
   822  		if !r.dict.shaped {
   823  			r.needWrapper(typ)
   824  		}
   825  
   826  		return name, nil
   827  
   828  	case pkgbits.ObjVar:
   829  		name := do(ir.ONAME, false)
   830  		setType(name, r.typ())
   831  		rext.varExt(name)
   832  		return name, nil
   833  	}
   834  }
   835  
   836  func (dict *readerDict) mangle(sym *types.Sym) *types.Sym {
   837  	if !dict.hasTypeParams() {
   838  		return sym
   839  	}
   840  
   841  	// If sym is a locally defined generic type, we need the suffix to
   842  	// stay at the end after mangling so that types/fmt.go can strip it
   843  	// out again when writing the type's runtime descriptor (#54456).
   844  	base, suffix := types.SplitVargenSuffix(sym.Name)
   845  
   846  	var buf strings.Builder
   847  	buf.WriteString(base)
   848  	buf.WriteByte('[')
   849  	for i, targ := range dict.targs {
   850  		if i > 0 {
   851  			if i == dict.implicits {
   852  				buf.WriteByte(';')
   853  			} else {
   854  				buf.WriteByte(',')
   855  			}
   856  		}
   857  		buf.WriteString(targ.LinkString())
   858  	}
   859  	buf.WriteByte(']')
   860  	buf.WriteString(suffix)
   861  	return sym.Pkg.Lookup(buf.String())
   862  }
   863  
   864  // shapify returns the shape type for targ.
   865  //
   866  // If basic is true, then the type argument is used to instantiate a
   867  // type parameter whose constraint is a basic interface.
   868  func shapify(targ *types.Type, basic bool) *types.Type {
   869  	if targ.Kind() == types.TFORW {
   870  		if targ.IsFullyInstantiated() {
   871  			// For recursive instantiated type argument, it may  still be a TFORW
   872  			// when shapifying happens. If we don't have targ's underlying type,
   873  			// shapify won't work. The worst case is we end up not reusing code
   874  			// optimally in some tricky cases.
   875  			if base.Debug.Shapify != 0 {
   876  				base.Warn("skipping shaping of recursive type %v", targ)
   877  			}
   878  			if targ.HasShape() {
   879  				return targ
   880  			}
   881  		} else {
   882  			base.Fatalf("%v is missing its underlying type", targ)
   883  		}
   884  	}
   885  
   886  	// When a pointer type is used to instantiate a type parameter
   887  	// constrained by a basic interface, we know the pointer's element
   888  	// type can't matter to the generated code. In this case, we can use
   889  	// an arbitrary pointer type as the shape type. (To match the
   890  	// non-unified frontend, we use `*byte`.)
   891  	//
   892  	// Otherwise, we simply use the type's underlying type as its shape.
   893  	//
   894  	// TODO(mdempsky): It should be possible to do much more aggressive
   895  	// shaping still; e.g., collapsing all pointer-shaped types into a
   896  	// common type, collapsing scalars of the same size/alignment into a
   897  	// common type, recursively shaping the element types of composite
   898  	// types, and discarding struct field names and tags. However, we'll
   899  	// need to start tracking how type parameters are actually used to
   900  	// implement some of these optimizations.
   901  	under := targ.Underlying()
   902  	if basic && targ.IsPtr() && !targ.Elem().NotInHeap() {
   903  		under = types.NewPtr(types.Types[types.TUINT8])
   904  	}
   905  
   906  	// Hash long type names to bound symbol name length seen by users,
   907  	// particularly for large protobuf structs (#65030).
   908  	uls := under.LinkString()
   909  	if base.Debug.MaxShapeLen != 0 &&
   910  		len(uls) > base.Debug.MaxShapeLen {
   911  		h := notsha256.Sum256([]byte(uls))
   912  		uls = hex.EncodeToString(h[:])
   913  	}
   914  
   915  	sym := types.ShapePkg.Lookup(uls)
   916  	if sym.Def == nil {
   917  		name := ir.NewDeclNameAt(under.Pos(), ir.OTYPE, sym)
   918  		typ := types.NewNamed(name)
   919  		typ.SetUnderlying(under)
   920  		sym.Def = typed(typ, name)
   921  	}
   922  	res := sym.Def.Type()
   923  	assert(res.IsShape())
   924  	assert(res.HasShape())
   925  	return res
   926  }
   927  
   928  // objDictIdx reads and returns the specified object dictionary.
   929  func (pr *pkgReader) objDictIdx(sym *types.Sym, idx pkgbits.Index, implicits, explicits []*types.Type, shaped bool) (*readerDict, error) {
   930  	r := pr.newReader(pkgbits.RelocObjDict, idx, pkgbits.SyncObject1)
   931  
   932  	dict := readerDict{
   933  		shaped: shaped,
   934  	}
   935  
   936  	nimplicits := r.Len()
   937  	nexplicits := r.Len()
   938  
   939  	if nimplicits > len(implicits) || nexplicits != len(explicits) {
   940  		return nil, fmt.Errorf("%v has %v+%v params, but instantiated with %v+%v args", sym, nimplicits, nexplicits, len(implicits), len(explicits))
   941  	}
   942  
   943  	dict.targs = append(implicits[:nimplicits:nimplicits], explicits...)
   944  	dict.implicits = nimplicits
   945  
   946  	// Within the compiler, we can just skip over the type parameters.
   947  	for range dict.targs[dict.implicits:] {
   948  		// Skip past bounds without actually evaluating them.
   949  		r.typInfo()
   950  	}
   951  
   952  	dict.derived = make([]derivedInfo, r.Len())
   953  	dict.derivedTypes = make([]*types.Type, len(dict.derived))
   954  	for i := range dict.derived {
   955  		dict.derived[i] = derivedInfo{r.Reloc(pkgbits.RelocType), r.Bool()}
   956  	}
   957  
   958  	// Runtime dictionary information; private to the compiler.
   959  
   960  	// If any type argument is already shaped, then we're constructing a
   961  	// shaped object, even if not explicitly requested (i.e., calling
   962  	// objIdx with shaped==true). This can happen with instantiating
   963  	// types that are referenced within a function body.
   964  	for _, targ := range dict.targs {
   965  		if targ.HasShape() {
   966  			dict.shaped = true
   967  			break
   968  		}
   969  	}
   970  
   971  	// And if we're constructing a shaped object, then shapify all type
   972  	// arguments.
   973  	for i, targ := range dict.targs {
   974  		basic := r.Bool()
   975  		if dict.shaped {
   976  			dict.targs[i] = shapify(targ, basic)
   977  		}
   978  	}
   979  
   980  	dict.baseSym = dict.mangle(sym)
   981  
   982  	dict.typeParamMethodExprs = make([]readerMethodExprInfo, r.Len())
   983  	for i := range dict.typeParamMethodExprs {
   984  		typeParamIdx := r.Len()
   985  		method := r.selector()
   986  
   987  		dict.typeParamMethodExprs[i] = readerMethodExprInfo{typeParamIdx, method}
   988  	}
   989  
   990  	dict.subdicts = make([]objInfo, r.Len())
   991  	for i := range dict.subdicts {
   992  		dict.subdicts[i] = r.objInfo()
   993  	}
   994  
   995  	dict.rtypes = make([]typeInfo, r.Len())
   996  	for i := range dict.rtypes {
   997  		dict.rtypes[i] = r.typInfo()
   998  	}
   999  
  1000  	dict.itabs = make([]itabInfo, r.Len())
  1001  	for i := range dict.itabs {
  1002  		dict.itabs[i] = itabInfo{typ: r.typInfo(), iface: r.typInfo()}
  1003  	}
  1004  
  1005  	return &dict, nil
  1006  }
  1007  
  1008  func (r *reader) typeParamNames() {
  1009  	r.Sync(pkgbits.SyncTypeParamNames)
  1010  
  1011  	for range r.dict.targs[r.dict.implicits:] {
  1012  		r.pos()
  1013  		r.localIdent()
  1014  	}
  1015  }
  1016  
  1017  func (r *reader) method(rext *reader) *types.Field {
  1018  	r.Sync(pkgbits.SyncMethod)
  1019  	npos := r.pos()
  1020  	sym := r.selector()
  1021  	r.typeParamNames()
  1022  	recv := r.param()
  1023  	typ := r.signature(recv)
  1024  
  1025  	fpos := r.pos()
  1026  	fn := ir.NewFunc(fpos, npos, ir.MethodSym(recv.Type, sym), typ)
  1027  	name := fn.Nname
  1028  
  1029  	if r.hasTypeParams() {
  1030  		name.Func.SetDupok(true)
  1031  		if r.dict.shaped {
  1032  			typ = shapeSig(name.Func, r.dict)
  1033  			setType(name, typ)
  1034  		}
  1035  	}
  1036  
  1037  	rext.funcExt(name, sym)
  1038  
  1039  	meth := types.NewField(name.Func.Pos(), sym, typ)
  1040  	meth.Nname = name
  1041  	meth.SetNointerface(name.Func.Pragma&ir.Nointerface != 0)
  1042  
  1043  	return meth
  1044  }
  1045  
  1046  func (r *reader) qualifiedIdent() (pkg *types.Pkg, sym *types.Sym) {
  1047  	r.Sync(pkgbits.SyncSym)
  1048  	pkg = r.pkg()
  1049  	if name := r.String(); name != "" {
  1050  		sym = pkg.Lookup(name)
  1051  	}
  1052  	return
  1053  }
  1054  
  1055  func (r *reader) localIdent() *types.Sym {
  1056  	r.Sync(pkgbits.SyncLocalIdent)
  1057  	pkg := r.pkg()
  1058  	if name := r.String(); name != "" {
  1059  		return pkg.Lookup(name)
  1060  	}
  1061  	return nil
  1062  }
  1063  
  1064  func (r *reader) selector() *types.Sym {
  1065  	r.Sync(pkgbits.SyncSelector)
  1066  	pkg := r.pkg()
  1067  	name := r.String()
  1068  	if types.IsExported(name) {
  1069  		pkg = types.LocalPkg
  1070  	}
  1071  	return pkg.Lookup(name)
  1072  }
  1073  
  1074  func (r *reader) hasTypeParams() bool {
  1075  	return r.dict.hasTypeParams()
  1076  }
  1077  
  1078  func (dict *readerDict) hasTypeParams() bool {
  1079  	return dict != nil && len(dict.targs) != 0
  1080  }
  1081  
  1082  // @@@ Compiler extensions
  1083  
  1084  func (r *reader) funcExt(name *ir.Name, method *types.Sym) {
  1085  	r.Sync(pkgbits.SyncFuncExt)
  1086  
  1087  	fn := name.Func
  1088  
  1089  	// XXX: Workaround because linker doesn't know how to copy Pos.
  1090  	if !fn.Pos().IsKnown() {
  1091  		fn.SetPos(name.Pos())
  1092  	}
  1093  
  1094  	// Normally, we only compile local functions, which saves redundant compilation work.
  1095  	// n.Defn is not nil for local functions, and is nil for imported function. But for
  1096  	// generic functions, we might have an instantiation that no other package has seen before.
  1097  	// So we need to be conservative and compile it again.
  1098  	//
  1099  	// That's why name.Defn is set here, so ir.VisitFuncsBottomUp can analyze function.
  1100  	// TODO(mdempsky,cuonglm): find a cleaner way to handle this.
  1101  	if name.Sym().Pkg == types.LocalPkg || r.hasTypeParams() {
  1102  		name.Defn = fn
  1103  	}
  1104  
  1105  	fn.Pragma = r.pragmaFlag()
  1106  	r.linkname(name)
  1107  
  1108  	if buildcfg.GOARCH == "wasm" {
  1109  		xmod := r.String()
  1110  		xname := r.String()
  1111  
  1112  		if xmod != "" && xname != "" {
  1113  			fn.WasmImport = &ir.WasmImport{
  1114  				Module: xmod,
  1115  				Name:   xname,
  1116  			}
  1117  		}
  1118  	}
  1119  
  1120  	if r.Bool() {
  1121  		assert(name.Defn == nil)
  1122  
  1123  		fn.ABI = obj.ABI(r.Uint64())
  1124  
  1125  		// Escape analysis.
  1126  		for _, f := range name.Type().RecvParams() {
  1127  			f.Note = r.String()
  1128  		}
  1129  
  1130  		if r.Bool() {
  1131  			fn.Inl = &ir.Inline{
  1132  				Cost:            int32(r.Len()),
  1133  				CanDelayResults: r.Bool(),
  1134  			}
  1135  			if buildcfg.Experiment.NewInliner {
  1136  				fn.Inl.Properties = r.String()
  1137  			}
  1138  		}
  1139  	} else {
  1140  		r.addBody(name.Func, method)
  1141  	}
  1142  	r.Sync(pkgbits.SyncEOF)
  1143  }
  1144  
  1145  func (r *reader) typeExt(name *ir.Name) {
  1146  	r.Sync(pkgbits.SyncTypeExt)
  1147  
  1148  	typ := name.Type()
  1149  
  1150  	if r.hasTypeParams() {
  1151  		// Set "RParams" (really type arguments here, not parameters) so
  1152  		// this type is treated as "fully instantiated". This ensures the
  1153  		// type descriptor is written out as DUPOK and method wrappers are
  1154  		// generated even for imported types.
  1155  		var targs []*types.Type
  1156  		targs = append(targs, r.dict.targs...)
  1157  		typ.SetRParams(targs)
  1158  	}
  1159  
  1160  	name.SetPragma(r.pragmaFlag())
  1161  
  1162  	typecheck.SetBaseTypeIndex(typ, r.Int64(), r.Int64())
  1163  }
  1164  
  1165  func (r *reader) varExt(name *ir.Name) {
  1166  	r.Sync(pkgbits.SyncVarExt)
  1167  	r.linkname(name)
  1168  }
  1169  
  1170  func (r *reader) linkname(name *ir.Name) {
  1171  	assert(name.Op() == ir.ONAME)
  1172  	r.Sync(pkgbits.SyncLinkname)
  1173  
  1174  	if idx := r.Int64(); idx >= 0 {
  1175  		lsym := name.Linksym()
  1176  		lsym.SymIdx = int32(idx)
  1177  		lsym.Set(obj.AttrIndexed, true)
  1178  	} else {
  1179  		name.Sym().Linkname = r.String()
  1180  	}
  1181  }
  1182  
  1183  func (r *reader) pragmaFlag() ir.PragmaFlag {
  1184  	r.Sync(pkgbits.SyncPragma)
  1185  	return ir.PragmaFlag(r.Int())
  1186  }
  1187  
  1188  // @@@ Function bodies
  1189  
  1190  // bodyReader tracks where the serialized IR for a local or imported,
  1191  // generic function's body can be found.
  1192  var bodyReader = map[*ir.Func]pkgReaderIndex{}
  1193  
  1194  // importBodyReader tracks where the serialized IR for an imported,
  1195  // static (i.e., non-generic) function body can be read.
  1196  var importBodyReader = map[*types.Sym]pkgReaderIndex{}
  1197  
  1198  // bodyReaderFor returns the pkgReaderIndex for reading fn's
  1199  // serialized IR, and whether one was found.
  1200  func bodyReaderFor(fn *ir.Func) (pri pkgReaderIndex, ok bool) {
  1201  	if fn.Nname.Defn != nil {
  1202  		pri, ok = bodyReader[fn]
  1203  		base.AssertfAt(ok, base.Pos, "must have bodyReader for %v", fn) // must always be available
  1204  	} else {
  1205  		pri, ok = importBodyReader[fn.Sym()]
  1206  	}
  1207  	return
  1208  }
  1209  
  1210  // todoDicts holds the list of dictionaries that still need their
  1211  // runtime dictionary objects constructed.
  1212  var todoDicts []func()
  1213  
  1214  // todoBodies holds the list of function bodies that still need to be
  1215  // constructed.
  1216  var todoBodies []*ir.Func
  1217  
  1218  // addBody reads a function body reference from the element bitstream,
  1219  // and associates it with fn.
  1220  func (r *reader) addBody(fn *ir.Func, method *types.Sym) {
  1221  	// addBody should only be called for local functions or imported
  1222  	// generic functions; see comment in funcExt.
  1223  	assert(fn.Nname.Defn != nil)
  1224  
  1225  	idx := r.Reloc(pkgbits.RelocBody)
  1226  
  1227  	pri := pkgReaderIndex{r.p, idx, r.dict, method, nil}
  1228  	bodyReader[fn] = pri
  1229  
  1230  	if r.curfn == nil {
  1231  		todoBodies = append(todoBodies, fn)
  1232  		return
  1233  	}
  1234  
  1235  	pri.funcBody(fn)
  1236  }
  1237  
  1238  func (pri pkgReaderIndex) funcBody(fn *ir.Func) {
  1239  	r := pri.asReader(pkgbits.RelocBody, pkgbits.SyncFuncBody)
  1240  	r.funcBody(fn)
  1241  }
  1242  
  1243  // funcBody reads a function body definition from the element
  1244  // bitstream, and populates fn with it.
