...

Source file src/cmd/compile/internal/ssa/prove.go

Documentation: cmd/compile/internal/ssa

     1  // Copyright 2016 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"cmd/internal/src"
     9  	"fmt"
    10  	"math"
    11  )
    12  
    13  type branch int
    14  
    15  const (
    16  	unknown branch = iota
    17  	positive
    18  	negative
    19  	// The outedges from a jump table are jumpTable0,
    20  	// jumpTable0+1, jumpTable0+2, etc. There could be an
    21  	// arbitrary number so we can't list them all here.
    22  	jumpTable0
    23  )
    24  
    25  // relation represents the set of possible relations between
    26  // pairs of variables (v, w). Without a priori knowledge the
    27  // mask is lt | eq | gt meaning v can be less than, equal to or
    28  // greater than w. When the execution path branches on the condition
    29  // `v op w` the set of relations is updated to exclude any
    30  // relation not possible due to `v op w` being true (or false).
    31  //
    32  // E.g.
    33  //
    34  //	r := relation(...)
    35  //
    36  //	if v < w {
    37  //	  newR := r & lt
    38  //	}
    39  //	if v >= w {
    40  //	  newR := r & (eq|gt)
    41  //	}
    42  //	if v != w {
    43  //	  newR := r & (lt|gt)
    44  //	}
    45  type relation uint
    46  
    47  const (
    48  	lt relation = 1 << iota
    49  	eq
    50  	gt
    51  )
    52  
    53  var relationStrings = [...]string{
    54  	0: "none", lt: "<", eq: "==", lt | eq: "<=",
    55  	gt: ">", gt | lt: "!=", gt | eq: ">=", gt | eq | lt: "any",
    56  }
    57  
    58  func (r relation) String() string {
    59  	if r < relation(len(relationStrings)) {
    60  		return relationStrings[r]
    61  	}
    62  	return fmt.Sprintf("relation(%d)", uint(r))
    63  }
    64  
    65  // domain represents the domain of a variable pair in which a set
    66  // of relations is known. For example, relations learned for unsigned
    67  // pairs cannot be transferred to signed pairs because the same bit
    68  // representation can mean something else.
    69  type domain uint
    70  
    71  const (
    72  	signed domain = 1 << iota
    73  	unsigned
    74  	pointer
    75  	boolean
    76  )
    77  
    78  var domainStrings = [...]string{
    79  	"signed", "unsigned", "pointer", "boolean",
    80  }
    81  
    82  func (d domain) String() string {
    83  	s := ""
    84  	for i, ds := range domainStrings {
    85  		if d&(1<<uint(i)) != 0 {
    86  			if len(s) != 0 {
    87  				s += "|"
    88  			}
    89  			s += ds
    90  			d &^= 1 << uint(i)
    91  		}
    92  	}
    93  	if d != 0 {
    94  		if len(s) != 0 {
    95  			s += "|"
    96  		}
    97  		s += fmt.Sprintf("0x%x", uint(d))
    98  	}
    99  	return s
   100  }
   101  
   102  type pair struct {
   103  	// a pair of values, ordered by ID.
   104  	// v can be nil, to mean the zero value.
   105  	// for booleans the zero value (v == nil) is false.
   106  	v, w *Value
   107  	d    domain
   108  }
   109  
   110  // fact is a pair plus a relation for that pair.
   111  type fact struct {
   112  	p pair
   113  	r relation
   114  }
   115  
   116  // a limit records known upper and lower bounds for a value.
   117  type limit struct {
   118  	min, max   int64  // min <= value <= max, signed
   119  	umin, umax uint64 // umin <= value <= umax, unsigned
   120  }
   121  
   122  func (l limit) String() string {
   123  	return fmt.Sprintf("sm,SM,um,UM=%d,%d,%d,%d", l.min, l.max, l.umin, l.umax)
   124  }
   125  
   126  func (l limit) intersect(l2 limit) limit {
   127  	if l.min < l2.min {
   128  		l.min = l2.min
   129  	}
   130  	if l.umin < l2.umin {
   131  		l.umin = l2.umin
   132  	}
   133  	if l.max > l2.max {
   134  		l.max = l2.max
   135  	}
   136  	if l.umax > l2.umax {
   137  		l.umax = l2.umax
   138  	}
   139  	return l
   140  }
   141  
   142  var noLimit = limit{math.MinInt64, math.MaxInt64, 0, math.MaxUint64}
   143  
   144  // a limitFact is a limit known for a particular value.
   145  type limitFact struct {
   146  	vid   ID
   147  	limit limit
   148  }
   149  
   150  // factsTable keeps track of relations between pairs of values.
   151  //
   152  // The fact table logic is sound, but incomplete. Outside of a few
   153  // special cases, it performs no deduction or arithmetic. While there
   154  // are known decision procedures for this, the ad hoc approach taken
   155  // by the facts table is effective for real code while remaining very
   156  // efficient.
   157  type factsTable struct {
   158  	// unsat is true if facts contains a contradiction.
   159  	//
   160  	// Note that the factsTable logic is incomplete, so if unsat
   161  	// is false, the assertions in factsTable could be satisfiable
   162  	// *or* unsatisfiable.
   163  	unsat      bool // true if facts contains a contradiction
   164  	unsatDepth int  // number of unsat checkpoints
   165  
   166  	facts map[pair]relation // current known set of relation
   167  	stack []fact            // previous sets of relations
   168  
   169  	// order* is a couple of partial order sets that record information
   170  	// about relations between SSA values in the signed and unsigned
   171  	// domain.
   172  	orderS *poset
   173  	orderU *poset
   174  
   175  	// known lower and upper bounds on individual values.
   176  	limits     map[ID]limit
   177  	limitStack []limitFact // previous entries
   178  
   179  	// For each slice s, a map from s to a len(s)/cap(s) value (if any)
   180  	// TODO: check if there are cases that matter where we have
   181  	// more than one len(s) for a slice. We could keep a list if necessary.
   182  	lens map[ID]*Value
   183  	caps map[ID]*Value
   184  
   185  	// zero is a zero-valued constant
   186  	zero *Value
   187  }
   188  
   189  // checkpointFact is an invalid value used for checkpointing
   190  // and restoring factsTable.
   191  var checkpointFact = fact{}
   192  var checkpointBound = limitFact{}
   193  
   194  func newFactsTable(f *Func) *factsTable {
   195  	ft := &factsTable{}
   196  	ft.orderS = f.newPoset()
   197  	ft.orderU = f.newPoset()
   198  	ft.orderS.SetUnsigned(false)
   199  	ft.orderU.SetUnsigned(true)
   200  	ft.facts = make(map[pair]relation)
   201  	ft.stack = make([]fact, 4)
   202  	ft.limits = make(map[ID]limit)
   203  	ft.limitStack = make([]limitFact, 4)
   204  	ft.zero = f.ConstInt64(f.Config.Types.Int64, 0)
   205  	return ft
   206  }
   207  
   208  // update updates the set of relations between v and w in domain d
   209  // restricting it to r.