  1245  func (r *reader) funcBody(fn *ir.Func) {
  1246  	r.curfn = fn
  1247  	r.closureVars = fn.ClosureVars
  1248  	if len(r.closureVars) != 0 && r.hasTypeParams() {
  1249  		r.dictParam = r.closureVars[len(r.closureVars)-1] // dictParam is last; see reader.funcLit
  1250  	}
  1251  
  1252  	ir.WithFunc(fn, func() {
  1253  		r.declareParams()
  1254  
  1255  		if r.syntheticBody(fn.Pos()) {
  1256  			return
  1257  		}
  1258  
  1259  		if !r.Bool() {
  1260  			return
  1261  		}
  1262  
  1263  		body := r.stmts()
  1264  		if body == nil {
  1265  			body = []ir.Node{typecheck.Stmt(ir.NewBlockStmt(src.NoXPos, nil))}
  1266  		}
  1267  		fn.Body = body
  1268  		fn.Endlineno = r.pos()
  1269  	})
  1270  
  1271  	r.marker.WriteTo(fn)
  1272  }
  1273  
  1274  // syntheticBody adds a synthetic body to r.curfn if appropriate, and
  1275  // reports whether it did.
  1276  func (r *reader) syntheticBody(pos src.XPos) bool {
  1277  	if r.synthetic != nil {
  1278  		r.synthetic(pos, r)
  1279  		return true
  1280  	}
  1281  
  1282  	// If this function has type parameters and isn't shaped, then we
  1283  	// just tail call its corresponding shaped variant.
  1284  	if r.hasTypeParams() && !r.dict.shaped {
  1285  		r.callShaped(pos)
  1286  		return true
  1287  	}
  1288  
  1289  	return false
  1290  }
  1291  
  1292  // callShaped emits a tail call to r.shapedFn, passing along the
  1293  // arguments to the current function.
  1294  func (r *reader) callShaped(pos src.XPos) {
  1295  	shapedObj := r.dict.shapedObj
  1296  	assert(shapedObj != nil)
  1297  
  1298  	var shapedFn ir.Node
  1299  	if r.methodSym == nil {
  1300  		// Instantiating a generic function; shapedObj is the shaped
  1301  		// function itself.
  1302  		assert(shapedObj.Op() == ir.ONAME && shapedObj.Class == ir.PFUNC)
  1303  		shapedFn = shapedObj
  1304  	} else {
  1305  		// Instantiating a generic type's method; shapedObj is the shaped
  1306  		// type, so we need to select it's corresponding method.
  1307  		shapedFn = shapedMethodExpr(pos, shapedObj, r.methodSym)
  1308  	}
  1309  
  1310  	params := r.syntheticArgs()
  1311  
  1312  	// Construct the arguments list: receiver (if any), then runtime
  1313  	// dictionary, and finally normal parameters.
  1314  	//
  1315  	// Note: For simplicity, shaped methods are added as normal methods
  1316  	// on their shaped types. So existing code (e.g., packages ir and
  1317  	// typecheck) expects the shaped type to appear as the receiver
  1318  	// parameter (or first parameter, as a method expression). Hence
  1319  	// putting the dictionary parameter after that is the least invasive
  1320  	// solution at the moment.
  1321  	var args ir.Nodes
  1322  	if r.methodSym != nil {
  1323  		args.Append(params[0])
  1324  		params = params[1:]
  1325  	}
  1326  	args.Append(typecheck.Expr(ir.NewAddrExpr(pos, r.p.dictNameOf(r.dict))))
  1327  	args.Append(params...)
  1328  
  1329  	r.syntheticTailCall(pos, shapedFn, args)
  1330  }
  1331  
  1332  // syntheticArgs returns the recvs and params arguments passed to the
  1333  // current function.
  1334  func (r *reader) syntheticArgs() ir.Nodes {
  1335  	sig := r.curfn.Nname.Type()
  1336  	return ir.ToNodes(r.curfn.Dcl[:sig.NumRecvs()+sig.NumParams()])
  1337  }
  1338  
  1339  // syntheticTailCall emits a tail call to fn, passing the given
  1340  // arguments list.
  1341  func (r *reader) syntheticTailCall(pos src.XPos, fn ir.Node, args ir.Nodes) {
  1342  	// Mark the function as a wrapper so it doesn't show up in stack
  1343  	// traces.
  1344  	r.curfn.SetWrapper(true)
  1345  
  1346  	call := typecheck.Call(pos, fn, args, fn.Type().IsVariadic()).(*ir.CallExpr)
  1347  
  1348  	var stmt ir.Node
  1349  	if fn.Type().NumResults() != 0 {
  1350  		stmt = typecheck.Stmt(ir.NewReturnStmt(pos, []ir.Node{call}))
  1351  	} else {
  1352  		stmt = call
  1353  	}
  1354  	r.curfn.Body.Append(stmt)
  1355  }
  1356  
  1357  // dictNameOf returns the runtime dictionary corresponding to dict.
  1358  func (pr *pkgReader) dictNameOf(dict *readerDict) *ir.Name {
  1359  	pos := base.AutogeneratedPos
  1360  
  1361  	// Check that we only instantiate runtime dictionaries with real types.
  1362  	base.AssertfAt(!dict.shaped, pos, "runtime dictionary of shaped object %v", dict.baseSym)
  1363  
  1364  	sym := dict.baseSym.Pkg.Lookup(objabi.GlobalDictPrefix + "." + dict.baseSym.Name)
  1365  	if sym.Def != nil {
  1366  		return sym.Def.(*ir.Name)
  1367  	}
  1368  
  1369  	name := ir.NewNameAt(pos, sym, dict.varType())
  1370  	name.Class = ir.PEXTERN
  1371  	sym.Def = name // break cycles with mutual subdictionaries
  1372  
  1373  	lsym := name.Linksym()
  1374  	ot := 0
  1375  
  1376  	assertOffset := func(section string, offset int) {
  1377  		base.AssertfAt(ot == offset*types.PtrSize, pos, "writing section %v at offset %v, but it should be at %v*%v", section, ot, offset, types.PtrSize)
  1378  	}
  1379  
  1380  	assertOffset("type param method exprs", dict.typeParamMethodExprsOffset())
  1381  	for _, info := range dict.typeParamMethodExprs {
  1382  		typeParam := dict.targs[info.typeParamIdx]
  1383  		method := typecheck.NewMethodExpr(pos, typeParam, info.method)
  1384  
  1385  		rsym := method.FuncName().Linksym()
  1386  		assert(rsym.ABI() == obj.ABIInternal) // must be ABIInternal; see ir.OCFUNC in ssagen/ssa.go
  1387  
  1388  		ot = objw.SymPtr(lsym, ot, rsym, 0)
  1389  	}
  1390  
  1391  	assertOffset("subdictionaries", dict.subdictsOffset())
  1392  	for _, info := range dict.subdicts {
  1393  		explicits := pr.typListIdx(info.explicits, dict)
  1394  
  1395  		// Careful: Due to subdictionary cycles, name may not be fully
  1396  		// initialized yet.
  1397  		name := pr.objDictName(info.idx, dict.targs, explicits)
  1398  
  1399  		ot = objw.SymPtr(lsym, ot, name.Linksym(), 0)
  1400  	}
  1401  
  1402  	assertOffset("rtypes", dict.rtypesOffset())
  1403  	for _, info := range dict.rtypes {
  1404  		typ := pr.typIdx(info, dict, true)
  1405  		ot = objw.SymPtr(lsym, ot, reflectdata.TypeLinksym(typ), 0)
  1406  
  1407  		// TODO(mdempsky): Double check this.
  1408  		reflectdata.MarkTypeUsedInInterface(typ, lsym)
  1409  	}
  1410  
  1411  	// For each (typ, iface) pair, we write the *runtime.itab pointer
  1412  	// for the pair. For pairs that don't actually require an itab
  1413  	// (i.e., typ is an interface, or iface is an empty interface), we
  1414  	// write a nil pointer instead. This is wasteful, but rare in
  1415  	// practice (e.g., instantiating a type parameter with an interface
  1416  	// type).
  1417  	assertOffset("itabs", dict.itabsOffset())
  1418  	for _, info := range dict.itabs {
  1419  		typ := pr.typIdx(info.typ, dict, true)
  1420  		iface := pr.typIdx(info.iface, dict, true)
  1421  
  1422  		if !typ.IsInterface() && iface.IsInterface() && !iface.IsEmptyInterface() {
  1423  			ot = objw.SymPtr(lsym, ot, reflectdata.ITabLsym(typ, iface), 0)
  1424  		} else {
  1425  			ot += types.PtrSize
  1426  		}
  1427  
  1428  		// TODO(mdempsky): Double check this.
  1429  		reflectdata.MarkTypeUsedInInterface(typ, lsym)
  1430  		reflectdata.MarkTypeUsedInInterface(iface, lsym)
  1431  	}
  1432  
  1433  	objw.Global(lsym, int32(ot), obj.DUPOK|obj.RODATA)
  1434  
  1435  	return name
  1436  }
  1437  
  1438  // typeParamMethodExprsOffset returns the offset of the runtime
  1439  // dictionary's type parameter method expressions section, in words.
  1440  func (dict *readerDict) typeParamMethodExprsOffset() int {
  1441  	return 0
  1442  }
  1443  
  1444  // subdictsOffset returns the offset of the runtime dictionary's
  1445  // subdictionary section, in words.
  1446  func (dict *readerDict) subdictsOffset() int {
  1447  	return dict.typeParamMethodExprsOffset() + len(dict.typeParamMethodExprs)
  1448  }
  1449  
  1450  // rtypesOffset returns the offset of the runtime dictionary's rtypes
  1451  // section, in words.
  1452  func (dict *readerDict) rtypesOffset() int {
  1453  	return dict.subdictsOffset() + len(dict.subdicts)
  1454  }
  1455  
  1456  // itabsOffset returns the offset of the runtime dictionary's itabs
  1457  // section, in words.
  1458  func (dict *readerDict) itabsOffset() int {
  1459  	return dict.rtypesOffset() + len(dict.rtypes)
  1460  }
  1461  
  1462  // numWords returns the total number of words that comprise dict's
  1463  // runtime dictionary variable.
  1464  func (dict *readerDict) numWords() int64 {
  1465  	return int64(dict.itabsOffset() + len(dict.itabs))
  1466  }
  1467  
  1468  // varType returns the type of dict's runtime dictionary variable.
  1469  func (dict *readerDict) varType() *types.Type {
  1470  	return types.NewArray(types.Types[types.TUINTPTR], dict.numWords())
  1471  }
  1472  
  1473  func (r *reader) declareParams() {
  1474  	r.curfn.DeclareParams(!r.funarghack)
  1475  
  1476  	for _, name := range r.curfn.Dcl {
  1477  		if name.Sym().Name == dictParamName {
  1478  			r.dictParam = name
  1479  			continue
  1480  		}
  1481  
  1482  		r.addLocal(name)
  1483  	}
  1484  }
  1485  
  1486  func (r *reader) addLocal(name *ir.Name) {
  1487  	if r.synthetic == nil {
  1488  		r.Sync(pkgbits.SyncAddLocal)
  1489  		if r.p.SyncMarkers() {
  1490  			want := r.Int()
  1491  			if have := len(r.locals); have != want {
  1492  				base.FatalfAt(name.Pos(), "locals table has desynced")
  1493  			}
  1494  		}
  1495  		r.varDictIndex(name)
  1496  	}
  1497  
  1498  	r.locals = append(r.locals, name)
  1499  }
  1500  
  1501  func (r *reader) useLocal() *ir.Name {
  1502  	r.Sync(pkgbits.SyncUseObjLocal)
  1503  	if r.Bool() {
  1504  		return r.locals[r.Len()]
  1505  	}
  1506  	return r.closureVars[r.Len()]
  1507  }
  1508  
  1509  func (r *reader) openScope() {
  1510  	r.Sync(pkgbits.SyncOpenScope)
  1511  	pos := r.pos()
  1512  
  1513  	if base.Flag.Dwarf {
  1514  		r.scopeVars = append(r.scopeVars, len(r.curfn.Dcl))
  1515  		r.marker.Push(pos)
  1516  	}
  1517  }
  1518  
  1519  func (r *reader) closeScope() {
  1520  	r.Sync(pkgbits.SyncCloseScope)
  1521  	r.lastCloseScopePos = r.pos()
  1522  
  1523  	r.closeAnotherScope()
  1524  }
  1525  
  1526  // closeAnotherScope is like closeScope, but it reuses the same mark
  1527  // position as the last closeScope call. This is useful for "for" and
  1528  // "if" statements, as their implicit blocks always end at the same
  1529  // position as an explicit block.
  1530  func (r *reader) closeAnotherScope() {
  1531  	r.Sync(pkgbits.SyncCloseAnotherScope)
  1532  
  1533  	if base.Flag.Dwarf {
  1534  		scopeVars := r.scopeVars[len(r.scopeVars)-1]
  1535  		r.scopeVars = r.scopeVars[:len(r.scopeVars)-1]
  1536  
  1537  		// Quirkish: noder decides which scopes to keep before
  1538  		// typechecking, whereas incremental typechecking during IR
  1539  		// construction can result in new autotemps being allocated. To
  1540  		// produce identical output, we ignore autotemps here for the
  1541  		// purpose of deciding whether to retract the scope.
  1542  		//
  1543  		// This is important for net/http/fcgi, because it contains:
  1544  		//
  1545  		//	var body io.ReadCloser
  1546  		//	if len(content) > 0 {
  1547  		//		body, req.pw = io.Pipe()
  1548  		//	} else { … }
  1549  		//
  1550  		// Notably, io.Pipe is inlinable, and inlining it introduces a ~R0
  1551  		// variable at the call site.
  1552  		//
  1553  		// Noder does not preserve the scope where the io.Pipe() call
  1554  		// resides, because it doesn't contain any declared variables in
  1555  		// source. So the ~R0 variable ends up being assigned to the
  1556  		// enclosing scope instead.
  1557  		//
  1558  		// However, typechecking this assignment also introduces
  1559  		// autotemps, because io.Pipe's results need conversion before
  1560  		// they can be assigned to their respective destination variables.
  1561  		//
  1562  		// TODO(mdempsky): We should probably just keep all scopes, and
  1563  		// let dwarfgen take care of pruning them instead.
  1564  		retract := true
  1565  		for _, n := range r.curfn.Dcl[scopeVars:] {
  1566  			if !n.AutoTemp() {
  1567  				retract = false
  1568  				break
  1569  			}
  1570  		}
  1571  
  1572  		if retract {
  1573  			// no variables were declared in this scope, so we can retract it.
  1574  			r.marker.Unpush()
  1575  		} else {
  1576  			r.marker.Pop(r.lastCloseScopePos)
  1577  		}
  1578  	}
  1579  }
  1580  
  1581  // @@@ Statements
  1582  
  1583  func (r *reader) stmt() ir.Node {
  1584  	return block(r.stmts())
  1585  }
  1586  
  1587  func block(stmts []ir.Node) ir.Node {
  1588  	switch len(stmts) {
  1589  	case 0:
  1590  		return nil
  1591  	case 1:
  1592  		return stmts[0]
  1593  	default:
  1594  		return ir.NewBlockStmt(stmts[0].Pos(), stmts)
  1595  	}
  1596  }
  1597  
  1598  func (r *reader) stmts() ir.Nodes {
  1599  	assert(ir.CurFunc == r.curfn)
  1600  	var res ir.Nodes
  1601  
  1602  	r.Sync(pkgbits.SyncStmts)
  1603  	for {
  1604  		tag := codeStmt(r.Code(pkgbits.SyncStmt1))
  1605  		if tag == stmtEnd {
  1606  			r.Sync(pkgbits.SyncStmtsEnd)
  1607  			return res
  1608  		}
  1609  
  1610  		if n := r.stmt1(tag, &res); n != nil {
  1611  			res.Append(typecheck.Stmt(n))
  1612  		}
  1613  	}
  1614  }
  1615  
  1616  func (r *reader) stmt1(tag codeStmt, out *ir.Nodes) ir.Node {
  1617  	var label *types.Sym
  1618  	if n := len(*out); n > 0 {
  1619  		if ls, ok := (*out)[n-1].(*ir.LabelStmt); ok {
  1620  			label = ls.Label
  1621  		}
  1622  	}
  1623  
  1624  	switch tag {
  1625  	default:
  1626  		panic("unexpected statement")
  1627  
  1628  	case stmtAssign:
  1629  		pos := r.pos()
  1630  		names, lhs := r.assignList()
  1631  		rhs := r.multiExpr()
  1632  
  1633  		if len(rhs) == 0 {
  1634  			for _, name := range names {
  1635  				as := ir.NewAssignStmt(pos, name, nil)
  1636  				as.PtrInit().Append(ir.NewDecl(pos, ir.ODCL, name))
  1637  				out.Append(typecheck.Stmt(as))
  1638  			}
  1639  			return nil
  1640  		}
  1641  
  1642  		if len(lhs) == 1 && len(rhs) == 1 {
  1643  			n := ir.NewAssignStmt(pos, lhs[0], rhs[0])
  1644  			n.Def = r.initDefn(n, names)
  1645  			return n
  1646  		}
  1647  
  1648  		n := ir.NewAssignListStmt(pos, ir.OAS2, lhs, rhs)
  1649  		n.Def = r.initDefn(n, names)
  1650  		return n
  1651  
  1652  	case stmtAssignOp:
  1653  		op := r.op()
  1654  		lhs := r.expr()
  1655  		pos := r.pos()
  1656  		rhs := r.expr()
  1657  		return ir.NewAssignOpStmt(pos, op, lhs, rhs)
  1658  
  1659  	case stmtIncDec:
  1660  		op := r.op()
  1661  		lhs := r.expr()
  1662  		pos := r.pos()
  1663  		n := ir.NewAssignOpStmt(pos, op, lhs, ir.NewOne(pos, lhs.Type()))
  1664  		n.IncDec = true
  1665  		return n
  1666  
  1667  	case stmtBlock:
  1668  		out.Append(r.blockStmt()...)
  1669  		return nil
  1670  
  1671  	case stmtBranch:
  1672  		pos := r.pos()
  1673  		op := r.op()
  1674  		sym := r.optLabel()
  1675  		return ir.NewBranchStmt(pos, op, sym)
  1676  
  1677  	case stmtCall:
  1678  		pos := r.pos()
  1679  		op := r.op()
  1680  		call := r.expr()
  1681  		stmt := ir.NewGoDeferStmt(pos, op, call)
  1682  		if op == ir.ODEFER {
  1683  			x := r.optExpr()
  1684  			if x != nil {
  1685  				stmt.DeferAt = x.(ir.Expr)
  1686  			}
  1687  		}
  1688  		return stmt
  1689  
  1690  	case stmtExpr:
  1691  		return r.expr()
  1692  
  1693  	case stmtFor:
  1694  		return r.forStmt(label)
  1695  
  1696  	case stmtIf:
  1697  		return r.ifStmt()
  1698  
  1699  	case stmtLabel:
  1700  		pos := r.pos()
  1701  		sym := r.label()
  1702  		return ir.NewLabelStmt(pos, sym)
  1703  
  1704  	case stmtReturn:
  1705  		pos := r.pos()
  1706  		results := r.multiExpr()
  1707  		return ir.NewReturnStmt(pos, results)
  1708  
  1709  	case stmtSelect:
  1710  		return r.selectStmt(label)
  1711  
  1712  	case stmtSend:
  1713  		pos := r.pos()
  1714  		ch := r.expr()
  1715  		value := r.expr()
  1716  		return ir.NewSendStmt(pos, ch, value)
  1717  
  1718  	case stmtSwitch:
  1719  		return r.switchStmt(label)
  1720  	}
  1721  }
  1722  
  1723  func (r *reader) assignList() ([]*ir.Name, []ir.Node) {
  1724  	lhs := make([]ir.Node, r.Len())
  1725  	var names []*ir.Name
  1726  
  1727  	for i := range lhs {
  1728  		expr, def := r.assign()
  1729  		lhs[i] = expr
  1730  		if def {
  1731  			names = append(names, expr.(*ir.Name))
  1732  		}
  1733  	}
  1734  
  1735  	return names, lhs
  1736  }
  1737  
  1738  // assign returns an assignee expression. It also reports whether the
  1739  // returned expression is a newly declared variable.
  1740  func (r *reader) assign() (ir.Node, bool) {
  1741  	switch tag := codeAssign(r.Code(pkgbits.SyncAssign)); tag {
  1742  	default:
  1743  		panic("unhandled assignee expression")
  1744  
  1745  	case assignBlank:
  1746  		return typecheck.AssignExpr(ir.BlankNode), false
  1747  
  1748  	case assignDef:
  1749  		pos := r.pos()
  1750  		setBasePos(pos) // test/fixedbugs/issue49767.go depends on base.Pos being set for the r.typ() call here, ugh
  1751  		name := r.curfn.NewLocal(pos, r.localIdent(), r.typ())
  1752  		r.addLocal(name)
  1753  		return name, true
  1754  
  1755  	case assignExpr:
  1756  		return r.expr(), false
  1757  	}
  1758  }
  1759  
  1760  func (r *reader) blockStmt() []ir.Node {
  1761  	r.Sync(pkgbits.SyncBlockStmt)
  1762  	r.openScope()
  1763  	stmts := r.stmts()
  1764  	r.closeScope()
  1765  	return stmts
  1766  }
  1767  
  1768  func (r *reader) forStmt(label *types.Sym) ir.Node {
  1769  	r.Sync(pkgbits.SyncForStmt)
  1770  
  1771  	r.openScope()
  1772  
  1773  	if r.Bool() {
  1774  		pos := r.pos()
  1775  		rang := ir.NewRangeStmt(pos, nil, nil, nil, nil, false)
  1776  		rang.Label = label
  1777  
  1778  		names, lhs := r.assignList()
  1779  		if len(lhs) >= 1 {
  1780  			rang.Key = lhs[0]
  1781  			if len(lhs) >= 2 {
  1782  				rang.Value = lhs[1]
  1783  			}
  1784  		}
  1785  		rang.Def = r.initDefn(rang, names)
  1786  
  1787  		rang.X = r.expr()
  1788  		if rang.X.Type().IsMap() {
  1789  			rang.RType = r.rtype(pos)
  1790  		}
  1791  		if rang.Key != nil && !ir.IsBlank(rang.Key) {
  1792  			rang.KeyTypeWord, rang.KeySrcRType = r.convRTTI(pos)
  1793  		}
  1794  		if rang.Value != nil && !ir.IsBlank(rang.Value) {
  1795  			rang.ValueTypeWord, rang.ValueSrcRType = r.convRTTI(pos)
  1796  		}
  1797  
  1798  		rang.Body = r.blockStmt()
  1799  		rang.DistinctVars = r.Bool()
  1800  		r.closeAnotherScope()
  1801  
  1802  		return rang
  1803  	}
  1804  
  1805  	pos := r.pos()
  1806  	init := r.stmt()
  1807  	cond := r.optExpr()
  1808  	post := r.stmt()
  1809  	body := r.blockStmt()
  1810  	perLoopVars := r.Bool()
  1811  	r.closeAnotherScope()
  1812  
  1813  	if ir.IsConst(cond, constant.Bool) && !ir.BoolVal(cond) {
  1814  		return init // simplify "for init; false; post { ... }" into "init"
  1815  	}
  1816  
  1817  	stmt := ir.NewForStmt(pos, init, cond, post, body, perLoopVars)
  1818  	stmt.Label = label
  1819  	return stmt
  1820  }
  1821  
  1822  func (r *reader) ifStmt() ir.Node {
  1823  	r.Sync(pkgbits.SyncIfStmt)
  1824  	r.openScope()
  1825  	pos := r.pos()
  1826  	init := r.stmts()
  1827  	cond := r.expr()
  1828  	staticCond := r.Int()
  1829  	var then, els []ir.Node
  1830  	if staticCond >= 0 {
  1831  		then = r.blockStmt()
  1832  	} else {
  1833  		r.lastCloseScopePos = r.pos()
  1834  	}
  1835  	if staticCond <= 0 {
  1836  		els = r.stmts()
  1837  	}
  1838  	r.closeAnotherScope()
  1839  
  1840  	if staticCond != 0 {
  1841  		// We may have removed a dead return statement, which can trip up
  1842  		// later passes (#62211). To avoid confusion, we instead flatten
  1843  		// the if statement into a block.
  1844  
  1845  		if cond.Op() != ir.OLITERAL {
  1846  			init.Append(typecheck.Stmt(ir.NewAssignStmt(pos, ir.BlankNode, cond))) // for side effects
  1847  		}
  1848  		init.Append(then...)
  1849  		init.Append(els...)
  1850  		return block(init)
  1851  	}
  1852  
  1853  	n := ir.NewIfStmt(pos, cond, then, els)
  1854  	n.SetInit(init)
  1855  	return n
  1856  }
  1857  
  1858  func (r *reader) selectStmt(label *types.Sym) ir.Node {
  1859  	r.Sync(pkgbits.SyncSelectStmt)
  1860  
  1861  	pos := r.pos()
  1862  	clauses := make([]*ir.CommClause, r.Len())
  1863  	for i := range clauses {
  1864  		if i > 0 {
  1865  			r.closeScope()
  1866  		}
  1867  		r.openScope()
  1868  
  1869  		pos := r.pos()
  1870  		comm := r.stmt()
  1871  		body := r.stmts()
  1872  
  1873  		// "case i = <-c: ..." may require an implicit conversion (e.g.,
  1874  		// see fixedbugs/bug312.go). Currently, typecheck throws away the
  1875  		// implicit conversion and relies on it being reinserted later,
  1876  		// but that would lose any explicit RTTI operands too. To preserve
  1877  		// RTTI, we rewrite this as "case tmp := <-c: i = tmp; ...".
  1878  		if as, ok := comm.(*ir.AssignStmt); ok && as.Op() == ir.OAS && !as.Def {
  1879  			if conv, ok := as.Y.(*ir.ConvExpr); ok && conv.Op() == ir.OCONVIFACE {
  1880  				base.AssertfAt(conv.Implicit(), conv.Pos(), "expected implicit conversion: %v", conv)
  1881  
  1882  				recv := conv.X
  1883  				base.AssertfAt(recv.Op() == ir.ORECV, recv.Pos(), "expected receive expression: %v", recv)
  1884  
  1885  				tmp := r.temp(pos, recv.Type())
  1886  
  1887  				// Replace comm with `tmp := <-c`.
  1888  				tmpAs := ir.NewAssignStmt(pos, tmp, recv)
  1889  				tmpAs.Def = true
  1890  				tmpAs.PtrInit().Append(ir.NewDecl(pos, ir.ODCL, tmp))
  1891  				comm = tmpAs
  1892  
  1893  				// Change original assignment to `i = tmp`, and prepend to body.
  1894  				conv.X = tmp
  1895  				body = append([]ir.Node{as}, body...)
  1896  			}
  1897  		}
  1898  
  1899  		// multiExpr will have desugared a comma-ok receive expression
  1900  		// into a separate statement. However, the rest of the compiler
  1901  		// expects comm to be the OAS2RECV statement itself, so we need to
  1902  		// shuffle things around to fit that pattern.
  1903  		if as2, ok := comm.(*ir.AssignListStmt); ok && as2.Op() == ir.OAS2 {
  1904  			init := ir.TakeInit(as2.Rhs[0])
  1905  			base.AssertfAt(len(init) == 1 && init[0].Op() == ir.OAS2RECV, as2.Pos(), "unexpected assignment: %+v", as2)
  1906  
  1907  			comm = init[0]
  1908  			body = append([]ir.Node{as2}, body...)
  1909  		}
  1910  
  1911  		clauses[i] = ir.NewCommStmt(pos, comm, body)
  1912  	}
  1913  	if len(clauses) > 0 {
  1914  		r.closeScope()
  1915  	}
  1916  	n := ir.NewSelectStmt(pos, clauses)
  1917  	n.Label = label
  1918  	return n
  1919  }
  1920  
  1921  func (r *reader) switchStmt(label *types.Sym) ir.Node {
  1922  	r.Sync(pkgbits.SyncSwitchStmt)
  1923  
  1924  	r.openScope()
  1925  	pos := r.pos()
  1926  	init := r.stmt()
  1927  
  1928  	var tag ir.Node
  1929  	var ident *ir.Ident
  1930  	var iface *types.Type
  1931  	if r.Bool() {
  1932  		pos := r.pos()
  1933  		if r.Bool() {
  1934  			ident = ir.NewIdent(r.pos(), r.localIdent())
  1935  		}
  1936  		x := r.expr()
  1937  		iface = x.Type()
  1938  		tag = ir.NewTypeSwitchGuard(pos, ident, x)
  1939  	} else {
  1940  		tag = r.optExpr()
  1941  	}
  1942  
  1943  	clauses := make([]*ir.CaseClause, r.Len())
  1944  	for i := range clauses {
  1945  		if i > 0 {
  1946  			r.closeScope()
  1947  		}
  1948  		r.openScope()
  1949  
  1950  		pos := r.pos()
  1951  		var cases, rtypes []ir.Node
  1952  		if iface != nil {
  1953  			cases = make([]ir.Node, r.Len())
  1954  			if len(cases) == 0 {
  1955  				cases = nil // TODO(mdempsky): Unclear if this matters.
  1956  			}
  1957  			for i := range cases {
  1958  				if r.Bool() { // case nil
  1959  					cases[i] = typecheck.Expr(types.BuiltinPkg.Lookup("nil").Def.(*ir.NilExpr))
  1960  				} else {
  1961  					cases[i] = r.exprType()
  1962  				}
  1963  			}
  1964  		} else {
  1965  			cases = r.exprList()
  1966  
  1967  			// For `switch { case any(true): }` (e.g., issue 3980 in
  1968  			// test/switch.go), the backend still creates a mixed bool/any
  1969  			// comparison, and we need to explicitly supply the RTTI for the
  1970  			// comparison.
  1971  			//
  1972  			// TODO(mdempsky): Change writer.go to desugar "switch {" into
  1973  			// "switch true {", which we already handle correctly.
  1974  			if tag == nil {
  1975  				for i, cas := range cases {
  1976  					if cas.Type().IsEmptyInterface() {
  1977  						for len(rtypes) < i {
  1978  							rtypes = append(rtypes, nil)
  1979  						}
  1980  						rtypes = append(rtypes, reflectdata.TypePtrAt(cas.Pos(), types.Types[types.TBOOL]))
  1981  					}
  1982  				}
  1983  			}
  1984  		}
  1985  
  1986  		clause := ir.NewCaseStmt(pos, cases, nil)
  1987  		clause.RTypes = rtypes
  1988  
  1989  		if ident != nil {
  1990  			name := r.curfn.NewLocal(r.pos(), ident.Sym(), r.typ())
  1991  			r.addLocal(name)
  1992  			clause.Var = name
  1993  			name.Defn = tag
  1994  		}
  1995  
  1996  		clause.Body = r.stmts()
  1997  		clauses[i] = clause
  1998  	}
  1999  	if len(clauses) > 0 {
  2000  		r.closeScope()
  2001  	}
  2002  	r.closeScope()
  2003  
  2004  	n := ir.NewSwitchStmt(pos, tag, clauses)
  2005  	n.Label = label
  2006  	if init != nil {
  2007  		n.SetInit([]ir.Node{init})
  2008  	}
  2009  	return n
  2010  }
  2011  
  2012  func (r *reader) label() *types.Sym {
  2013  	r.Sync(pkgbits.SyncLabel)
  2014  	name := r.String()
  2015  	if r.inlCall != nil {
  2016  		name = fmt.Sprintf("~%s·%d", name, inlgen)
  2017  	}
  2018  	return typecheck.Lookup(name)
  2019  }
  2020  
  2021  func (r *reader) optLabel() *types.Sym {
  2022  	r.Sync(pkgbits.SyncOptLabel)
  2023  	if r.Bool() {
  2024  		return r.label()
  2025  	}
  2026  	return nil
  2027  }
  2028  
  2029  // initDefn marks the given names as declared by defn and populates
  2030  // its Init field with ODCL nodes. It then reports whether any names
  2031  // were so declared, which can be used to initialize defn.Def.
  2032  func (r *reader) initDefn(defn ir.InitNode, names []*ir.Name) bool {
  2033  	if len(names) == 0 {
  2034  		return false
  2035  	}
  2036  
  2037  	init := make([]ir.Node, len(names))
  2038  	for i, name := range names {
  2039  		name.Defn = defn
  2040  		init[i] = ir.NewDecl(name.Pos(), ir.ODCL, name)
  2041  	}
  2042  	defn.SetInit(init)
  2043  	return true
  2044  }
  2045  
  2046  // @@@ Expressions
  2047  
  2048  // expr reads and returns a typechecked expression.