   210  func (ft *factsTable) update(parent *Block, v, w *Value, d domain, r relation) {
   211  	if parent.Func.pass.debug > 2 {
   212  		parent.Func.Warnl(parent.Pos, "parent=%s, update %s %s %s", parent, v, w, r)
   213  	}
   214  	// No need to do anything else if we already found unsat.
   215  	if ft.unsat {
   216  		return
   217  	}
   218  
   219  	// Self-fact. It's wasteful to register it into the facts
   220  	// table, so just note whether it's satisfiable
   221  	if v == w {
   222  		if r&eq == 0 {
   223  			ft.unsat = true
   224  		}
   225  		return
   226  	}
   227  
   228  	if d == signed || d == unsigned {
   229  		var ok bool
   230  		order := ft.orderS
   231  		if d == unsigned {
   232  			order = ft.orderU
   233  		}
   234  		switch r {
   235  		case lt:
   236  			ok = order.SetOrder(v, w)
   237  		case gt:
   238  			ok = order.SetOrder(w, v)
   239  		case lt | eq:
   240  			ok = order.SetOrderOrEqual(v, w)
   241  		case gt | eq:
   242  			ok = order.SetOrderOrEqual(w, v)
   243  		case eq:
   244  			ok = order.SetEqual(v, w)
   245  		case lt | gt:
   246  			ok = order.SetNonEqual(v, w)
   247  		default:
   248  			panic("unknown relation")
   249  		}
   250  		if !ok {
   251  			if parent.Func.pass.debug > 2 {
   252  				parent.Func.Warnl(parent.Pos, "unsat %s %s %s", v, w, r)
   253  			}
   254  			ft.unsat = true
   255  			return
   256  		}
   257  	} else {
   258  		if lessByID(w, v) {
   259  			v, w = w, v
   260  			r = reverseBits[r]
   261  		}
   262  
   263  		p := pair{v, w, d}
   264  		oldR, ok := ft.facts[p]
   265  		if !ok {
   266  			if v == w {
   267  				oldR = eq
   268  			} else {
   269  				oldR = lt | eq | gt
   270  			}
   271  		}
   272  		// No changes compared to information already in facts table.
   273  		if oldR == r {
   274  			return
   275  		}
   276  		ft.stack = append(ft.stack, fact{p, oldR})
   277  		ft.facts[p] = oldR & r
   278  		// If this relation is not satisfiable, mark it and exit right away
   279  		if oldR&r == 0 {
   280  			if parent.Func.pass.debug > 2 {
   281  				parent.Func.Warnl(parent.Pos, "unsat %s %s %s", v, w, r)
   282  			}
   283  			ft.unsat = true
   284  			return
   285  		}
   286  	}
   287  
   288  	// Extract bounds when comparing against constants
   289  	if v.isGenericIntConst() {
   290  		v, w = w, v
   291  		r = reverseBits[r]
   292  	}
   293  	if v != nil && w.isGenericIntConst() {
   294  		// Note: all the +1/-1 below could overflow/underflow. Either will
   295  		// still generate correct results, it will just lead to imprecision.
   296  		// In fact if there is overflow/underflow, the corresponding
   297  		// code is unreachable because the known range is outside the range
   298  		// of the value's type.
   299  		old, ok := ft.limits[v.ID]
   300  		if !ok {
   301  			old = noLimit
   302  			if v.isGenericIntConst() {
   303  				switch d {
   304  				case signed:
   305  					old.min, old.max = v.AuxInt, v.AuxInt
   306  					if v.AuxInt >= 0 {
   307  						old.umin, old.umax = uint64(v.AuxInt), uint64(v.AuxInt)
   308  					}
   309  				case unsigned:
   310  					old.umin = v.AuxUnsigned()
   311  					old.umax = old.umin
   312  					if int64(old.umin) >= 0 {
   313  						old.min, old.max = int64(old.umin), int64(old.umin)
   314  					}
   315  				}
   316  			}
   317  		}
   318  		lim := noLimit
   319  		switch d {
   320  		case signed:
   321  			c := w.AuxInt
   322  			switch r {
   323  			case lt:
   324  				lim.max = c - 1
   325  			case lt | eq:
   326  				lim.max = c
   327  			case gt | eq:
   328  				lim.min = c
   329  			case gt:
   330  				lim.min = c + 1
   331  			case lt | gt:
   332  				lim = old
   333  				if c == lim.min {
   334  					lim.min++
   335  				}
   336  				if c == lim.max {
   337  					lim.max--
   338  				}
   339  			case eq:
   340  				lim.min = c
   341  				lim.max = c
   342  			}
   343  			if lim.min >= 0 {
   344  				// int(x) >= 0 && int(x) >= N  ⇒  uint(x) >= N
   345  				lim.umin = uint64(lim.min)
   346  			}
   347  			if lim.max != noLimit.max && old.min >= 0 && lim.max >= 0 {
   348  				// 0 <= int(x) <= N  ⇒  0 <= uint(x) <= N
   349  				// This is for a max update, so the lower bound
   350  				// comes from what we already know (old).
   351  				lim.umax = uint64(lim.max)
   352  			}
   353  		case unsigned:
   354  			uc := w.AuxUnsigned()
   355  			switch r {
   356  			case lt:
   357  				lim.umax = uc - 1
   358  			case lt | eq:
   359  				lim.umax = uc
   360  			case gt | eq:
   361  				lim.umin = uc
   362  			case gt:
   363  				lim.umin = uc + 1
   364  			case lt | gt:
   365  				lim = old
   366  				if uc == lim.umin {
   367  					lim.umin++
   368  				}
   369  				if uc == lim.umax {
   370  					lim.umax--
   371  				}
   372  			case eq:
   373  				lim.umin = uc
   374  				lim.umax = uc
   375  			}
   376  			// We could use the contrapositives of the
   377  			// signed implications to derive signed facts,
   378  			// but it turns out not to matter.
   379  		}
   380  		ft.limitStack = append(ft.limitStack, limitFact{v.ID, old})
   381  		lim = old.intersect(lim)
   382  		ft.limits[v.ID] = lim
   383  		if v.Block.Func.pass.debug > 2 {
   384  			v.Block.Func.Warnl(parent.Pos, "parent=%s, new limits %s %s %s %s", parent, v, w, r, lim.String())
   385  		}
   386  		if lim.min > lim.max || lim.umin > lim.umax {
   387  			ft.unsat = true
   388  			return
   389  		}
   390  	}
   391  
   392  	// Derived facts below here are only about numbers.
   393  	if d != signed && d != unsigned {
   394  		return
   395  	}
   396  
   397  	// Additional facts we know given the relationship between len and cap.
   398  	//
   399  	// TODO: Since prove now derives transitive relations, it
   400  	// should be sufficient to learn that len(w) <= cap(w) at the
   401  	// beginning of prove where we look for all len/cap ops.