  2049  func (r *reader) expr() (res ir.Node) {
  2050  	defer func() {
  2051  		if res != nil && res.Typecheck() == 0 {
  2052  			base.FatalfAt(res.Pos(), "%v missed typecheck", res)
  2053  		}
  2054  	}()
  2055  
  2056  	switch tag := codeExpr(r.Code(pkgbits.SyncExpr)); tag {
  2057  	default:
  2058  		panic("unhandled expression")
  2059  
  2060  	case exprLocal:
  2061  		return typecheck.Expr(r.useLocal())
  2062  
  2063  	case exprGlobal:
  2064  		// Callee instead of Expr allows builtins
  2065  		// TODO(mdempsky): Handle builtins directly in exprCall, like method calls?
  2066  		return typecheck.Callee(r.obj())
  2067  
  2068  	case exprFuncInst:
  2069  		origPos, pos := r.origPos()
  2070  		wrapperFn, baseFn, dictPtr := r.funcInst(pos)
  2071  		if wrapperFn != nil {
  2072  			return wrapperFn
  2073  		}
  2074  		return r.curry(origPos, false, baseFn, dictPtr, nil)
  2075  
  2076  	case exprConst:
  2077  		pos := r.pos()
  2078  		typ := r.typ()
  2079  		val := FixValue(typ, r.Value())
  2080  		return ir.NewBasicLit(pos, typ, val)
  2081  
  2082  	case exprZero:
  2083  		pos := r.pos()
  2084  		typ := r.typ()
  2085  		return ir.NewZero(pos, typ)
  2086  
  2087  	case exprCompLit:
  2088  		return r.compLit()
  2089  
  2090  	case exprFuncLit:
  2091  		return r.funcLit()
  2092  
  2093  	case exprFieldVal:
  2094  		x := r.expr()
  2095  		pos := r.pos()
  2096  		sym := r.selector()
  2097  
  2098  		return typecheck.XDotField(pos, x, sym)
  2099  
  2100  	case exprMethodVal:
  2101  		recv := r.expr()
  2102  		origPos, pos := r.origPos()
  2103  		wrapperFn, baseFn, dictPtr := r.methodExpr()
  2104  
  2105  		// For simple wrapperFn values, the existing machinery for creating
  2106  		// and deduplicating wrapperFn value wrappers still works fine.
  2107  		if wrapperFn, ok := wrapperFn.(*ir.SelectorExpr); ok && wrapperFn.Op() == ir.OMETHEXPR {
  2108  			// The receiver expression we constructed may have a shape type.
  2109  			// For example, in fixedbugs/issue54343.go, `New[int]()` is
  2110  			// constructed as `New[go.shape.int](&.dict.New[int])`, which
  2111  			// has type `*T[go.shape.int]`, not `*T[int]`.
  2112  			//
  2113  			// However, the method we want to select here is `(*T[int]).M`,
  2114  			// not `(*T[go.shape.int]).M`, so we need to manually convert
  2115  			// the type back so that the OXDOT resolves correctly.
  2116  			//
  2117  			// TODO(mdempsky): Logically it might make more sense for
  2118  			// exprCall to take responsibility for setting a non-shaped
  2119  			// result type, but this is the only place where we care
  2120  			// currently. And only because existing ir.OMETHVALUE backend
  2121  			// code relies on n.X.Type() instead of n.Selection.Recv().Type
  2122  			// (because the latter is types.FakeRecvType() in the case of
  2123  			// interface method values).
  2124  			//
  2125  			if recv.Type().HasShape() {
  2126  				typ := wrapperFn.Type().Param(0).Type
  2127  				if !types.Identical(typ, recv.Type()) {
  2128  					base.FatalfAt(wrapperFn.Pos(), "receiver %L does not match %L", recv, wrapperFn)
  2129  				}
  2130  				recv = typecheck.Expr(ir.NewConvExpr(recv.Pos(), ir.OCONVNOP, typ, recv))
  2131  			}
  2132  
  2133  			n := typecheck.XDotMethod(pos, recv, wrapperFn.Sel, false)
  2134  
  2135  			// As a consistency check here, we make sure "n" selected the
  2136  			// same method (represented by a types.Field) that wrapperFn
  2137  			// selected. However, for anonymous receiver types, there can be
  2138  			// multiple such types.Field instances (#58563). So we may need
  2139  			// to fallback to making sure Sym and Type (including the
  2140  			// receiver parameter's type) match.
  2141  			if n.Selection != wrapperFn.Selection {
  2142  				assert(n.Selection.Sym == wrapperFn.Selection.Sym)
  2143  				assert(types.Identical(n.Selection.Type, wrapperFn.Selection.Type))
  2144  				assert(types.Identical(n.Selection.Type.Recv().Type, wrapperFn.Selection.Type.Recv().Type))
  2145  			}
  2146  
  2147  			wrapper := methodValueWrapper{
  2148  				rcvr:   n.X.Type(),
  2149  				method: n.Selection,
  2150  			}
  2151  
  2152  			if r.importedDef() {
  2153  				haveMethodValueWrappers = append(haveMethodValueWrappers, wrapper)
  2154  			} else {
  2155  				needMethodValueWrappers = append(needMethodValueWrappers, wrapper)
  2156  			}
  2157  			return n
  2158  		}
  2159  
  2160  		// For more complicated method expressions, we construct a
  2161  		// function literal wrapper.
  2162  		return r.curry(origPos, true, baseFn, recv, dictPtr)
  2163  
  2164  	case exprMethodExpr:
  2165  		recv := r.typ()
  2166  
  2167  		implicits := make([]int, r.Len())
  2168  		for i := range implicits {
  2169  			implicits[i] = r.Len()
  2170  		}
  2171  		var deref, addr bool
  2172  		if r.Bool() {
  2173  			deref = true
  2174  		} else if r.Bool() {
  2175  			addr = true
  2176  		}
  2177  
  2178  		origPos, pos := r.origPos()
  2179  		wrapperFn, baseFn, dictPtr := r.methodExpr()
  2180  
  2181  		// If we already have a wrapper and don't need to do anything with
  2182  		// it, we can just return the wrapper directly.
  2183  		//
  2184  		// N.B., we use implicits/deref/addr here as the source of truth
  2185  		// rather than types.Identical, because the latter can be confused
  2186  		// by tricky promoted methods (e.g., typeparam/mdempsky/21.go).
  2187  		if wrapperFn != nil && len(implicits) == 0 && !deref && !addr {
  2188  			if !types.Identical(recv, wrapperFn.Type().Param(0).Type) {
  2189  				base.FatalfAt(pos, "want receiver type %v, but have method %L", recv, wrapperFn)
  2190  			}
  2191  			return wrapperFn
  2192  		}
  2193  
  2194  		// Otherwise, if the wrapper function is a static method
  2195  		// expression (OMETHEXPR) and the receiver type is unshaped, then
  2196  		// we can rely on a statically generated wrapper being available.
  2197  		if method, ok := wrapperFn.(*ir.SelectorExpr); ok && method.Op() == ir.OMETHEXPR && !recv.HasShape() {
  2198  			return typecheck.NewMethodExpr(pos, recv, method.Sel)
  2199  		}
  2200  
  2201  		return r.methodExprWrap(origPos, recv, implicits, deref, addr, baseFn, dictPtr)
  2202  
  2203  	case exprIndex:
  2204  		x := r.expr()
  2205  		pos := r.pos()
  2206  		index := r.expr()
  2207  		n := typecheck.Expr(ir.NewIndexExpr(pos, x, index))
  2208  		switch n.Op() {
  2209  		case ir.OINDEXMAP:
  2210  			n := n.(*ir.IndexExpr)
  2211  			n.RType = r.rtype(pos)
  2212  		}
  2213  		return n
  2214  
  2215  	case exprSlice:
  2216  		x := r.expr()
  2217  		pos := r.pos()
  2218  		var index [3]ir.Node
  2219  		for i := range index {
  2220  			index[i] = r.optExpr()
  2221  		}
  2222  		op := ir.OSLICE
  2223  		if index[2] != nil {
  2224  			op = ir.OSLICE3
  2225  		}
  2226  		return typecheck.Expr(ir.NewSliceExpr(pos, op, x, index[0], index[1], index[2]))
  2227  
  2228  	case exprAssert:
  2229  		x := r.expr()
  2230  		pos := r.pos()
  2231  		typ := r.exprType()
  2232  		srcRType := r.rtype(pos)
  2233  
  2234  		// TODO(mdempsky): Always emit ODYNAMICDOTTYPE for uniformity?
  2235  		if typ, ok := typ.(*ir.DynamicType); ok && typ.Op() == ir.ODYNAMICTYPE {
  2236  			assert := ir.NewDynamicTypeAssertExpr(pos, ir.ODYNAMICDOTTYPE, x, typ.RType)
  2237  			assert.SrcRType = srcRType
  2238  			assert.ITab = typ.ITab
  2239  			return typed(typ.Type(), assert)
  2240  		}
  2241  		return typecheck.Expr(ir.NewTypeAssertExpr(pos, x, typ.Type()))
  2242  
  2243  	case exprUnaryOp:
  2244  		op := r.op()
  2245  		pos := r.pos()
  2246  		x := r.expr()
  2247  
  2248  		switch op {
  2249  		case ir.OADDR:
  2250  			return typecheck.Expr(typecheck.NodAddrAt(pos, x))
  2251  		case ir.ODEREF:
  2252  			return typecheck.Expr(ir.NewStarExpr(pos, x))
  2253  		}
  2254  		return typecheck.Expr(ir.NewUnaryExpr(pos, op, x))
  2255  
  2256  	case exprBinaryOp:
  2257  		op := r.op()
  2258  		x := r.expr()
  2259  		pos := r.pos()
  2260  		y := r.expr()
  2261  
  2262  		switch op {
  2263  		case ir.OANDAND, ir.OOROR:
  2264  			return typecheck.Expr(ir.NewLogicalExpr(pos, op, x, y))
  2265  		case ir.OLSH, ir.ORSH:
  2266  			// Untyped rhs of non-constant shift, e.g. x << 1.0.
  2267  			// If we have a constant value, it must be an int >= 0.
  2268  			if ir.IsConstNode(y) {
  2269  				val := constant.ToInt(y.Val())
  2270  				assert(val.Kind() == constant.Int && constant.Sign(val) >= 0)
  2271  			}
  2272  		}
  2273  		return typecheck.Expr(ir.NewBinaryExpr(pos, op, x, y))
  2274  
  2275  	case exprRecv:
  2276  		x := r.expr()
  2277  		pos := r.pos()
  2278  		for i, n := 0, r.Len(); i < n; i++ {
  2279  			x = Implicit(typecheck.DotField(pos, x, r.Len()))
  2280  		}
  2281  		if r.Bool() { // needs deref
  2282  			x = Implicit(Deref(pos, x.Type().Elem(), x))
  2283  		} else if r.Bool() { // needs addr
  2284  			x = Implicit(Addr(pos, x))
  2285  		}
  2286  		return x
  2287  
  2288  	case exprCall:
  2289  		var fun ir.Node
  2290  		var args ir.Nodes
  2291  		if r.Bool() { // method call
  2292  			recv := r.expr()
  2293  			_, method, dictPtr := r.methodExpr()
  2294  
  2295  			if recv.Type().IsInterface() && method.Op() == ir.OMETHEXPR {
  2296  				method := method.(*ir.SelectorExpr)
  2297  
  2298  				// The compiler backend (e.g., devirtualization) handle
  2299  				// OCALLINTER/ODOTINTER better than OCALLFUNC/OMETHEXPR for
  2300  				// interface calls, so we prefer to continue constructing
  2301  				// calls that way where possible.
  2302  				//
  2303  				// There are also corner cases where semantically it's perhaps
  2304  				// significant; e.g., fixedbugs/issue15975.go, #38634, #52025.
  2305  
  2306  				fun = typecheck.XDotMethod(method.Pos(), recv, method.Sel, true)
  2307  			} else {
  2308  				if recv.Type().IsInterface() {
  2309  					// N.B., this happens currently for typeparam/issue51521.go
  2310  					// and typeparam/typeswitch3.go.
  2311  					if base.Flag.LowerM != 0 {
  2312  						base.WarnfAt(method.Pos(), "imprecise interface call")
  2313  					}
  2314  				}
  2315  
  2316  				fun = method
  2317  				args.Append(recv)
  2318  			}
  2319  			if dictPtr != nil {
  2320  				args.Append(dictPtr)
  2321  			}
  2322  		} else if r.Bool() { // call to instanced function
  2323  			pos := r.pos()
  2324  			_, shapedFn, dictPtr := r.funcInst(pos)
  2325  			fun = shapedFn
  2326  			args.Append(dictPtr)
  2327  		} else {
  2328  			fun = r.expr()
  2329  		}
  2330  		pos := r.pos()
  2331  		args.Append(r.multiExpr()...)
  2332  		dots := r.Bool()
  2333  		n := typecheck.Call(pos, fun, args, dots)
  2334  		switch n.Op() {
  2335  		case ir.OAPPEND:
  2336  			n := n.(*ir.CallExpr)
  2337  			n.RType = r.rtype(pos)
  2338  			// For append(a, b...), we don't need the implicit conversion. The typechecker already
  2339  			// ensured that a and b are both slices with the same base type, or []byte and string.
  2340  			if n.IsDDD {
  2341  				if conv, ok := n.Args[1].(*ir.ConvExpr); ok && conv.Op() == ir.OCONVNOP && conv.Implicit() {
  2342  					n.Args[1] = conv.X
  2343  				}
  2344  			}
  2345  		case ir.OCOPY:
  2346  			n := n.(*ir.BinaryExpr)
  2347  			n.RType = r.rtype(pos)
  2348  		case ir.ODELETE:
  2349  			n := n.(*ir.CallExpr)
  2350  			n.RType = r.rtype(pos)
  2351  		case ir.OUNSAFESLICE:
  2352  			n := n.(*ir.BinaryExpr)
  2353  			n.RType = r.rtype(pos)
  2354  		}
  2355  		return n
  2356  
  2357  	case exprMake:
  2358  		pos := r.pos()
  2359  		typ := r.exprType()
  2360  		extra := r.exprs()
  2361  		n := typecheck.Expr(ir.NewCallExpr(pos, ir.OMAKE, nil, append([]ir.Node{typ}, extra...))).(*ir.MakeExpr)
  2362  		n.RType = r.rtype(pos)
  2363  		return n
  2364  
  2365  	case exprNew:
  2366  		pos := r.pos()
  2367  		typ := r.exprType()
  2368  		return typecheck.Expr(ir.NewUnaryExpr(pos, ir.ONEW, typ))
  2369  
  2370  	case exprSizeof:
  2371  		return ir.NewUintptr(r.pos(), r.typ().Size())
  2372  
  2373  	case exprAlignof:
  2374  		return ir.NewUintptr(r.pos(), r.typ().Alignment())
  2375  
  2376  	case exprOffsetof:
  2377  		pos := r.pos()
  2378  		typ := r.typ()
  2379  		types.CalcSize(typ)
  2380  
  2381  		var offset int64
  2382  		for i := r.Len(); i >= 0; i-- {
  2383  			field := typ.Field(r.Len())
  2384  			offset += field.Offset
  2385  			typ = field.Type
  2386  		}
  2387  
  2388  		return ir.NewUintptr(pos, offset)
  2389  
  2390  	case exprReshape:
  2391  		typ := r.typ()
  2392  		x := r.expr()
  2393  
  2394  		if types.IdenticalStrict(x.Type(), typ) {
  2395  			return x
  2396  		}
  2397  
  2398  		// Comparison expressions are constructed as "untyped bool" still.
  2399  		//
  2400  		// TODO(mdempsky): It should be safe to reshape them here too, but
  2401  		// maybe it's better to construct them with the proper type
  2402  		// instead.
  2403  		if x.Type() == types.UntypedBool && typ.IsBoolean() {
  2404  			return x
  2405  		}
  2406  
  2407  		base.AssertfAt(x.Type().HasShape() || typ.HasShape(), x.Pos(), "%L and %v are not shape types", x, typ)
  2408  		base.AssertfAt(types.Identical(x.Type(), typ), x.Pos(), "%L is not shape-identical to %v", x, typ)
  2409  
  2410  		// We use ir.HasUniquePos here as a check that x only appears once
  2411  		// in the AST, so it's okay for us to call SetType without
  2412  		// breaking any other uses of it.
  2413  		//
  2414  		// Notably, any ONAMEs should already have the exactly right shape
  2415  		// type and been caught by types.IdenticalStrict above.
  2416  		base.AssertfAt(ir.HasUniquePos(x), x.Pos(), "cannot call SetType(%v) on %L", typ, x)
  2417  
  2418  		if base.Debug.Reshape != 0 {
  2419  			base.WarnfAt(x.Pos(), "reshaping %L to %v", x, typ)
  2420  		}
  2421  
  2422  		x.SetType(typ)
  2423  		return x
  2424  
  2425  	case exprConvert:
  2426  		implicit := r.Bool()
  2427  		typ := r.typ()
  2428  		pos := r.pos()
  2429  		typeWord, srcRType := r.convRTTI(pos)
  2430  		dstTypeParam := r.Bool()
  2431  		identical := r.Bool()
  2432  		x := r.expr()
  2433  
  2434  		// TODO(mdempsky): Stop constructing expressions of untyped type.