   402  	if v.Op == OpSliceLen && r&lt == 0 && ft.caps[v.Args[0].ID] != nil {
   403  		// len(s) > w implies cap(s) > w
   404  		// len(s) >= w implies cap(s) >= w
   405  		// len(s) == w implies cap(s) >= w
   406  		ft.update(parent, ft.caps[v.Args[0].ID], w, d, r|gt)
   407  	}
   408  	if w.Op == OpSliceLen && r&gt == 0 && ft.caps[w.Args[0].ID] != nil {
   409  		// same, length on the RHS.
   410  		ft.update(parent, v, ft.caps[w.Args[0].ID], d, r|lt)
   411  	}
   412  	if v.Op == OpSliceCap && r&gt == 0 && ft.lens[v.Args[0].ID] != nil {
   413  		// cap(s) < w implies len(s) < w
   414  		// cap(s) <= w implies len(s) <= w
   415  		// cap(s) == w implies len(s) <= w
   416  		ft.update(parent, ft.lens[v.Args[0].ID], w, d, r|lt)
   417  	}
   418  	if w.Op == OpSliceCap && r&lt == 0 && ft.lens[w.Args[0].ID] != nil {
   419  		// same, capacity on the RHS.
   420  		ft.update(parent, v, ft.lens[w.Args[0].ID], d, r|gt)
   421  	}
   422  
   423  	// Process fence-post implications.
   424  	//
   425  	// First, make the condition > or >=.
   426  	if r == lt || r == lt|eq {
   427  		v, w = w, v
   428  		r = reverseBits[r]
   429  	}
   430  	switch r {
   431  	case gt:
   432  		if x, delta := isConstDelta(v); x != nil && delta == 1 {
   433  			// x+1 > w  ⇒  x >= w
   434  			//
   435  			// This is useful for eliminating the
   436  			// growslice branch of append.
   437  			ft.update(parent, x, w, d, gt|eq)
   438  		} else if x, delta := isConstDelta(w); x != nil && delta == -1 {
   439  			// v > x-1  ⇒  v >= x
   440  			ft.update(parent, v, x, d, gt|eq)
   441  		}
   442  	case gt | eq:
   443  		if x, delta := isConstDelta(v); x != nil && delta == -1 {
   444  			// x-1 >= w && x > min  ⇒  x > w
   445  			//
   446  			// Useful for i > 0; s[i-1].
   447  			lim, ok := ft.limits[x.ID]
   448  			if ok && ((d == signed && lim.min > opMin[v.Op]) || (d == unsigned && lim.umin > 0)) {
   449  				ft.update(parent, x, w, d, gt)
   450  			}
   451  		} else if x, delta := isConstDelta(w); x != nil && delta == 1 {
   452  			// v >= x+1 && x < max  ⇒  v > x
   453  			lim, ok := ft.limits[x.ID]
   454  			if ok && ((d == signed && lim.max < opMax[w.Op]) || (d == unsigned && lim.umax < opUMax[w.Op])) {
   455  				ft.update(parent, v, x, d, gt)
   456  			}
   457  		}
   458  	}
   459  
   460  	// Process: x+delta > w (with delta constant)
   461  	// Only signed domain for now (useful for accesses to slices in loops).
   462  	if r == gt || r == gt|eq {
   463  		if x, delta := isConstDelta(v); x != nil && d == signed {
   464  			if parent.Func.pass.debug > 1 {
   465  				parent.Func.Warnl(parent.Pos, "x+d %s w; x:%v %v delta:%v w:%v d:%v", r, x, parent.String(), delta, w.AuxInt, d)
   466  			}
   467  			underflow := true
   468  			if l, has := ft.limits[x.ID]; has && delta < 0 {
   469  				if (x.Type.Size() == 8 && l.min >= math.MinInt64-delta) ||
   470  					(x.Type.Size() == 4 && l.min >= math.MinInt32-delta) {
   471  					underflow = false
   472  				}
   473  			}
   474  			if delta < 0 && !underflow {
   475  				// If delta < 0 and x+delta cannot underflow then x > x+delta (that is, x > v)
   476  				ft.update(parent, x, v, signed, gt)
   477  			}
   478  			if !w.isGenericIntConst() {
   479  				// If we know that x+delta > w but w is not constant, we can derive:
   480  				//    if delta < 0 and x+delta cannot underflow, then x > w
   481  				// This is useful for loops with bounds "len(slice)-K" (delta = -K)
   482  				if delta < 0 && !underflow {
   483  					ft.update(parent, x, w, signed, r)
   484  				}
   485  			} else {
   486  				// With w,delta constants, we want to derive: x+delta > w  ⇒  x > w-delta
   487  				//
   488  				// We compute (using integers of the correct size):
   489  				//    min = w - delta
   490  				//    max = MaxInt - delta
   491  				//
   492  				// And we prove that:
   493  				//    if min<max: min < x AND x <= max
   494  				//    if min>max: min < x OR  x <= max
   495  				//
   496  				// This is always correct, even in case of overflow.
   497  				//
   498  				// If the initial fact is x+delta >= w instead, the derived conditions are:
   499  				//    if min<max: min <= x AND x <= max
   500  				//    if min>max: min <= x OR  x <= max
   501  				//
   502  				// Notice the conditions for max are still <=, as they handle overflows.
   503  				var min, max int64
   504  				var vmin, vmax *Value
   505  				switch x.Type.Size() {
   506  				case 8:
   507  					min = w.AuxInt - delta
   508  					max = int64(^uint64(0)>>1) - delta
   509  
   510  					vmin = parent.NewValue0I(parent.Pos, OpConst64, parent.Func.Config.Types.Int64, min)
   511  					vmax = parent.NewValue0I(parent.Pos, OpConst64, parent.Func.Config.Types.Int64, max)
   512  
   513  				case 4:
   514  					min = int64(int32(w.AuxInt) - int32(delta))
   515  					max = int64(int32(^uint32(0)>>1) - int32(delta))
   516  
   517  					vmin = parent.NewValue0I(parent.Pos, OpConst32, parent.Func.Config.Types.Int32, min)
   518  					vmax = parent.NewValue0I(parent.Pos, OpConst32, parent.Func.Config.Types.Int32, max)
   519  
   520  				case 2:
   521  					min = int64(int16(w.AuxInt) - int16(delta))
   522  					max = int64(int16(^uint16(0)>>1) - int16(delta))
   523  
   524  					vmin = parent.NewValue0I(parent.Pos, OpConst16, parent.Func.Config.Types.Int16, min)
   525  					vmax = parent.NewValue0I(parent.Pos, OpConst16, parent.Func.Config.Types.Int16, max)
   526  
   527  				case 1:
   528  					min = int64(int8(w.AuxInt) - int8(delta))
   529  					max = int64(int8(^uint8(0)>>1) - int8(delta))
   530  
   531  					vmin = parent.NewValue0I(parent.Pos, OpConst8, parent.Func.Config.Types.Int8, min)
   532  					vmax = parent.NewValue0I(parent.Pos, OpConst8, parent.Func.Config.Types.Int8, max)
   533  
   534  				default:
   535  					panic("unimplemented")
   536  				}
   537  
   538  				if min < max {
   539  					// Record that x > min and max >= x
   540  					ft.update(parent, x, vmin, d, r)
   541  					ft.update(parent, vmax, x, d, r|eq)
   542  				} else {
   543  					// We know that either x>min OR x<=max. factsTable cannot record OR conditions,
   544  					// so let's see if we can already prove that one of them is false, in which case
   545  					// the other must be true
   546  					if l, has := ft.limits[x.ID]; has {
   547  						if l.max <= min {
   548  							if r&eq == 0 || l.max < min {
   549  								// x>min (x>=min) is impossible, so it must be x<=max
   550  								ft.update(parent, vmax, x, d, r|eq)
   551  							}
   552  						} else if l.min > max {
   553  							// x<=max is impossible, so it must be x>min
   554  							ft.update(parent, x, vmin, d, r)
   555  						}
   556  					}
   557  				}
   558  			}
   559  		}
   560  	}
   561  
   562  	// Look through value-preserving extensions.
   563  	// If the domain is appropriate for the pre-extension Type,
   564  	// repeat the update with the pre-extension Value.
   565  	if isCleanExt(v) {
   566  		switch {
   567  		case d == signed && v.Args[0].Type.IsSigned():
   568  			fallthrough
   569  		case d == unsigned && !v.Args[0].Type.IsSigned():
   570  			ft.update(parent, v.Args[0], w, d, r)
   571  		}
   572  	}
   573  	if isCleanExt(w) {
   574  		switch {
   575  		case d == signed && w.Args[0].Type.IsSigned():
   576  			fallthrough
   577  		case d == unsigned && !w.Args[0].Type.IsSigned():
   578  			ft.update(parent, v, w.Args[0], d, r)
   579  		}
   580  	}
   581  }
   582  
   583  var opMin = map[Op]int64{
   584  	OpAdd64: math.MinInt64, OpSub64: math.MinInt64,
   585  	OpAdd32: math.MinInt32, OpSub32: math.MinInt32,
   586  }
   587  
   588  var opMax = map[Op]int64{
   589  	OpAdd64: math.MaxInt64, OpSub64: math.MaxInt64,
   590  	OpAdd32: math.MaxInt32, OpSub32: math.MaxInt32,
   591  }
   592  
   593  var opUMax = map[Op]uint64{
   594  	OpAdd64: math.MaxUint64, OpSub64: math.MaxUint64,
   595  	OpAdd32: math.MaxUint32, OpSub32: math.MaxUint32,
   596  }
   597  
   598  // isNonNegative reports whether v is known to be non-negative.
   599  func (ft *factsTable) isNonNegative(v *Value) bool {
   600  	if isNonNegative(v) {
   601  		return true
   602  	}
   603  
   604  	var max int64
   605  	switch v.Type.Size() {
   606  	case 1:
   607  		max = math.MaxInt8
   608  	case 2:
   609  		max = math.MaxInt16
   610  	case 4:
   611  		max = math.MaxInt32
   612  	case 8:
   613  		max = math.MaxInt64
   614  	default:
   615  		panic("unexpected integer size")
   616  	}
   617  
   618  	// Check if the recorded limits can prove that the value is positive
   619  
   620  	if l, has := ft.limits[v.ID]; has && (l.min >= 0 || l.umax <= uint64(max)) {
   621  		return true
   622  	}
   623  
   624  	// Check if v = x+delta, and we can use x's limits to prove that it's positive
   625  	if x, delta := isConstDelta(v); x != nil {
   626  		if l, has := ft.limits[x.ID]; has {
   627  			if delta > 0 && l.min >= -delta && l.max <= max-delta {
   628  				return true
   629  			}
   630  			if delta < 0 && l.min >= -delta {
   631  				return true
   632  			}
   633  		}
   634  	}
   635  
   636  	// Check if v is a value-preserving extension of a non-negative value.
   637  	if isCleanExt(v) && ft.isNonNegative(v.Args[0]) {
   638  		return true
   639  	}
   640  
   641  	// Check if the signed poset can prove that the value is >= 0
   642  	return ft.orderS.OrderedOrEqual(ft.zero, v)
   643  }
   644  
   645  // checkpoint saves the current state of known relations.
   646  // Called when descending on a branch.
   647  func (ft *factsTable) checkpoint() {
   648  	if ft.unsat {
   649  		ft.unsatDepth++
   650  	}
   651  	ft.stack = append(ft.stack, checkpointFact)
   652  	ft.limitStack = append(ft.limitStack, checkpointBound)
   653  	ft.orderS.Checkpoint()
   654  	ft.orderU.Checkpoint()
   655  }
   656  
   657  // restore restores known relation to the state just
   658  // before the previous checkpoint.
   659  // Called when backing up on a branch.
   660  func (ft *factsTable) restore() {
   661  	if ft.unsatDepth > 0 {
   662  		ft.unsatDepth--
   663  	} else {
   664  		ft.unsat = false
   665  	}
   666  	for {
   667  		old := ft.stack[len(ft.stack)-1]
   668  		ft.stack = ft.stack[:len(ft.stack)-1]
   669  		if old == checkpointFact {
   670  			break
   671  		}
   672  		if old.r == lt|eq|gt {
   673  			delete(ft.facts, old.p)
   674  		} else {
   675  			ft.facts[old.p] = old.r
   676  		}
   677  	}
   678  	for {
   679  		old := ft.limitStack[len(ft.limitStack)-1]
   680  		ft.limitStack = ft.limitStack[:len(ft.limitStack)-1]
   681  		if old.vid == 0 { // checkpointBound
   682  			break
   683  		}
   684  		if old.limit == noLimit {
   685  			delete(ft.limits, old.vid)
   686  		} else {
   687  			ft.limits[old.vid] = old.limit
   688  		}
   689  	}
   690  	ft.orderS.Undo()
   691  	ft.orderU.Undo()
   692  }
   693  
   694  func lessByID(v, w *Value) bool {
   695  	if v == nil && w == nil {
   696  		// Should not happen, but just in case.
   697  		return false
   698  	}
   699  	if v == nil {
   700  		return true
   701  	}
   702  	return w != nil && v.ID < w.ID
   703  }
   704  
   705  var (
   706  	reverseBits = [...]relation{0, 4, 2, 6, 1, 5, 3, 7}
   707  
   708  	// maps what we learn when the positive branch is taken.
   709  	// For example:
   710  	//      OpLess8:   {signed, lt},
   711  	//	v1 = (OpLess8 v2 v3).
   712  	// If v1 branch is taken then we learn that the rangeMask
   713  	// can be at most lt.