  2435  		x = typecheck.DefaultLit(x, typ)
  2436  
  2437  		ce := ir.NewConvExpr(pos, ir.OCONV, typ, x)
  2438  		ce.TypeWord, ce.SrcRType = typeWord, srcRType
  2439  		if implicit {
  2440  			ce.SetImplicit(true)
  2441  		}
  2442  		n := typecheck.Expr(ce)
  2443  
  2444  		// Conversions between non-identical, non-empty interfaces always
  2445  		// requires a runtime call, even if they have identical underlying
  2446  		// interfaces. This is because we create separate itab instances
  2447  		// for each unique interface type, not merely each unique
  2448  		// interface shape.
  2449  		//
  2450  		// However, due to shape types, typecheck.Expr might mistakenly
  2451  		// think a conversion between two non-empty interfaces are
  2452  		// identical and set ir.OCONVNOP, instead of ir.OCONVIFACE. To
  2453  		// ensure we update the itab field appropriately, we force it to
  2454  		// ir.OCONVIFACE instead when shape types are involved.
  2455  		//
  2456  		// TODO(mdempsky): Are there other places we might get this wrong?
  2457  		// Should this be moved down into typecheck.{Assign,Convert}op?
  2458  		// This would be a non-issue if itabs were unique for each
  2459  		// *underlying* interface type instead.
  2460  		if !identical {
  2461  			if n, ok := n.(*ir.ConvExpr); ok && n.Op() == ir.OCONVNOP && n.Type().IsInterface() && !n.Type().IsEmptyInterface() && (n.Type().HasShape() || n.X.Type().HasShape()) {
  2462  				n.SetOp(ir.OCONVIFACE)
  2463  			}
  2464  		}
  2465  
  2466  		// spec: "If the type is a type parameter, the constant is converted
  2467  		// into a non-constant value of the type parameter."
  2468  		if dstTypeParam && ir.IsConstNode(n) {
  2469  			// Wrap in an OCONVNOP node to ensure result is non-constant.
  2470  			n = Implicit(ir.NewConvExpr(pos, ir.OCONVNOP, n.Type(), n))
  2471  			n.SetTypecheck(1)
  2472  		}
  2473  		return n
  2474  
  2475  	case exprRuntimeBuiltin:
  2476  		builtin := typecheck.LookupRuntime(r.String())
  2477  		return builtin
  2478  	}
  2479  }
  2480  
  2481  // funcInst reads an instantiated function reference, and returns
  2482  // three (possibly nil) expressions related to it:
  2483  //
  2484  // baseFn is always non-nil: it's either a function of the appropriate
  2485  // type already, or it has an extra dictionary parameter as the first
  2486  // parameter.
  2487  //
  2488  // If dictPtr is non-nil, then it's a dictionary argument that must be
  2489  // passed as the first argument to baseFn.
  2490  //
  2491  // If wrapperFn is non-nil, then it's either the same as baseFn (if
  2492  // dictPtr is nil), or it's semantically equivalent to currying baseFn
  2493  // to pass dictPtr. (wrapperFn is nil when dictPtr is an expression
  2494  // that needs to be computed dynamically.)
  2495  //
  2496  // For callers that are creating a call to the returned function, it's
  2497  // best to emit a call to baseFn, and include dictPtr in the arguments
  2498  // list as appropriate.
  2499  //
  2500  // For callers that want to return the function without invoking it,
  2501  // they may return wrapperFn if it's non-nil; but otherwise, they need
  2502  // to create their own wrapper.
  2503  func (r *reader) funcInst(pos src.XPos) (wrapperFn, baseFn, dictPtr ir.Node) {
  2504  	// Like in methodExpr, I'm pretty sure this isn't needed.
  2505  	var implicits []*types.Type
  2506  	if r.dict != nil {
  2507  		implicits = r.dict.targs
  2508  	}
  2509  
  2510  	if r.Bool() { // dynamic subdictionary
  2511  		idx := r.Len()
  2512  		info := r.dict.subdicts[idx]
  2513  		explicits := r.p.typListIdx(info.explicits, r.dict)
  2514  
  2515  		baseFn = r.p.objIdx(info.idx, implicits, explicits, true).(*ir.Name)
  2516  
  2517  		// TODO(mdempsky): Is there a more robust way to get the
  2518  		// dictionary pointer type here?
  2519  		dictPtrType := baseFn.Type().Param(0).Type
  2520  		dictPtr = typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, dictPtrType, r.dictWord(pos, r.dict.subdictsOffset()+idx)))
  2521  
  2522  		return
  2523  	}
  2524  
  2525  	info := r.objInfo()
  2526  	explicits := r.p.typListIdx(info.explicits, r.dict)
  2527  
  2528  	wrapperFn = r.p.objIdx(info.idx, implicits, explicits, false).(*ir.Name)
  2529  	baseFn = r.p.objIdx(info.idx, implicits, explicits, true).(*ir.Name)
  2530  
  2531  	dictName := r.p.objDictName(info.idx, implicits, explicits)
  2532  	dictPtr = typecheck.Expr(ir.NewAddrExpr(pos, dictName))
  2533  
  2534  	return
  2535  }
  2536  
  2537  func (pr *pkgReader) objDictName(idx pkgbits.Index, implicits, explicits []*types.Type) *ir.Name {
  2538  	rname := pr.newReader(pkgbits.RelocName, idx, pkgbits.SyncObject1)
  2539  	_, sym := rname.qualifiedIdent()
  2540  	tag := pkgbits.CodeObj(rname.Code(pkgbits.SyncCodeObj))
  2541  
  2542  	if tag == pkgbits.ObjStub {
  2543  		assert(!sym.IsBlank())
  2544  		if pri, ok := objReader[sym]; ok {
  2545  			return pri.pr.objDictName(pri.idx, nil, explicits)
  2546  		}
  2547  		base.Fatalf("unresolved stub: %v", sym)
  2548  	}
  2549  
  2550  	dict, err := pr.objDictIdx(sym, idx, implicits, explicits, false)
  2551  	if err != nil {
  2552  		base.Fatalf("%v", err)
  2553  	}
  2554  
  2555  	return pr.dictNameOf(dict)
  2556  }
  2557  
  2558  // curry returns a function literal that calls fun with arg0 and
  2559  // (optionally) arg1, accepting additional arguments to the function
  2560  // literal as necessary to satisfy fun's signature.
  2561  //
  2562  // If nilCheck is true and arg0 is an interface value, then it's
  2563  // checked to be non-nil as an initial step at the point of evaluating
  2564  // the function literal itself.
  2565  func (r *reader) curry(origPos src.XPos, ifaceHack bool, fun ir.Node, arg0, arg1 ir.Node) ir.Node {
  2566  	var captured ir.Nodes
  2567  	captured.Append(fun, arg0)
  2568  	if arg1 != nil {
  2569  		captured.Append(arg1)
  2570  	}
  2571  
  2572  	params, results := syntheticSig(fun.Type())
  2573  	params = params[len(captured)-1:] // skip curried parameters
  2574  	typ := types.NewSignature(nil, params, results)
  2575  
  2576  	addBody := func(pos src.XPos, r *reader, captured []ir.Node) {
  2577  		fun := captured[0]
  2578  
  2579  		var args ir.Nodes
  2580  		args.Append(captured[1:]...)
  2581  		args.Append(r.syntheticArgs()...)
  2582  
  2583  		r.syntheticTailCall(pos, fun, args)
  2584  	}
  2585  
  2586  	return r.syntheticClosure(origPos, typ, ifaceHack, captured, addBody)
  2587  }
  2588  
  2589  // methodExprWrap returns a function literal that changes method's
  2590  // first parameter's type to recv, and uses implicits/deref/addr to
  2591  // select the appropriate receiver parameter to pass to method.
  2592  func (r *reader) methodExprWrap(origPos src.XPos, recv *types.Type, implicits []int, deref, addr bool, method, dictPtr ir.Node) ir.Node {
  2593  	var captured ir.Nodes
  2594  	captured.Append(method)
  2595  
  2596  	params, results := syntheticSig(method.Type())
  2597  
  2598  	// Change first parameter to recv.
  2599  	params[0].Type = recv
  2600  
  2601  	// If we have a dictionary pointer argument to pass, then omit the
  2602  	// underlying method expression's dictionary parameter from the
  2603  	// returned signature too.
  2604  	if dictPtr != nil {
  2605  		captured.Append(dictPtr)
  2606  		params = append(params[:1], params[2:]...)
  2607  	}
  2608  
  2609  	typ := types.NewSignature(nil, params, results)
  2610  
  2611  	addBody := func(pos src.XPos, r *reader, captured []ir.Node) {
  2612  		fn := captured[0]
  2613  		args := r.syntheticArgs()
  2614  
  2615  		// Rewrite first argument based on implicits/deref/addr.
  2616  		{
  2617  			arg := args[0]
  2618  			for _, ix := range implicits {
  2619  				arg = Implicit(typecheck.DotField(pos, arg, ix))
  2620  			}
  2621  			if deref {
  2622  				arg = Implicit(Deref(pos, arg.Type().Elem(), arg))
  2623  			} else if addr {
  2624  				arg = Implicit(Addr(pos, arg))
  2625  			}
  2626  			args[0] = arg
  2627  		}
  2628  
  2629  		// Insert dictionary argument, if provided.
  2630  		if dictPtr != nil {
  2631  			newArgs := make([]ir.Node, len(args)+1)
  2632  			newArgs[0] = args[0]
  2633  			newArgs[1] = captured[1]
  2634  			copy(newArgs[2:], args[1:])
  2635  			args = newArgs
  2636  		}
  2637  
  2638  		r.syntheticTailCall(pos, fn, args)
  2639  	}
  2640  
  2641  	return r.syntheticClosure(origPos, typ, false, captured, addBody)
  2642  }
  2643  
  2644  // syntheticClosure constructs a synthetic function literal for
  2645  // currying dictionary arguments. origPos is the position used for the
  2646  // closure, which must be a non-inlined position. typ is the function
  2647  // literal's signature type.
  2648  //
  2649  // captures is a list of expressions that need to be evaluated at the
  2650  // point of function literal evaluation and captured by the function
  2651  // literal. If ifaceHack is true and captures[1] is an interface type,
  2652  // it's checked to be non-nil after evaluation.
  2653  //
  2654  // addBody is a callback function to populate the function body. The
  2655  // list of captured values passed back has the captured variables for
  2656  // use within the function literal, corresponding to the expressions
  2657  // in captures.
  2658  func (r *reader) syntheticClosure(origPos src.XPos, typ *types.Type, ifaceHack bool, captures ir.Nodes, addBody func(pos src.XPos, r *reader, captured []ir.Node)) ir.Node {
  2659  	// isSafe reports whether n is an expression that we can safely
  2660  	// defer to evaluating inside the closure instead, to avoid storing
  2661  	// them into the closure.
  2662  	//
  2663  	// In practice this is always (and only) the wrappee function.
  2664  	isSafe := func(n ir.Node) bool {
  2665  		if n.Op() == ir.ONAME && n.(*ir.Name).Class == ir.PFUNC {
  2666  			return true
  2667  		}
  2668  		if n.Op() == ir.OMETHEXPR {
  2669  			return true
  2670  		}
  2671  
  2672  		return false
  2673  	}
  2674  
  2675  	fn := r.inlClosureFunc(origPos, typ)
  2676  	fn.SetWrapper(true)
  2677  
  2678  	clo := fn.OClosure
  2679  	inlPos := clo.Pos()
  2680  
  2681  	var init ir.Nodes
  2682  	for i, n := range captures {
  2683  		if isSafe(n) {
  2684  			continue // skip capture; can reference directly
  2685  		}
  2686  
  2687  		tmp := r.tempCopy(inlPos, n, &init)
  2688  		ir.NewClosureVar(origPos, fn, tmp)
  2689  
  2690  		// We need to nil check interface receivers at the point of method
  2691  		// value evaluation, ugh.
  2692  		if ifaceHack && i == 1 && n.Type().IsInterface() {
  2693  			check := ir.NewUnaryExpr(inlPos, ir.OCHECKNIL, ir.NewUnaryExpr(inlPos, ir.OITAB, tmp))
  2694  			init.Append(typecheck.Stmt(check))
  2695  		}
  2696  	}
  2697  
  2698  	pri := pkgReaderIndex{synthetic: func(pos src.XPos, r *reader) {
  2699  		captured := make([]ir.Node, len(captures))
  2700  		next := 0
  2701  		for i, n := range captures {
  2702  			if isSafe(n) {
  2703  				captured[i] = n
  2704  			} else {
  2705  				captured[i] = r.closureVars[next]
  2706  				next++
  2707  			}
  2708  		}
  2709  		assert(next == len(r.closureVars))
  2710  
  2711  		addBody(origPos, r, captured)
  2712  	}}
  2713  	bodyReader[fn] = pri
  2714  	pri.funcBody(fn)
  2715  
  2716  	return ir.InitExpr(init, clo)
  2717  }
  2718  
  2719  // syntheticSig duplicates and returns the params and results lists
  2720  // for sig, but renaming anonymous parameters so they can be assigned
  2721  // ir.Names.
  2722  func syntheticSig(sig *types.Type) (params, results []*types.Field) {
  2723  	clone := func(params []*types.Field) []*types.Field {
  2724  		res := make([]*types.Field, len(params))
  2725  		for i, param := range params {
  2726  			// TODO(mdempsky): It would be nice to preserve the original
  2727  			// parameter positions here instead, but at least
  2728  			// typecheck.NewMethodType replaces them with base.Pos, making
  2729  			// them useless. Worse, the positions copied from base.Pos may
  2730  			// have inlining contexts, which we definitely don't want here
  2731  			// (e.g., #54625).
  2732  			res[i] = types.NewField(base.AutogeneratedPos, param.Sym, param.Type)
  2733  			res[i].SetIsDDD(param.IsDDD())
  2734  		}
  2735  		return res
  2736  	}
  2737  
  2738  	return clone(sig.Params()), clone(sig.Results())
  2739  }
  2740  
  2741  func (r *reader) optExpr() ir.Node {
  2742  	if r.Bool() {
  2743  		return r.expr()
  2744  	}
  2745  	return nil
  2746  }
  2747  
  2748  // methodExpr reads a method expression reference, and returns three
  2749  // (possibly nil) expressions related to it:
  2750  //
  2751  // baseFn is always non-nil: it's either a function of the appropriate
  2752  // type already, or it has an extra dictionary parameter as the second
  2753  // parameter (i.e., immediately after the promoted receiver
  2754  // parameter).
  2755  //
  2756  // If dictPtr is non-nil, then it's a dictionary argument that must be
  2757  // passed as the second argument to baseFn.
  2758  //
  2759  // If wrapperFn is non-nil, then it's either the same as baseFn (if
  2760  // dictPtr is nil), or it's semantically equivalent to currying baseFn
  2761  // to pass dictPtr. (wrapperFn is nil when dictPtr is an expression
  2762  // that needs to be computed dynamically.)
  2763  //
  2764  // For callers that are creating a call to the returned method, it's
  2765  // best to emit a call to baseFn, and include dictPtr in the arguments
  2766  // list as appropriate.
  2767  //
  2768  // For callers that want to return a method expression without
  2769  // invoking it, they may return wrapperFn if it's non-nil; but
  2770  // otherwise, they need to create their own wrapper.
  2771  func (r *reader) methodExpr() (wrapperFn, baseFn, dictPtr ir.Node) {
  2772  	recv := r.typ()
  2773  	sig0 := r.typ()
  2774  	pos := r.pos()
  2775  	sym := r.selector()
  2776  
  2777  	// Signature type to return (i.e., recv prepended to the method's
  2778  	// normal parameters list).
  2779  	sig := typecheck.NewMethodType(sig0, recv)
  2780  
  2781  	if r.Bool() { // type parameter method expression
  2782  		idx := r.Len()
  2783  		word := r.dictWord(pos, r.dict.typeParamMethodExprsOffset()+idx)
  2784  
  2785  		// TODO(mdempsky): If the type parameter was instantiated with an
  2786  		// interface type (i.e., embed.IsInterface()), then we could
  2787  		// return the OMETHEXPR instead and save an indirection.
  2788  
  2789  		// We wrote the method expression's entry point PC into the
  2790  		// dictionary, but for Go `func` values we need to return a
  2791  		// closure (i.e., pointer to a structure with the PC as the first
  2792  		// field). Because method expressions don't have any closure
  2793  		// variables, we pun the dictionary entry as the closure struct.
  2794  		fn := typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, sig, ir.NewAddrExpr(pos, word)))
  2795  		return fn, fn, nil
  2796  	}
  2797  
  2798  	// TODO(mdempsky): I'm pretty sure this isn't needed: implicits is
  2799  	// only relevant to locally defined types, but they can't have
  2800  	// (non-promoted) methods.
  2801  	var implicits []*types.Type
  2802  	if r.dict != nil {
  2803  		implicits = r.dict.targs
  2804  	}
  2805  
  2806  	if r.Bool() { // dynamic subdictionary
  2807  		idx := r.Len()
  2808  		info := r.dict.subdicts[idx]
  2809  		explicits := r.p.typListIdx(info.explicits, r.dict)
  2810  
  2811  		shapedObj := r.p.objIdx(info.idx, implicits, explicits, true).(*ir.Name)
  2812  		shapedFn := shapedMethodExpr(pos, shapedObj, sym)
  2813  
  2814  		// TODO(mdempsky): Is there a more robust way to get the
  2815  		// dictionary pointer type here?
  2816  		dictPtrType := shapedFn.Type().Param(1).Type
  2817  		dictPtr := typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, dictPtrType, r.dictWord(pos, r.dict.subdictsOffset()+idx)))
  2818  
  2819  		return nil, shapedFn, dictPtr
  2820  	}
  2821  
  2822  	if r.Bool() { // static dictionary
  2823  		info := r.objInfo()
  2824  		explicits := r.p.typListIdx(info.explicits, r.dict)
  2825  
  2826  		shapedObj := r.p.objIdx(info.idx, implicits, explicits, true).(*ir.Name)
  2827  		shapedFn := shapedMethodExpr(pos, shapedObj, sym)
  2828  
  2829  		dict := r.p.objDictName(info.idx, implicits, explicits)
  2830  		dictPtr := typecheck.Expr(ir.NewAddrExpr(pos, dict))
  2831  
  2832  		// Check that dictPtr matches shapedFn's dictionary parameter.
  2833  		if !types.Identical(dictPtr.Type(), shapedFn.Type().Param(1).Type) {
  2834  			base.FatalfAt(pos, "dict %L, but shaped method %L", dict, shapedFn)
  2835  		}
  2836  
  2837  		// For statically known instantiations, we can take advantage of
  2838  		// the stenciled wrapper.
  2839  		base.AssertfAt(!recv.HasShape(), pos, "shaped receiver %v", recv)
  2840  		wrapperFn := typecheck.NewMethodExpr(pos, recv, sym)
  2841  		base.AssertfAt(types.Identical(sig, wrapperFn.Type()), pos, "wrapper %L does not have type %v", wrapperFn, sig)
  2842  
  2843  		return wrapperFn, shapedFn, dictPtr
  2844  	}
  2845  
  2846  	// Simple method expression; no dictionary needed.
  2847  	base.AssertfAt(!recv.HasShape() || recv.IsInterface(), pos, "shaped receiver %v", recv)
  2848  	fn := typecheck.NewMethodExpr(pos, recv, sym)
  2849  	return fn, fn, nil
  2850  }
  2851  
  2852  // shapedMethodExpr returns the specified method on the given shaped
  2853  // type.
  2854  func shapedMethodExpr(pos src.XPos, obj *ir.Name, sym *types.Sym) *ir.SelectorExpr {
  2855  	assert(obj.Op() == ir.OTYPE)
  2856  
  2857  	typ := obj.Type()
  2858  	assert(typ.HasShape())
  2859  
  2860  	method := func() *types.Field {
  2861  		for _, method := range typ.Methods() {
  2862  			if method.Sym == sym {
  2863  				return method
  2864  			}
  2865  		}
  2866  
  2867  		base.FatalfAt(pos, "failed to find method %v in shaped type %v", sym, typ)
  2868  		panic("unreachable")
  2869  	}()
  2870  
  2871  	// Construct an OMETHEXPR node.
  2872  	recv := method.Type.Recv().Type
  2873  	return typecheck.NewMethodExpr(pos, recv, sym)
  2874  }
  2875  
  2876  func (r *reader) multiExpr() []ir.Node {
  2877  	r.Sync(pkgbits.SyncMultiExpr)
  2878  
  2879  	if r.Bool() { // N:1
  2880  		pos := r.pos()
  2881  		expr := r.expr()
  2882  
  2883  		results := make([]ir.Node, r.Len())
  2884  		as := ir.NewAssignListStmt(pos, ir.OAS2, nil, []ir.Node{expr})
  2885  		as.Def = true
  2886  		for i := range results {
  2887  			tmp := r.temp(pos, r.typ())
  2888  			as.PtrInit().Append(ir.NewDecl(pos, ir.ODCL, tmp))
  2889  			as.Lhs.Append(tmp)
  2890  
  2891  			res := ir.Node(tmp)
  2892  			if r.Bool() {
  2893  				n := ir.NewConvExpr(pos, ir.OCONV, r.typ(), res)
  2894  				n.TypeWord, n.SrcRType = r.convRTTI(pos)
  2895  				n.SetImplicit(true)
  2896  				res = typecheck.Expr(n)
  2897  			}
  2898  			results[i] = res
  2899  		}
  2900  
  2901  		// TODO(mdempsky): Could use ir.InlinedCallExpr instead?
  2902  		results[0] = ir.InitExpr([]ir.Node{typecheck.Stmt(as)}, results[0])
  2903  		return results
  2904  	}
  2905  
  2906  	// N:N
  2907  	exprs := make([]ir.Node, r.Len())
  2908  	if len(exprs) == 0 {
  2909  		return nil
  2910  	}
  2911  	for i := range exprs {
  2912  		exprs[i] = r.expr()
  2913  	}
  2914  	return exprs
  2915  }
  2916  
  2917  // temp returns a new autotemp of the specified type.
  2918  func (r *reader) temp(pos src.XPos, typ *types.Type) *ir.Name {
  2919  	return typecheck.TempAt(pos, r.curfn, typ)
  2920  }
  2921  
  2922  // tempCopy declares and returns a new autotemp initialized to the
  2923  // value of expr.
  2924  func (r *reader) tempCopy(pos src.XPos, expr ir.Node, init *ir.Nodes) *ir.Name {
  2925  	tmp := r.temp(pos, expr.Type())
  2926  
  2927  	init.Append(typecheck.Stmt(ir.NewDecl(pos, ir.ODCL, tmp)))
  2928  
  2929  	assign := ir.NewAssignStmt(pos, tmp, expr)
  2930  	assign.Def = true
  2931  	init.Append(typecheck.Stmt(ir.NewAssignStmt(pos, tmp, expr)))
  2932  
  2933  	tmp.Defn = assign
  2934  
  2935  	return tmp
  2936  }
  2937  
  2938  func (r *reader) compLit() ir.Node {
  2939  	r.Sync(pkgbits.SyncCompLit)
  2940  	pos := r.pos()
  2941  	typ0 := r.typ()
  2942  
  2943  	typ := typ0
  2944  	if typ.IsPtr() {
  2945  		typ = typ.Elem()
  2946  	}
  2947  	if typ.Kind() == types.TFORW {
  2948  		base.FatalfAt(pos, "unresolved composite literal type: %v", typ)
  2949  	}
  2950  	var rtype ir.Node
  2951  	if typ.IsMap() {
  2952  		rtype = r.rtype(pos)
  2953  	}
  2954  	isStruct := typ.Kind() == types.TSTRUCT
  2955  
  2956  	elems := make([]ir.Node, r.Len())
  2957  	for i := range elems {
  2958  		elemp := &elems[i]
  2959  
  2960  		if isStruct {
  2961  			sk := ir.NewStructKeyExpr(r.pos(), typ.Field(r.Len()), nil)
  2962  			*elemp, elemp = sk, &sk.Value
  2963  		} else if r.Bool() {
  2964  			kv := ir.NewKeyExpr(r.pos(), r.expr(), nil)
  2965  			*elemp, elemp = kv, &kv.Value
  2966  		}
  2967  
  2968  		*elemp = wrapName(r.pos(), r.expr())
  2969  	}
  2970  
  2971  	lit := typecheck.Expr(ir.NewCompLitExpr(pos, ir.OCOMPLIT, typ, elems))
  2972  	if rtype != nil {
  2973  		lit := lit.(*ir.CompLitExpr)
  2974  		lit.RType = rtype
  2975  	}
  2976  	if typ0.IsPtr() {
  2977  		lit = typecheck.Expr(typecheck.NodAddrAt(pos, lit))
  2978  		lit.SetType(typ0)
  2979  	}
  2980  	return lit
  2981  }
  2982  
  2983  func wrapName(pos src.XPos, x ir.Node) ir.Node {
  2984  	// These nodes do not carry line numbers.
  2985  	// Introduce a wrapper node to give them the correct line.
  2986  	switch x.Op() {
  2987  	case ir.OTYPE, ir.OLITERAL:
  2988  		if x.Sym() == nil {
  2989  			break
  2990  		}
  2991  		fallthrough
  2992  	case ir.ONAME, ir.ONONAME, ir.ONIL:
  2993  		p := ir.NewParenExpr(pos, x)
  2994  		p.SetImplicit(true)
  2995  		return p
  2996  	}
  2997  	return x
  2998  }
  2999  
  3000  func (r *reader) funcLit() ir.Node {
  3001  	r.Sync(pkgbits.SyncFuncLit)
  3002  
  3003  	// The underlying function declaration (including its parameters'
  3004  	// positions, if any) need to remain the original, uninlined
  3005  	// positions. This is because we track inlining-context on nodes so
  3006  	// we can synthesize the extra implied stack frames dynamically when
  3007  	// generating tracebacks, whereas those stack frames don't make
  3008  	// sense *within* the function literal. (Any necessary inlining
  3009  	// adjustments will have been applied to the call expression
  3010  	// instead.)
  3011  	//
  3012  	// This is subtle, and getting it wrong leads to cycles in the
  3013  	// inlining tree, which lead to infinite loops during stack
  3014  	// unwinding (#46234, #54625).
  3015  	//
  3016  	// Note that we *do* want the inline-adjusted position for the
  3017  	// OCLOSURE node, because that position represents where any heap
  3018  	// allocation of the closure is credited (#49171).
  3019  	r.suppressInlPos++
  3020  	origPos := r.pos()
  3021  	sig := r.signature(nil)
  3022  	r.suppressInlPos--
  3023  
  3024  	fn := r.inlClosureFunc(origPos, sig)
  3025  
  3026  	fn.ClosureVars = make([]*ir.Name, 0, r.Len())
  3027  	for len(fn.ClosureVars) < cap(fn.ClosureVars) {
  3028  		// TODO(mdempsky): I think these should be original positions too
  3029  		// (i.e., not inline-adjusted).
  3030  		ir.NewClosureVar(r.pos(), fn, r.useLocal())
  3031  	}
  3032  	if param := r.dictParam; param != nil {
  3033  		// If we have a dictionary parameter, capture it too. For
  3034  		// simplicity, we capture it last and unconditionally.
  3035  		ir.NewClosureVar(param.Pos(), fn, param)
  3036  	}
  3037  
  3038  	r.addBody(fn, nil)
  3039  
  3040  	// un-hide closures belong to init function.
  3041  	if (r.curfn.IsPackageInit() || strings.HasPrefix(r.curfn.Sym().Name, "init.")) && ir.IsTrivialClosure(fn.OClosure) {
  3042  		fn.SetIsHiddenClosure(false)
  3043  	}
  3044  
  3045  	return fn.OClosure
  3046  }
  3047  
  3048  // inlClosureFunc constructs a new closure function, but correctly
  3049  // handles inlining.
  3050  func (r *reader) inlClosureFunc(origPos src.XPos, sig *types.Type) *ir.Func {
  3051  	curfn := r.inlCaller
  3052  	if curfn == nil {
  3053  		curfn = r.curfn
  3054  	}
  3055  
  3056  	// TODO(mdempsky): Remove hard-coding of typecheck.Target.
  3057  	return ir.NewClosureFunc(origPos, r.inlPos(origPos), ir.OCLOSURE, sig, curfn, typecheck.Target)
  3058  }
  3059  
  3060  func (r *reader) exprList() []ir.Node {
  3061  	r.Sync(pkgbits.SyncExprList)
  3062  	return r.exprs()
  3063  }
  3064  
  3065  func (r *reader) exprs() []ir.Node {
  3066  	r.Sync(pkgbits.SyncExprs)
  3067  	nodes := make([]ir.Node, r.Len())
  3068  	if len(nodes) == 0 {
  3069  		return nil // TODO(mdempsky): Unclear if this matters.
  3070  	}
  3071  	for i := range nodes {
  3072  		nodes[i] = r.expr()
  3073  	}
  3074  	return nodes
  3075  }
  3076  
  3077  // dictWord returns an expression to return the specified
  3078  // uintptr-typed word from the dictionary parameter.
  3079  func (r *reader) dictWord(pos src.XPos, idx int) ir.Node {
  3080  	base.AssertfAt(r.dictParam != nil, pos, "expected dictParam in %v", r.curfn)
  3081  	return typecheck.Expr(ir.NewIndexExpr(pos, r.dictParam, ir.NewInt(pos, int64(idx))))
  3082  }
  3083  
  3084  // rttiWord is like dictWord, but converts it to *byte (the type used
  3085  // internally to represent *runtime._type and *runtime.itab).
  3086  func (r *reader) rttiWord(pos src.XPos, idx int) ir.Node {
  3087  	return typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, types.NewPtr(types.Types[types.TUINT8]), r.dictWord(pos, idx)))
  3088  }
  3089  
  3090  // rtype reads a type reference from the element bitstream, and
  3091  // returns an expression of type *runtime._type representing that
  3092  // type.
  3093  func (r *reader) rtype(pos src.XPos) ir.Node {
  3094  	_, rtype := r.rtype0(pos)
  3095  	return rtype
  3096  }
  3097  
  3098  func (r *reader) rtype0(pos src.XPos) (typ *types.Type, rtype ir.Node) {
  3099  	r.Sync(pkgbits.SyncRType)
  3100  	if r.Bool() { // derived type
  3101  		idx := r.Len()
  3102  		info := r.dict.rtypes[idx]
  3103  		typ = r.p.typIdx(info, r.dict, true)
  3104  		rtype = r.rttiWord(pos, r.dict.rtypesOffset()+idx)
  3105  		return
  3106  	}
  3107  
  3108  	typ = r.typ()
  3109  	rtype = reflectdata.TypePtrAt(pos, typ)
  3110  	return
  3111  }
  3112  
  3113  // varDictIndex populates name.DictIndex if name is a derived type.
  3114  func (r *reader) varDictIndex(name *ir.Name) {
  3115  	if r.Bool() {
  3116  		idx := 1 + r.dict.rtypesOffset() + r.Len()
  3117  		if int(uint16(idx)) != idx {
  3118  			base.FatalfAt(name.Pos(), "DictIndex overflow for %v: %v", name, idx)
  3119  		}
  3120  		name.DictIndex = uint16(idx)
  3121  	}
  3122  }
  3123  
  3124  // itab returns a (typ, iface) pair of types.
  3125  //
  3126  // typRType and ifaceRType are expressions that evaluate to the
  3127  // *runtime._type for typ and iface, respectively.
  3128  //
  3129  // If typ is a concrete type and iface is a non-empty interface type,
  3130  // then itab is an expression that evaluates to the *runtime.itab for
  3131  // the pair. Otherwise, itab is nil.
  3132  func (r *reader) itab(pos src.XPos) (typ *types.Type, typRType ir.Node, iface *types.Type, ifaceRType ir.Node, itab ir.Node) {
  3133  	typ, typRType = r.rtype0(pos)
  3134  	iface, ifaceRType = r.rtype0(pos)
  3135  
  3136  	idx := -1
  3137  	if r.Bool() {
  3138  		idx = r.Len()
  3139  	}
  3140  
  3141  	if !typ.IsInterface() && iface.IsInterface() && !iface.IsEmptyInterface() {
  3142  		if idx >= 0 {
  3143  			itab = r.rttiWord(pos, r.dict.itabsOffset()+idx)
  3144  		} else {
  3145  			base.AssertfAt(!typ.HasShape(), pos, "%v is a shape type", typ)
  3146  			base.AssertfAt(!iface.HasShape(), pos, "%v is a shape type", iface)
  3147  
  3148  			lsym := reflectdata.ITabLsym(typ, iface)
  3149  			itab = typecheck.LinksymAddr(pos, lsym, types.Types[types.TUINT8])
  3150  		}
  3151  	}
  3152  
  3153  	return
  3154  }
  3155  
  3156  // convRTTI returns expressions appropriate for populating an
  3157  // ir.ConvExpr's TypeWord and SrcRType fields, respectively.