   714  	domainRelationTable = map[Op]struct {
   715  		d domain
   716  		r relation
   717  	}{
   718  		OpEq8:   {signed | unsigned, eq},
   719  		OpEq16:  {signed | unsigned, eq},
   720  		OpEq32:  {signed | unsigned, eq},
   721  		OpEq64:  {signed | unsigned, eq},
   722  		OpEqPtr: {pointer, eq},
   723  
   724  		OpNeq8:   {signed | unsigned, lt | gt},
   725  		OpNeq16:  {signed | unsigned, lt | gt},
   726  		OpNeq32:  {signed | unsigned, lt | gt},
   727  		OpNeq64:  {signed | unsigned, lt | gt},
   728  		OpNeqPtr: {pointer, lt | gt},
   729  
   730  		OpLess8:   {signed, lt},
   731  		OpLess8U:  {unsigned, lt},
   732  		OpLess16:  {signed, lt},
   733  		OpLess16U: {unsigned, lt},
   734  		OpLess32:  {signed, lt},
   735  		OpLess32U: {unsigned, lt},
   736  		OpLess64:  {signed, lt},
   737  		OpLess64U: {unsigned, lt},
   738  
   739  		OpLeq8:   {signed, lt | eq},
   740  		OpLeq8U:  {unsigned, lt | eq},
   741  		OpLeq16:  {signed, lt | eq},
   742  		OpLeq16U: {unsigned, lt | eq},
   743  		OpLeq32:  {signed, lt | eq},
   744  		OpLeq32U: {unsigned, lt | eq},
   745  		OpLeq64:  {signed, lt | eq},
   746  		OpLeq64U: {unsigned, lt | eq},
   747  
   748  		// For these ops, the negative branch is different: we can only
   749  		// prove signed/GE (signed/GT) if we can prove that arg0 is non-negative.
   750  		// See the special case in addBranchRestrictions.
   751  		OpIsInBounds:      {signed | unsigned, lt},      // 0 <= arg0 < arg1
   752  		OpIsSliceInBounds: {signed | unsigned, lt | eq}, // 0 <= arg0 <= arg1
   753  	}
   754  )
   755  
   756  // cleanup returns the posets to the free list
   757  func (ft *factsTable) cleanup(f *Func) {
   758  	for _, po := range []*poset{ft.orderS, ft.orderU} {
   759  		// Make sure it's empty as it should be. A non-empty poset
   760  		// might cause errors and miscompilations if reused.
   761  		if checkEnabled {
   762  			if err := po.CheckEmpty(); err != nil {
   763  				f.Fatalf("poset not empty after function %s: %v", f.Name, err)
   764  			}
   765  		}
   766  		f.retPoset(po)
   767  	}
   768  }
   769  
   770  // prove removes redundant BlockIf branches that can be inferred
   771  // from previous dominating comparisons.
   772  //
   773  // By far, the most common redundant pair are generated by bounds checking.
   774  // For example for the code:
   775  //
   776  //	a[i] = 4
   777  //	foo(a[i])
   778  //
   779  // The compiler will generate the following code:
   780  //
   781  //	if i >= len(a) {
   782  //	    panic("not in bounds")
   783  //	}
   784  //	a[i] = 4
   785  //	if i >= len(a) {
   786  //	    panic("not in bounds")
   787  //	}
   788  //	foo(a[i])
   789  //
   790  // The second comparison i >= len(a) is clearly redundant because if the
   791  // else branch of the first comparison is executed, we already know that i < len(a).
   792  // The code for the second panic can be removed.
   793  //
   794  // prove works by finding contradictions and trimming branches whose
   795  // conditions are unsatisfiable given the branches leading up to them.
   796  // It tracks a "fact table" of branch conditions. For each branching
   797  // block, it asserts the branch conditions that uniquely dominate that
   798  // block, and then separately asserts the block's branch condition and
   799  // its negation. If either leads to a contradiction, it can trim that
   800  // successor.
   801  func prove(f *Func) {
   802  	// Find induction variables. Currently, findIndVars
   803  	// is limited to one induction variable per block.
   804  	var indVars map[*Block]indVar
   805  	for _, v := range findIndVar(f) {
   806  		ind := v.ind
   807  		if len(ind.Args) != 2 {
   808  			// the rewrite code assumes there is only ever two parents to loops
   809  			panic("unexpected induction with too many parents")
   810  		}
   811  
   812  		nxt := v.nxt
   813  		if !(ind.Uses == 2 && // 2 used by comparison and next
   814  			nxt.Uses == 1) { // 1 used by induction
   815  			// ind or nxt is used inside the loop, add it for the facts table
   816  			if indVars == nil {
   817  				indVars = make(map[*Block]indVar)
   818  			}
   819  			indVars[v.entry] = v
   820  			continue
   821  		} else {
   822  			// Since this induction variable is not used for anything but counting the iterations,
   823  			// no point in putting it into the facts table.
   824  		}
   825  
   826  		// try to rewrite to a downward counting loop checking against start if the
   827  		// loop body does not depends on ind or nxt and end is known before the loop.
   828  		// This reduce pressure on the register allocator because this do not need
   829  		// to use end on each iteration anymore. We compare against the start constant instead.
   830  		// That means this code:
   831  		//
   832  		//	loop:
   833  		//		ind = (Phi (Const [x]) nxt),
   834  		//		if ind < end
   835  		//		then goto enter_loop
   836  		//		else goto exit_loop
   837  		//
   838  		//	enter_loop:
   839  		//		do something without using ind nor nxt
   840  		//		nxt = inc + ind
   841  		//		goto loop
   842  		//
   843  		//	exit_loop:
   844  		//
   845  		// is rewritten to:
   846  		//
   847  		//	loop:
   848  		//		ind = (Phi end nxt)
   849  		//		if (Const [x]) < ind
   850  		//		then goto enter_loop
   851  		//		else goto exit_loop
   852  		//
   853  		//	enter_loop:
   854  		//		do something without using ind nor nxt
   855  		//		nxt = ind - inc
   856  		//		goto loop
   857  		//
   858  		//	exit_loop:
   859  		//
   860  		// this is better because it only require to keep ind then nxt alive while looping,
   861  		// while the original form keeps ind then nxt and end alive
   862  		start, end := v.min, v.max
   863  		if v.flags&indVarCountDown != 0 {
   864  			start, end = end, start
   865  		}
   866  
   867  		if !(start.Op == OpConst8 || start.Op == OpConst16 || start.Op == OpConst32 || start.Op == OpConst64) {
   868  			// if start is not a constant we would be winning nothing from inverting the loop
   869  			continue
   870  		}
   871  		if end.Op == OpConst8 || end.Op == OpConst16 || end.Op == OpConst32 || end.Op == OpConst64 {
   872  			// TODO: if both start and end are constants we should rewrite such that the comparison
   873  			// is against zero and nxt is ++ or -- operation
   874  			// That means:
   875  			//	for i := 2; i < 11; i += 2 {
   876  			// should be rewritten to:
   877  			//	for i := 5; 0 < i; i-- {
   878  			continue
   879  		}
   880  
   881  		header := ind.Block
   882  		check := header.Controls[0]
   883  		if check == nil {
   884  			// we don't know how to rewrite a loop that not simple comparison
   885  			continue
   886  		}
   887  		switch check.Op {
   888  		case OpLeq64, OpLeq32, OpLeq16, OpLeq8,
   889  			OpLess64, OpLess32, OpLess16, OpLess8:
   890  		default:
   891  			// we don't know how to rewrite a loop that not simple comparison
   892  			continue
   893  		}
   894  		if !((check.Args[0] == ind && check.Args[1] == end) ||
   895  			(check.Args[1] == ind && check.Args[0] == end)) {
   896  			// we don't know how to rewrite a loop that not simple comparison
   897  			continue
   898  		}
   899  		if end.Block == ind.Block {
   900  			// we can't rewrite loops where the condition depends on the loop body
   901  			// this simple check is forced to work because if this is true a Phi in ind.Block must exists
   902  			continue
   903  		}
   904  
   905  		// invert the check
   906  		check.Args[0], check.Args[1] = check.Args[1], check.Args[0]
   907  
   908  		// invert start and end in the loop
   909  		for i, v := range check.Args {
   910  			if v != end {
   911  				continue
   912  			}
   913  
   914  			check.SetArg(i, start)
   915  			goto replacedEnd
   916  		}
   917  		panic(fmt.Sprintf("unreachable, ind: %v, start: %v, end: %v", ind, start, end))
   918  	replacedEnd:
   919  
   920  		for i, v := range ind.Args {
   921  			if v != start {
   922  				continue
   923  			}
   924  
   925  			ind.SetArg(i, end)
   926  			goto replacedStart
   927  		}
   928  		panic(fmt.Sprintf("unreachable, ind: %v, start: %v, end: %v", ind, start, end))
   929  	replacedStart:
   930  
   931  		if nxt.Args[0] != ind {
   932  			// unlike additions subtractions are not commutative so be sure we get it right
   933  			nxt.Args[0], nxt.Args[1] = nxt.Args[1], nxt.Args[0]
   934  		}
   935  
   936  		switch nxt.Op {
   937  		case OpAdd8:
   938  			nxt.Op = OpSub8
   939  		case OpAdd16:
   940  			nxt.Op = OpSub16
   941  		case OpAdd32:
   942  			nxt.Op = OpSub32
   943  		case OpAdd64:
   944  			nxt.Op = OpSub64
   945  		case OpSub8:
   946  			nxt.Op = OpAdd8
   947  		case OpSub16:
   948  			nxt.Op = OpAdd16
   949  		case OpSub32:
   950  			nxt.Op = OpAdd32
   951  		case OpSub64:
   952  			nxt.Op = OpAdd64
   953  		default:
   954  			panic("unreachable")
   955  		}
   956  
   957  		if f.pass.debug > 0 {
   958  			f.Warnl(ind.Pos, "Inverted loop iteration")
   959  		}
   960  	}
   961  
   962  	ft := newFactsTable(f)
   963  	ft.checkpoint()
   964  
   965  	var lensVars map[*Block][]*Value
   966  	var logicVars map[*Block][]*Value
   967  
   968  	// Find length and capacity ops.
   969  	for _, b := range f.Blocks {
   970  		for _, v := range b.Values {
   971  			if v.Uses == 0 {
   972  				// We don't care about dead values.
   973  				// (There can be some that are CSEd but not removed yet.)
   974  				continue
   975  			}
   976  			switch v.Op {
   977  			case OpStringLen:
   978  				ft.update(b, v, ft.zero, signed, gt|eq)
   979  			case OpSliceLen:
   980  				if ft.lens == nil {
   981  					ft.lens = map[ID]*Value{}
   982  				}
   983  				// Set all len Values for the same slice as equal in the poset.
   984  				// The poset handles transitive relations, so Values related to
   985  				// any OpSliceLen for this slice will be correctly related to others.
   986  				if l, ok := ft.lens[v.Args[0].ID]; ok {
   987  					ft.update(b, v, l, signed, eq)
   988  				} else {
   989  					ft.lens[v.Args[0].ID] = v
   990  				}
   991  				ft.update(b, v, ft.zero, signed, gt|eq)
   992  				if v.Args[0].Op == OpSliceMake {
   993  					if lensVars == nil {
   994  						lensVars = make(map[*Block][]*Value)
   995  					}
   996  					lensVars[b] = append(lensVars[b], v)
   997  				}
   998  			case OpSliceCap:
   999  				if ft.caps == nil {
  1000  					ft.caps = map[ID]*Value{}
  1001  				}
  1002  				// Same as case OpSliceLen above, but for slice cap.
  1003  				if c, ok := ft.caps[v.Args[0].ID]; ok {
  1004  					ft.update(b, v, c, signed, eq)
  1005  				} else {
  1006  					ft.caps[v.Args[0].ID] = v
  1007  				}
  1008  				ft.update(b, v, ft.zero, signed, gt|eq)
  1009  				if v.Args[0].Op == OpSliceMake {
  1010  					if lensVars == nil {
  1011  						lensVars = make(map[*Block][]*Value)
  1012  					}
  1013  					lensVars[b] = append(lensVars[b], v)
  1014  				}
  1015  			case OpCtz64, OpCtz32, OpCtz16, OpCtz8, OpBitLen64, OpBitLen32, OpBitLen16, OpBitLen8:
  1016  				ft.update(b, v, ft.zero, signed, gt|eq)
  1017  				// TODO: we could also do <= 64/32/16/8, if that helped.
  1018  			case OpAnd64, OpAnd32, OpAnd16, OpAnd8:
  1019  				ft.update(b, v, v.Args[1], unsigned, lt|eq)
  1020  				ft.update(b, v, v.Args[0], unsigned, lt|eq)
  1021  				for i := 0; i < 2; i++ {
  1022  					if isNonNegative(v.Args[i]) {
  1023  						ft.update(b, v, v.Args[i], signed, lt|eq)
  1024  						ft.update(b, v, ft.zero, signed, gt|eq)
  1025  					}
  1026  				}
  1027  				if logicVars == nil {
  1028  					logicVars = make(map[*Block][]*Value)
  1029  				}
  1030  				logicVars[b] = append(logicVars[b], v)
  1031  			case OpOr64, OpOr32, OpOr16, OpOr8:
  1032  				// TODO: investigate how to always add facts without much slowdown, see issue #57959.