  3158  func (r *reader) convRTTI(pos src.XPos) (typeWord, srcRType ir.Node) {
  3159  	r.Sync(pkgbits.SyncConvRTTI)
  3160  	src, srcRType0, dst, dstRType, itab := r.itab(pos)
  3161  	if !dst.IsInterface() {
  3162  		return
  3163  	}
  3164  
  3165  	// See reflectdata.ConvIfaceTypeWord.
  3166  	switch {
  3167  	case dst.IsEmptyInterface():
  3168  		if !src.IsInterface() {
  3169  			typeWord = srcRType0 // direct eface construction
  3170  		}
  3171  	case !src.IsInterface():
  3172  		typeWord = itab // direct iface construction
  3173  	default:
  3174  		typeWord = dstRType // convI2I
  3175  	}
  3176  
  3177  	// See reflectdata.ConvIfaceSrcRType.
  3178  	if !src.IsInterface() {
  3179  		srcRType = srcRType0
  3180  	}
  3181  
  3182  	return
  3183  }
  3184  
  3185  func (r *reader) exprType() ir.Node {
  3186  	r.Sync(pkgbits.SyncExprType)
  3187  	pos := r.pos()
  3188  
  3189  	var typ *types.Type
  3190  	var rtype, itab ir.Node
  3191  
  3192  	if r.Bool() {
  3193  		typ, rtype, _, _, itab = r.itab(pos)
  3194  		if !typ.IsInterface() {
  3195  			rtype = nil // TODO(mdempsky): Leave set?
  3196  		}
  3197  	} else {
  3198  		typ, rtype = r.rtype0(pos)
  3199  
  3200  		if !r.Bool() { // not derived
  3201  			return ir.TypeNode(typ)
  3202  		}
  3203  	}
  3204  
  3205  	dt := ir.NewDynamicType(pos, rtype)
  3206  	dt.ITab = itab
  3207  	return typed(typ, dt)
  3208  }
  3209  
  3210  func (r *reader) op() ir.Op {
  3211  	r.Sync(pkgbits.SyncOp)
  3212  	return ir.Op(r.Len())
  3213  }
  3214  
  3215  // @@@ Package initialization
  3216  
  3217  func (r *reader) pkgInit(self *types.Pkg, target *ir.Package) {
  3218  	cgoPragmas := make([][]string, r.Len())
  3219  	for i := range cgoPragmas {
  3220  		cgoPragmas[i] = r.Strings()
  3221  	}
  3222  	target.CgoPragmas = cgoPragmas
  3223  
  3224  	r.pkgInitOrder(target)
  3225  
  3226  	r.pkgDecls(target)
  3227  
  3228  	r.Sync(pkgbits.SyncEOF)
  3229  }
  3230  
  3231  // pkgInitOrder creates a synthetic init function to handle any
  3232  // package-scope initialization statements.
  3233  func (r *reader) pkgInitOrder(target *ir.Package) {
  3234  	initOrder := make([]ir.Node, r.Len())
  3235  	if len(initOrder) == 0 {
  3236  		return
  3237  	}
  3238  
  3239  	// Make a function that contains all the initialization statements.
  3240  	pos := base.AutogeneratedPos
  3241  	base.Pos = pos
  3242  
  3243  	fn := ir.NewFunc(pos, pos, typecheck.Lookup("init"), types.NewSignature(nil, nil, nil))
  3244  	fn.SetIsPackageInit(true)
  3245  	fn.SetInlinabilityChecked(true) // suppress useless "can inline" diagnostics
  3246  
  3247  	typecheck.DeclFunc(fn)
  3248  	r.curfn = fn
  3249  
  3250  	for i := range initOrder {
  3251  		lhs := make([]ir.Node, r.Len())
  3252  		for j := range lhs {
  3253  			lhs[j] = r.obj()
  3254  		}
  3255  		rhs := r.expr()
  3256  		pos := lhs[0].Pos()
  3257  
  3258  		var as ir.Node
  3259  		if len(lhs) == 1 {
  3260  			as = typecheck.Stmt(ir.NewAssignStmt(pos, lhs[0], rhs))
  3261  		} else {
  3262  			as = typecheck.Stmt(ir.NewAssignListStmt(pos, ir.OAS2, lhs, []ir.Node{rhs}))
  3263  		}
  3264  
  3265  		for _, v := range lhs {
  3266  			v.(*ir.Name).Defn = as
  3267  		}
  3268  
  3269  		initOrder[i] = as
  3270  	}
  3271  
  3272  	fn.Body = initOrder
  3273  
  3274  	typecheck.FinishFuncBody()
  3275  	r.curfn = nil
  3276  	r.locals = nil
  3277  
  3278  	// Outline (if legal/profitable) global map inits.
  3279  	staticinit.OutlineMapInits(fn)
  3280  
  3281  	target.Inits = append(target.Inits, fn)
  3282  }
  3283  
  3284  func (r *reader) pkgDecls(target *ir.Package) {
  3285  	r.Sync(pkgbits.SyncDecls)
  3286  	for {
  3287  		switch code := codeDecl(r.Code(pkgbits.SyncDecl)); code {
  3288  		default:
  3289  			panic(fmt.Sprintf("unhandled decl: %v", code))
  3290  
  3291  		case declEnd:
  3292  			return
  3293  
  3294  		case declFunc:
  3295  			names := r.pkgObjs(target)
  3296  			assert(len(names) == 1)
  3297  			target.Funcs = append(target.Funcs, names[0].Func)
  3298  
  3299  		case declMethod:
  3300  			typ := r.typ()
  3301  			sym := r.selector()
  3302  
  3303  			method := typecheck.Lookdot1(nil, sym, typ, typ.Methods(), 0)
  3304  			target.Funcs = append(target.Funcs, method.Nname.(*ir.Name).Func)
  3305  
  3306  		case declVar:
  3307  			names := r.pkgObjs(target)
  3308  
  3309  			if n := r.Len(); n > 0 {
  3310  				assert(len(names) == 1)
  3311  				embeds := make([]ir.Embed, n)
  3312  				for i := range embeds {
  3313  					embeds[i] = ir.Embed{Pos: r.pos(), Patterns: r.Strings()}
  3314  				}
  3315  				names[0].Embed = &embeds
  3316  				target.Embeds = append(target.Embeds, names[0])
  3317  			}
  3318  
  3319  		case declOther:
  3320  			r.pkgObjs(target)
  3321  		}
  3322  	}
  3323  }
  3324  
  3325  func (r *reader) pkgObjs(target *ir.Package) []*ir.Name {
  3326  	r.Sync(pkgbits.SyncDeclNames)
  3327  	nodes := make([]*ir.Name, r.Len())
  3328  	for i := range nodes {
  3329  		r.Sync(pkgbits.SyncDeclName)
  3330  
  3331  		name := r.obj().(*ir.Name)
  3332  		nodes[i] = name
  3333  
  3334  		sym := name.Sym()
  3335  		if sym.IsBlank() {
  3336  			continue
  3337  		}
  3338  
  3339  		switch name.Class {
  3340  		default:
  3341  			base.FatalfAt(name.Pos(), "unexpected class: %v", name.Class)
  3342  
  3343  		case ir.PEXTERN:
  3344  			target.Externs = append(target.Externs, name)
  3345  
  3346  		case ir.PFUNC:
  3347  			assert(name.Type().Recv() == nil)
  3348  
  3349  			// TODO(mdempsky): Cleaner way to recognize init?
  3350  			if strings.HasPrefix(sym.Name, "init.") {
  3351  				target.Inits = append(target.Inits, name.Func)
  3352  			}
  3353  		}
  3354  
  3355  		if base.Ctxt.Flag_dynlink && types.LocalPkg.Name == "main" && types.IsExported(sym.Name) && name.Op() == ir.ONAME {
  3356  			assert(!sym.OnExportList())
  3357  			target.PluginExports = append(target.PluginExports, name)
  3358  			sym.SetOnExportList(true)
  3359  		}
  3360  
  3361  		if base.Flag.AsmHdr != "" && (name.Op() == ir.OLITERAL || name.Op() == ir.OTYPE) {
  3362  			assert(!sym.Asm())
  3363  			target.AsmHdrDecls = append(target.AsmHdrDecls, name)
  3364  			sym.SetAsm(true)
  3365  		}
  3366  	}
  3367  
  3368  	return nodes
  3369  }
  3370  
  3371  // @@@ Inlining
  3372  
  3373  // unifiedHaveInlineBody reports whether we have the function body for
  3374  // fn, so we can inline it.
  3375  func unifiedHaveInlineBody(fn *ir.Func) bool {
  3376  	if fn.Inl == nil {
  3377  		return false
  3378  	}
  3379  
  3380  	_, ok := bodyReaderFor(fn)
  3381  	return ok
  3382  }
  3383  
  3384  var inlgen = 0
  3385  
  3386  // unifiedInlineCall implements inline.NewInline by re-reading the function
  3387  // body from its Unified IR export data.
  3388  func unifiedInlineCall(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
  3389  	pri, ok := bodyReaderFor(fn)
  3390  	if !ok {
  3391  		base.FatalfAt(call.Pos(), "cannot inline call to %v: missing inline body", fn)
  3392  	}
  3393  
  3394  	if !fn.Inl.HaveDcl {
  3395  		expandInline(fn, pri)
  3396  	}
  3397  
  3398  	r := pri.asReader(pkgbits.RelocBody, pkgbits.SyncFuncBody)
  3399  
  3400  	tmpfn := ir.NewFunc(fn.Pos(), fn.Nname.Pos(), callerfn.Sym(), fn.Type())
  3401  
  3402  	r.curfn = tmpfn
  3403  
  3404  	r.inlCaller = callerfn
  3405  	r.inlCall = call
  3406  	r.inlFunc = fn
  3407  	r.inlTreeIndex = inlIndex
  3408  	r.inlPosBases = make(map[*src.PosBase]*src.PosBase)
  3409  	r.funarghack = true
  3410  
  3411  	r.closureVars = make([]*ir.Name, len(r.inlFunc.ClosureVars))
  3412  	for i, cv := range r.inlFunc.ClosureVars {
  3413  		// TODO(mdempsky): It should be possible to support this case, but
  3414  		// for now we rely on the inliner avoiding it.
  3415  		if cv.Outer.Curfn != callerfn {
  3416  			base.FatalfAt(call.Pos(), "inlining closure call across frames")
  3417  		}
  3418  		r.closureVars[i] = cv.Outer
  3419  	}
  3420  	if len(r.closureVars) != 0 && r.hasTypeParams() {
  3421  		r.dictParam = r.closureVars[len(r.closureVars)-1] // dictParam is last; see reader.funcLit
  3422  	}
  3423  
  3424  	r.declareParams()
  3425  
  3426  	var inlvars, retvars []*ir.Name
  3427  	{
  3428  		sig := r.curfn.Type()
  3429  		endParams := sig.NumRecvs() + sig.NumParams()
  3430  		endResults := endParams + sig.NumResults()
  3431  
  3432  		inlvars = r.curfn.Dcl[:endParams]
  3433  		retvars = r.curfn.Dcl[endParams:endResults]
  3434  	}
  3435  
  3436  	r.delayResults = fn.Inl.CanDelayResults
  3437  
  3438  	r.retlabel = typecheck.AutoLabel(".i")
  3439  	inlgen++
  3440  
  3441  	init := ir.TakeInit(call)
  3442  
  3443  	// For normal function calls, the function callee expression
  3444  	// may contain side effects. Make sure to preserve these,
  3445  	// if necessary (#42703).
  3446  	if call.Op() == ir.OCALLFUNC {
  3447  		inline.CalleeEffects(&init, call.Fun)
  3448  	}
  3449  
  3450  	var args ir.Nodes
  3451  	if call.Op() == ir.OCALLMETH {
  3452  		base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
  3453  	}
  3454  	args.Append(call.Args...)
  3455  
  3456  	// Create assignment to declare and initialize inlvars.
  3457  	as2 := ir.NewAssignListStmt(call.Pos(), ir.OAS2, ir.ToNodes(inlvars), args)
  3458  	as2.Def = true
  3459  	var as2init ir.Nodes
  3460  	for _, name := range inlvars {
  3461  		if ir.IsBlank(name) {
  3462  			continue
  3463  		}
  3464  		// TODO(mdempsky): Use inlined position of name.Pos() instead?
  3465  		as2init.Append(ir.NewDecl(call.Pos(), ir.ODCL, name))
  3466  		name.Defn = as2
  3467  	}
  3468  	as2.SetInit(as2init)
  3469  	init.Append(typecheck.Stmt(as2))
  3470  
  3471  	if !r.delayResults {
  3472  		// If not delaying retvars, declare and zero initialize the
  3473  		// result variables now.
  3474  		for _, name := range retvars {
  3475  			// TODO(mdempsky): Use inlined position of name.Pos() instead?
  3476  			init.Append(ir.NewDecl(call.Pos(), ir.ODCL, name))
  3477  			ras := ir.NewAssignStmt(call.Pos(), name, nil)
  3478  			init.Append(typecheck.Stmt(ras))
  3479  		}
  3480  	}
  3481  
  3482  	// Add an inline mark just before the inlined body.
  3483  	// This mark is inline in the code so that it's a reasonable spot
  3484  	// to put a breakpoint. Not sure if that's really necessary or not
  3485  	// (in which case it could go at the end of the function instead).
  3486  	// Note issue 28603.
  3487  	init.Append(ir.NewInlineMarkStmt(call.Pos().WithIsStmt(), int64(r.inlTreeIndex)))
  3488  
  3489  	ir.WithFunc(r.curfn, func() {
  3490  		if !r.syntheticBody(call.Pos()) {
  3491  			assert(r.Bool()) // have body
  3492  
  3493  			r.curfn.Body = r.stmts()
  3494  			r.curfn.Endlineno = r.pos()
  3495  		}
  3496  
  3497  		// TODO(mdempsky): This shouldn't be necessary. Inlining might
  3498  		// read in new function/method declarations, which could
  3499  		// potentially be recursively inlined themselves; but we shouldn't
  3500  		// need to read in the non-inlined bodies for the declarations
  3501  		// themselves. But currently it's an easy fix to #50552.
  3502  		readBodies(typecheck.Target, true)
  3503  
  3504  		// Replace any "return" statements within the function body.
  3505  		var edit func(ir.Node) ir.Node
  3506  		edit = func(n ir.Node) ir.Node {
  3507  			if ret, ok := n.(*ir.ReturnStmt); ok {
  3508  				n = typecheck.Stmt(r.inlReturn(ret, retvars))
  3509  			}
  3510  			ir.EditChildren(n, edit)
  3511  			return n
  3512  		}
  3513  		edit(r.curfn)
  3514  	})
  3515  
  3516  	body := ir.Nodes(r.curfn.Body)
  3517  
  3518  	// Reparent any declarations into the caller function.
  3519  	for _, name := range r.curfn.Dcl {
  3520  		name.Curfn = callerfn
  3521  
  3522  		if name.Class != ir.PAUTO {
  3523  			name.SetPos(r.inlPos(name.Pos()))
  3524  			name.SetInlFormal(true)
  3525  			name.Class = ir.PAUTO
  3526  		} else {
  3527  			name.SetInlLocal(true)
  3528  		}
  3529  	}
  3530  	callerfn.Dcl = append(callerfn.Dcl, r.curfn.Dcl...)
  3531  
  3532  	body.Append(ir.NewLabelStmt(call.Pos(), r.retlabel))
  3533  
  3534  	res := ir.NewInlinedCallExpr(call.Pos(), body, ir.ToNodes(retvars))
  3535  	res.SetInit(init)
  3536  	res.SetType(call.Type())
  3537  	res.SetTypecheck(1)
  3538  
  3539  	// Inlining shouldn't add any functions to todoBodies.
  3540  	assert(len(todoBodies) == 0)
  3541  
  3542  	return res
  3543  }
  3544  
  3545  // inlReturn returns a statement that can substitute for the given
  3546  // return statement when inlining.
  3547  func (r *reader) inlReturn(ret *ir.ReturnStmt, retvars []*ir.Name) *ir.BlockStmt {
  3548  	pos := r.inlCall.Pos()
  3549  
  3550  	block := ir.TakeInit(ret)
  3551  
  3552  	if results := ret.Results; len(results) != 0 {
  3553  		assert(len(retvars) == len(results))
  3554  
  3555  		as2 := ir.NewAssignListStmt(pos, ir.OAS2, ir.ToNodes(retvars), ret.Results)
  3556  
  3557  		if r.delayResults {
  3558  			for _, name := range retvars {
  3559  				// TODO(mdempsky): Use inlined position of name.Pos() instead?