  1033  				if v.Args[0].isGenericIntConst() {
  1034  					ft.update(b, v, v.Args[0], unsigned, gt|eq)
  1035  				}
  1036  				if v.Args[1].isGenericIntConst() {
  1037  					ft.update(b, v, v.Args[1], unsigned, gt|eq)
  1038  				}
  1039  			case OpDiv64u, OpDiv32u, OpDiv16u, OpDiv8u,
  1040  				OpRsh8Ux64, OpRsh8Ux32, OpRsh8Ux16, OpRsh8Ux8,
  1041  				OpRsh16Ux64, OpRsh16Ux32, OpRsh16Ux16, OpRsh16Ux8,
  1042  				OpRsh32Ux64, OpRsh32Ux32, OpRsh32Ux16, OpRsh32Ux8,
  1043  				OpRsh64Ux64, OpRsh64Ux32, OpRsh64Ux16, OpRsh64Ux8:
  1044  				ft.update(b, v, v.Args[0], unsigned, lt|eq)
  1045  			case OpMod64u, OpMod32u, OpMod16u, OpMod8u:
  1046  				ft.update(b, v, v.Args[0], unsigned, lt|eq)
  1047  				ft.update(b, v, v.Args[1], unsigned, lt)
  1048  			case OpPhi:
  1049  				// Determine the min and max value of OpPhi composed entirely of integer constants.
  1050  				//
  1051  				// For example, for an OpPhi:
  1052  				//
  1053  				// v1 = OpConst64 [13]
  1054  				// v2 = OpConst64 [7]
  1055  				// v3 = OpConst64 [42]
  1056  				//
  1057  				// v4 = OpPhi(v1, v2, v3)
  1058  				//
  1059  				// We can prove:
  1060  				//
  1061  				// v4 >= 7 && v4 <= 42
  1062  				//
  1063  				// TODO(jake-ciolek): Handle nested constant OpPhi's
  1064  				sameConstOp := true
  1065  				min := 0
  1066  				max := 0
  1067  
  1068  				if !v.Args[min].isGenericIntConst() {
  1069  					break
  1070  				}
  1071  
  1072  				for k := range v.Args {
  1073  					if v.Args[k].Op != v.Args[min].Op {
  1074  						sameConstOp = false
  1075  						break
  1076  					}
  1077  					if v.Args[k].AuxInt < v.Args[min].AuxInt {
  1078  						min = k
  1079  					}
  1080  					if v.Args[k].AuxInt > v.Args[max].AuxInt {
  1081  						max = k
  1082  					}
  1083  				}
  1084  
  1085  				if sameConstOp {
  1086  					ft.update(b, v, v.Args[min], signed, gt|eq)
  1087  					ft.update(b, v, v.Args[max], signed, lt|eq)
  1088  				}
  1089  				// One might be tempted to create a v >= ft.zero relation for
  1090  				// all OpPhi's composed of only provably-positive values
  1091  				// but that bloats up the facts table for a very negligible gain.
  1092  				// In Go itself, very few functions get improved (< 5) at a cost of 5-7% total increase
  1093  				// of compile time.
  1094  			}
  1095  		}
  1096  	}
  1097  
  1098  	// current node state
  1099  	type walkState int
  1100  	const (
  1101  		descend walkState = iota
  1102  		simplify
  1103  	)
  1104  	// work maintains the DFS stack.
  1105  	type bp struct {
  1106  		block *Block    // current handled block
  1107  		state walkState // what's to do
  1108  	}
  1109  	work := make([]bp, 0, 256)
  1110  	work = append(work, bp{
  1111  		block: f.Entry,
  1112  		state: descend,
  1113  	})
  1114  
  1115  	idom := f.Idom()
  1116  	sdom := f.Sdom()
  1117  
  1118  	// DFS on the dominator tree.
  1119  	//
  1120  	// For efficiency, we consider only the dominator tree rather
  1121  	// than the entire flow graph. On the way down, we consider
  1122  	// incoming branches and accumulate conditions that uniquely
  1123  	// dominate the current block. If we discover a contradiction,
  1124  	// we can eliminate the entire block and all of its children.
  1125  	// On the way back up, we consider outgoing branches that
  1126  	// haven't already been considered. This way we consider each
  1127  	// branch condition only once.
  1128  	for len(work) > 0 {
  1129  		node := work[len(work)-1]
  1130  		work = work[:len(work)-1]
  1131  		parent := idom[node.block.ID]
  1132  		branch := getBranch(sdom, parent, node.block)
  1133  
  1134  		switch node.state {
  1135  		case descend:
  1136  			ft.checkpoint()
  1137  
  1138  			// Entering the block, add the block-depending facts that we collected
  1139  			// at the beginning: induction variables and lens/caps of slices.
  1140  			if iv, ok := indVars[node.block]; ok {
  1141  				addIndVarRestrictions(ft, parent, iv)
  1142  			}
  1143  			if lens, ok := lensVars[node.block]; ok {
  1144  				for _, v := range lens {
  1145  					switch v.Op {
  1146  					case OpSliceLen:
  1147  						ft.update(node.block, v, v.Args[0].Args[1], signed, eq)
  1148  					case OpSliceCap:
  1149  						ft.update(node.block, v, v.Args[0].Args[2], signed, eq)
  1150  					}
  1151  				}
  1152  			}
  1153  
  1154  			if branch != unknown {
  1155  				addBranchRestrictions(ft, parent, branch)
  1156  				// After we add the branch restriction, re-check the logic operations in the parent block,
  1157  				// it may give us more info to omit some branches
  1158  				if logic, ok := logicVars[parent]; ok {
  1159  					for _, v := range logic {
  1160  						// we only have OpAnd for now
  1161  						ft.update(parent, v, v.Args[1], unsigned, lt|eq)
  1162  						ft.update(parent, v, v.Args[0], unsigned, lt|eq)
  1163  						for i := 0; i < 2; i++ {
  1164  							if isNonNegative(v.Args[i]) {
  1165  								ft.update(parent, v, v.Args[i], signed, lt|eq)
  1166  								ft.update(parent, v, ft.zero, signed, gt|eq)
  1167  							}
  1168  						}
  1169  					}
  1170  				}
  1171  				if ft.unsat {
  1172  					// node.block is unreachable.
  1173  					// Remove it and don't visit
  1174  					// its children.
  1175  					removeBranch(parent, branch)
  1176  					ft.restore()
  1177  					break
  1178  				}
  1179  				// Otherwise, we can now commit to
  1180  				// taking this branch. We'll restore
  1181  				// ft when we unwind.
  1182  			}
  1183  
  1184  			// Add inductive facts for phis in this block.
  1185  			addLocalInductiveFacts(ft, node.block)
  1186  
  1187  			work = append(work, bp{
  1188  				block: node.block,
  1189  				state: simplify,
  1190  			})
  1191  			for s := sdom.Child(node.block); s != nil; s = sdom.Sibling(s) {
  1192  				work = append(work, bp{
  1193  					block: s,
  1194  					state: descend,
  1195  				})
  1196  			}
  1197  
  1198  		case simplify:
  1199  			simplifyBlock(sdom, ft, node.block)
  1200  			ft.restore()
  1201  		}
  1202  	}
  1203  
  1204  	ft.restore()
  1205  
  1206  	ft.cleanup(f)
  1207  }
  1208  
  1209  // getBranch returns the range restrictions added by p
  1210  // when reaching b. p is the immediate dominator of b.