  3560  				block.Append(ir.NewDecl(pos, ir.ODCL, name))
  3561  				name.Defn = as2
  3562  			}
  3563  		}
  3564  
  3565  		block.Append(as2)
  3566  	}
  3567  
  3568  	block.Append(ir.NewBranchStmt(pos, ir.OGOTO, r.retlabel))
  3569  	return ir.NewBlockStmt(pos, block)
  3570  }
  3571  
  3572  // expandInline reads in an extra copy of IR to populate
  3573  // fn.Inl.Dcl.
  3574  func expandInline(fn *ir.Func, pri pkgReaderIndex) {
  3575  	// TODO(mdempsky): Remove this function. It's currently needed by
  3576  	// dwarfgen/dwarf.go:preInliningDcls, which requires fn.Inl.Dcl to
  3577  	// create abstract function DIEs. But we should be able to provide it
  3578  	// with the same information some other way.
  3579  
  3580  	fndcls := len(fn.Dcl)
  3581  	topdcls := len(typecheck.Target.Funcs)
  3582  
  3583  	tmpfn := ir.NewFunc(fn.Pos(), fn.Nname.Pos(), fn.Sym(), fn.Type())
  3584  	tmpfn.ClosureVars = fn.ClosureVars
  3585  
  3586  	{
  3587  		r := pri.asReader(pkgbits.RelocBody, pkgbits.SyncFuncBody)
  3588  
  3589  		// Don't change parameter's Sym/Nname fields.
  3590  		r.funarghack = true
  3591  
  3592  		r.funcBody(tmpfn)
  3593  	}
  3594  
  3595  	// Move tmpfn's params to fn.Inl.Dcl, and reparent under fn.
  3596  	for _, name := range tmpfn.Dcl {
  3597  		name.Curfn = fn
  3598  	}
  3599  	fn.Inl.Dcl = tmpfn.Dcl
  3600  	fn.Inl.HaveDcl = true
  3601  
  3602  	// Double check that we didn't change fn.Dcl by accident.
  3603  	assert(fndcls == len(fn.Dcl))
  3604  
  3605  	// typecheck.Stmts may have added function literals to
  3606  	// typecheck.Target.Decls. Remove them again so we don't risk trying
  3607  	// to compile them multiple times.
  3608  	typecheck.Target.Funcs = typecheck.Target.Funcs[:topdcls]
  3609  }
  3610  
  3611  // usedLocals returns a set of local variables that are used within body.
  3612  func usedLocals(body []ir.Node) ir.NameSet {
  3613  	var used ir.NameSet
  3614  	ir.VisitList(body, func(n ir.Node) {
  3615  		if n, ok := n.(*ir.Name); ok && n.Op() == ir.ONAME && n.Class == ir.PAUTO {
  3616  			used.Add(n)
  3617  		}
  3618  	})
  3619  	return used
  3620  }
  3621  
  3622  // @@@ Method wrappers
  3623  
  3624  // needWrapperTypes lists types for which we may need to generate
  3625  // method wrappers.
  3626  var needWrapperTypes []*types.Type
  3627  
  3628  // haveWrapperTypes lists types for which we know we already have
  3629  // method wrappers, because we found the type in an imported package.
  3630  var haveWrapperTypes []*types.Type
  3631  
  3632  // needMethodValueWrappers lists methods for which we may need to
  3633  // generate method value wrappers.
  3634  var needMethodValueWrappers []methodValueWrapper
  3635  
  3636  // haveMethodValueWrappers lists methods for which we know we already
  3637  // have method value wrappers, because we found it in an imported
  3638  // package.
  3639  var haveMethodValueWrappers []methodValueWrapper
  3640  
  3641  type methodValueWrapper struct {
  3642  	rcvr   *types.Type
  3643  	method *types.Field
  3644  }
  3645  
  3646  func (r *reader) needWrapper(typ *types.Type) {
  3647  	if typ.IsPtr() {
  3648  		return
  3649  	}
  3650  
  3651  	// If a type was found in an imported package, then we can assume
  3652  	// that package (or one of its transitive dependencies) already
  3653  	// generated method wrappers for it.
  3654  	if r.importedDef() {
  3655  		haveWrapperTypes = append(haveWrapperTypes, typ)
  3656  	} else {
  3657  		needWrapperTypes = append(needWrapperTypes, typ)
  3658  	}
  3659  }
  3660  
  3661  // importedDef reports whether r is reading from an imported and
  3662  // non-generic element.
  3663  //
  3664  // If a type was found in an imported package, then we can assume that
  3665  // package (or one of its transitive dependencies) already generated
  3666  // method wrappers for it.
  3667  //
  3668  // Exception: If we're instantiating an imported generic type or
  3669  // function, we might be instantiating it with type arguments not
  3670  // previously seen before.
  3671  //
  3672  // TODO(mdempsky): Distinguish when a generic function or type was
  3673  // instantiated in an imported package so that we can add types to
  3674  // haveWrapperTypes instead.
  3675  func (r *reader) importedDef() bool {
  3676  	return r.p != localPkgReader && !r.hasTypeParams()
  3677  }
  3678  
  3679  func MakeWrappers(target *ir.Package) {
  3680  	// always generate a wrapper for error.Error (#29304)
  3681  	needWrapperTypes = append(needWrapperTypes, types.ErrorType)
  3682  
  3683  	seen := make(map[string]*types.Type)
  3684  
  3685  	for _, typ := range haveWrapperTypes {
  3686  		wrapType(typ, target, seen, false)
  3687  	}
  3688  	haveWrapperTypes = nil
  3689  
  3690  	for _, typ := range needWrapperTypes {
  3691  		wrapType(typ, target, seen, true)
  3692  	}
  3693  	needWrapperTypes = nil
  3694  
  3695  	for _, wrapper := range haveMethodValueWrappers {
  3696  		wrapMethodValue(wrapper.rcvr, wrapper.method, target, false)
  3697  	}
  3698  	haveMethodValueWrappers = nil
  3699  
  3700  	for _, wrapper := range needMethodValueWrappers {
  3701  		wrapMethodValue(wrapper.rcvr, wrapper.method, target, true)
  3702  	}
  3703  	needMethodValueWrappers = nil
  3704  }
  3705  
  3706  func wrapType(typ *types.Type, target *ir.Package, seen map[string]*types.Type, needed bool) {
  3707  	key := typ.LinkString()
  3708  	if prev := seen[key]; prev != nil {
  3709  		if !types.Identical(typ, prev) {
  3710  			base.Fatalf("collision: types %v and %v have link string %q", typ, prev, key)
  3711  		}
  3712  		return
  3713  	}
  3714  	seen[key] = typ
  3715  
  3716  	if !needed {
  3717  		// Only called to add to 'seen'.
  3718  		return
  3719  	}
  3720  
  3721  	if !typ.IsInterface() {
  3722  		typecheck.CalcMethods(typ)
  3723  	}
  3724  	for _, meth := range typ.AllMethods() {
  3725  		if meth.Sym.IsBlank() || !meth.IsMethod() {
  3726  			base.FatalfAt(meth.Pos, "invalid method: %v", meth)
  3727  		}
  3728  
  3729  		methodWrapper(0, typ, meth, target)
  3730  
  3731  		// For non-interface types, we also want *T wrappers.
  3732  		if !typ.IsInterface() {
  3733  			methodWrapper(1, typ, meth, target)
  3734  
  3735  			// For not-in-heap types, *T is a scalar, not pointer shaped,
  3736  			// so the interface wrappers use **T.
  3737  			if typ.NotInHeap() {
  3738  				methodWrapper(2, typ, meth, target)
  3739  			}
  3740  		}
  3741  	}
  3742  }
  3743  
  3744  func methodWrapper(derefs int, tbase *types.Type, method *types.Field, target *ir.Package) {
  3745  	wrapper := tbase
  3746  	for i := 0; i < derefs; i++ {
  3747  		wrapper = types.NewPtr(wrapper)
  3748  	}
  3749  
  3750  	sym := ir.MethodSym(wrapper, method.Sym)
  3751  	base.Assertf(!sym.Siggen(), "already generated wrapper %v", sym)
  3752  	sym.SetSiggen(true)
  3753  
  3754  	wrappee := method.Type.Recv().Type
  3755  	if types.Identical(wrapper, wrappee) ||
  3756  		!types.IsMethodApplicable(wrapper, method) ||
  3757  		!reflectdata.NeedEmit(tbase) {
  3758  		return
  3759  	}
  3760  
  3761  	// TODO(mdempsky): Use method.Pos instead?
  3762  	pos := base.AutogeneratedPos
  3763  
  3764  	fn := newWrapperFunc(pos, sym, wrapper, method)
  3765  
  3766  	var recv ir.Node = fn.Nname.Type().Recv().Nname.(*ir.Name)
  3767  
  3768  	// For simple *T wrappers around T methods, panicwrap produces a
  3769  	// nicer panic message.
  3770  	if wrapper.IsPtr() && types.Identical(wrapper.Elem(), wrappee) {
  3771  		cond := ir.NewBinaryExpr(pos, ir.OEQ, recv, types.BuiltinPkg.Lookup("nil").Def.(ir.Node))
  3772  		then := []ir.Node{ir.NewCallExpr(pos, ir.OCALL, typecheck.LookupRuntime("panicwrap"), nil)}
  3773  		fn.Body.Append(ir.NewIfStmt(pos, cond, then, nil))
  3774  	}
  3775  
  3776  	// typecheck will add one implicit deref, if necessary,
  3777  	// but not-in-heap types require more for their **T wrappers.
  3778  	for i := 1; i < derefs; i++ {
  3779  		recv = Implicit(ir.NewStarExpr(pos, recv))
  3780  	}
  3781  
  3782  	addTailCall(pos, fn, recv, method)
  3783  
  3784  	finishWrapperFunc(fn, target)
  3785  }
  3786  
  3787  func wrapMethodValue(recvType *types.Type, method *types.Field, target *ir.Package, needed bool) {
  3788  	sym := ir.MethodSymSuffix(recvType, method.Sym, "-fm")
  3789  	if sym.Uniq() {
  3790  		return
  3791  	}
  3792  	sym.SetUniq(true)
  3793  
  3794  	// TODO(mdempsky): Use method.Pos instead?
  3795  	pos := base.AutogeneratedPos
  3796  
  3797  	fn := newWrapperFunc(pos, sym, nil, method)
  3798  	sym.Def = fn.Nname
  3799  
  3800  	// Declare and initialize variable holding receiver.
  3801  	recv := ir.NewHiddenParam(pos, fn, typecheck.Lookup(".this"), recvType)
  3802  
  3803  	if !needed {
  3804  		return
  3805  	}
  3806  
  3807  	addTailCall(pos, fn, recv, method)
  3808  
  3809  	finishWrapperFunc(fn, target)
  3810  }
  3811  
  3812  func newWrapperFunc(pos src.XPos, sym *types.Sym, wrapper *types.Type, method *types.Field) *ir.Func {
  3813  	sig := newWrapperType(wrapper, method)
  3814  
  3815  	fn := ir.NewFunc(pos, pos, sym, sig)
  3816  	fn.DeclareParams(true)
  3817  	fn.SetDupok(true) // TODO(mdempsky): Leave unset for local, non-generic wrappers?
  3818  
  3819  	return fn
  3820  }
  3821  
  3822  func finishWrapperFunc(fn *ir.Func, target *ir.Package) {
  3823  	ir.WithFunc(fn, func() {
  3824  		typecheck.Stmts(fn.Body)
  3825  	})
  3826  
  3827  	// We generate wrappers after the global inlining pass,
  3828  	// so we're responsible for applying inlining ourselves here.
  3829  	// TODO(prattmic): plumb PGO.
  3830  	interleaved.DevirtualizeAndInlineFunc(fn, nil)
  3831  
  3832  	// The body of wrapper function after inlining may reveal new ir.OMETHVALUE node,
  3833  	// we don't know whether wrapper function has been generated for it or not, so
  3834  	// generate one immediately here.
  3835  	//
  3836  	// Further, after CL 492017, function that construct closures is allowed to be inlined,
  3837  	// even though the closure itself can't be inline. So we also need to visit body of any
  3838  	// closure that we see when visiting body of the wrapper function.
  3839  	ir.VisitFuncAndClosures(fn, func(n ir.Node) {
  3840  		if n, ok := n.(*ir.SelectorExpr); ok && n.Op() == ir.OMETHVALUE {
  3841  			wrapMethodValue(n.X.Type(), n.Selection, target, true)
  3842  		}
  3843  	})
  3844  
  3845  	fn.Nname.Defn = fn
  3846  	target.Funcs = append(target.Funcs, fn)
  3847  }
  3848  
  3849  // newWrapperType returns a copy of the given signature type, but with
  3850  // the receiver parameter type substituted with recvType.
  3851  // If recvType is nil, newWrapperType returns a signature
  3852  // without a receiver parameter.
  3853  func newWrapperType(recvType *types.Type, method *types.Field) *types.Type {
  3854  	clone := func(params []*types.Field) []*types.Field {
  3855  		res := make([]*types.Field, len(params))
  3856  		for i, param := range params {
  3857  			res[i] = types.NewField(param.Pos, param.Sym, param.Type)
  3858  			res[i].SetIsDDD(param.IsDDD())
  3859  		}
  3860  		return res
  3861  	}
  3862  
  3863  	sig := method.Type
  3864  
  3865  	var recv *types.Field
  3866  	if recvType != nil {
  3867  		recv = types.NewField(sig.Recv().Pos, sig.Recv().Sym, recvType)
  3868  	}
  3869  	params := clone(sig.Params())
  3870  	results := clone(sig.Results())
  3871  
  3872  	return types.NewSignature(recv, params, results)
  3873  }
  3874  
  3875  func addTailCall(pos src.XPos, fn *ir.Func, recv ir.Node, method *types.Field) {
  3876  	sig := fn.Nname.Type()
  3877  	args := make([]ir.Node, sig.NumParams())
  3878  	for i, param := range sig.Params() {
  3879  		args[i] = param.Nname.(*ir.Name)
  3880  	}
  3881  
  3882  	// TODO(mdempsky): Support creating OTAILCALL, when possible. See reflectdata.methodWrapper.
  3883  	// Not urgent though, because tail calls are currently incompatible with regabi anyway.
  3884  
  3885  	fn.SetWrapper(true) // TODO(mdempsky): Leave unset for tail calls?
  3886  
  3887  	dot := typecheck.XDotMethod(pos, recv, method.Sym, true)
  3888  	call := typecheck.Call(pos, dot, args, method.Type.IsVariadic()).(*ir.CallExpr)
  3889  
  3890  	if method.Type.NumResults() == 0 {
  3891  		fn.Body.Append(call)
  3892  		return
  3893  	}
  3894  
  3895  	ret := ir.NewReturnStmt(pos, nil)
  3896  	ret.Results = []ir.Node{call}
  3897  	fn.Body.Append(ret)
  3898  }
  3899  
  3900  func setBasePos(pos src.XPos) {
  3901  	// Set the position for any error messages we might print (e.g. too large types).
  3902  	base.Pos = pos
  3903  }
  3904  
  3905  // dictParamName is the name of the synthetic dictionary parameter
  3906  // added to shaped functions.
  3907  //
  3908  // N.B., this variable name is known to Delve:
  3909  // https://github.com/go-delve/delve/blob/cb91509630529e6055be845688fd21eb89ae8714/pkg/proc/eval.go#L28
  3910  const dictParamName = typecheck.LocalDictName
  3911  
  3912  // shapeSig returns a copy of fn's signature, except adding a
  3913  // dictionary parameter and promoting the receiver parameter (if any)
  3914  // to a normal parameter.
  3915  //
  3916  // The parameter types.Fields are all copied too, so their Nname
  3917  // fields can be initialized for use by the shape function.
  3918  func shapeSig(fn *ir.Func, dict *readerDict) *types.Type {
  3919  	sig := fn.Nname.Type()
  3920  	oldRecv := sig.Recv()
  3921  
  3922  	var recv *types.Field
  3923  	if oldRecv != nil {
  3924  		recv = types.NewField(oldRecv.Pos, oldRecv.Sym, oldRecv.Type)
  3925  	}
  3926  
  3927  	params := make([]*types.Field, 1+sig.NumParams())
  3928  	params[0] = types.NewField(fn.Pos(), fn.Sym().Pkg.Lookup(dictParamName), types.NewPtr(dict.varType()))
  3929  	for i, param := range sig.Params() {
  3930  		d := types.NewField(param.Pos, param.Sym, param.Type)
  3931  		d.SetIsDDD(param.IsDDD())
  3932  		params[1+i] = d
  3933  	}
  3934  
  3935  	results := make([]*types.Field, sig.NumResults())
  3936  	for i, result := range sig.Results() {
  3937  		results[i] = types.NewField(result.Pos, result.Sym, result.Type)
  3938  	}
  3939  
  3940  	return types.NewSignature(recv, params, results)
  3941  }
  3942  

View as plain text