  1211  func getBranch(sdom SparseTree, p *Block, b *Block) branch {
  1212  	if p == nil {
  1213  		return unknown
  1214  	}
  1215  	switch p.Kind {
  1216  	case BlockIf:
  1217  		// If p and p.Succs[0] are dominators it means that every path
  1218  		// from entry to b passes through p and p.Succs[0]. We care that
  1219  		// no path from entry to b passes through p.Succs[1]. If p.Succs[0]
  1220  		// has one predecessor then (apart from the degenerate case),
  1221  		// there is no path from entry that can reach b through p.Succs[1].
  1222  		// TODO: how about p->yes->b->yes, i.e. a loop in yes.
  1223  		if sdom.IsAncestorEq(p.Succs[0].b, b) && len(p.Succs[0].b.Preds) == 1 {
  1224  			return positive
  1225  		}
  1226  		if sdom.IsAncestorEq(p.Succs[1].b, b) && len(p.Succs[1].b.Preds) == 1 {
  1227  			return negative
  1228  		}
  1229  	case BlockJumpTable:
  1230  		// TODO: this loop can lead to quadratic behavior, as
  1231  		// getBranch can be called len(p.Succs) times.
  1232  		for i, e := range p.Succs {
  1233  			if sdom.IsAncestorEq(e.b, b) && len(e.b.Preds) == 1 {
  1234  				return jumpTable0 + branch(i)
  1235  			}
  1236  		}
  1237  	}
  1238  	return unknown
  1239  }
  1240  
  1241  // addIndVarRestrictions updates the factsTables ft with the facts
  1242  // learned from the induction variable indVar which drives the loop
  1243  // starting in Block b.
  1244  func addIndVarRestrictions(ft *factsTable, b *Block, iv indVar) {
  1245  	d := signed
  1246  	if ft.isNonNegative(iv.min) && ft.isNonNegative(iv.max) {
  1247  		d |= unsigned
  1248  	}
  1249  
  1250  	if iv.flags&indVarMinExc == 0 {
  1251  		addRestrictions(b, ft, d, iv.min, iv.ind, lt|eq)
  1252  	} else {
  1253  		addRestrictions(b, ft, d, iv.min, iv.ind, lt)
  1254  	}
  1255  
  1256  	if iv.flags&indVarMaxInc == 0 {
  1257  		addRestrictions(b, ft, d, iv.ind, iv.max, lt)
  1258  	} else {
  1259  		addRestrictions(b, ft, d, iv.ind, iv.max, lt|eq)
  1260  	}
  1261  }
  1262  
  1263  // addBranchRestrictions updates the factsTables ft with the facts learned when
  1264  // branching from Block b in direction br.
  1265  func addBranchRestrictions(ft *factsTable, b *Block, br branch) {
  1266  	c := b.Controls[0]
  1267  	switch {
  1268  	case br == negative:
  1269  		addRestrictions(b, ft, boolean, nil, c, eq)
  1270  	case br == positive:
  1271  		addRestrictions(b, ft, boolean, nil, c, lt|gt)
  1272  	case br >= jumpTable0:
  1273  		idx := br - jumpTable0
  1274  		val := int64(idx)
  1275  		if v, off := isConstDelta(c); v != nil {
  1276  			// Establish the bound on the underlying value we're switching on,
  1277  			// not on the offset-ed value used as the jump table index.
  1278  			c = v
  1279  			val -= off
  1280  		}
  1281  		old, ok := ft.limits[c.ID]
  1282  		if !ok {
  1283  			old = noLimit
  1284  		}
  1285  		ft.limitStack = append(ft.limitStack, limitFact{c.ID, old})
  1286  		if val < old.min || val > old.max || uint64(val) < old.umin || uint64(val) > old.umax {
  1287  			ft.unsat = true
  1288  			if b.Func.pass.debug > 2 {
  1289  				b.Func.Warnl(b.Pos, "block=%s outedge=%d %s=%d unsat", b, idx, c, val)
  1290  			}
  1291  		} else {
  1292  			ft.limits[c.ID] = limit{val, val, uint64(val), uint64(val)}
  1293  			if b.Func.pass.debug > 2 {
  1294  				b.Func.Warnl(b.Pos, "block=%s outedge=%d %s=%d", b, idx, c, val)
  1295  			}
  1296  		}
  1297  	default:
  1298  		panic("unknown branch")
  1299  	}
  1300  	if tr, has := domainRelationTable[c.Op]; has {
  1301  		// When we branched from parent we learned a new set of
  1302  		// restrictions. Update the factsTable accordingly.
  1303  		d := tr.d
  1304  		if d == signed && ft.isNonNegative(c.Args[0]) && ft.isNonNegative(c.Args[1]) {
  1305  			d |= unsigned
  1306  		}
  1307  		switch c.Op {
  1308  		case OpIsInBounds, OpIsSliceInBounds:
  1309  			// 0 <= a0 < a1 (or 0 <= a0 <= a1)
  1310  			//
  1311  			// On the positive branch, we learn:
  1312  			//   signed: 0 <= a0 < a1 (or 0 <= a0 <= a1)
  1313  			//   unsigned:    a0 < a1 (or a0 <= a1)
  1314  			//
  1315  			// On the negative branch, we learn (0 > a0 ||
  1316  			// a0 >= a1). In the unsigned domain, this is
  1317  			// simply a0 >= a1 (which is the reverse of the
  1318  			// positive branch, so nothing surprising).
  1319  			// But in the signed domain, we can't express the ||
  1320  			// condition, so check if a0 is non-negative instead,
  1321  			// to be able to learn something.
  1322  			switch br {
  1323  			case negative:
  1324  				d = unsigned
  1325  				if ft.isNonNegative(c.Args[0]) {
  1326  					d |= signed
  1327  				}
  1328  				addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r^(lt|gt|eq))
  1329  			case positive:
  1330  				addRestrictions(b, ft, signed, ft.zero, c.Args[0], lt|eq)
  1331  				addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r)
  1332  			}
  1333  		default:
  1334  			switch br {
  1335  			case negative:
  1336  				addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r^(lt|gt|eq))
  1337  			case positive:
  1338  				addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r)
  1339  			}
  1340  		}
  1341  
  1342  	}
  1343  }
  1344  
  1345  // addRestrictions updates restrictions from the immediate
  1346  // dominating block (p) using r.
  1347  func addRestrictions(parent *Block, ft *factsTable, t domain, v, w *Value, r relation) {
  1348  	if t == 0 {
  1349  		// Trivial case: nothing to do.
  1350  		// Should not happen, but just in case.
  1351  		return
  1352  	}
  1353  	for i := domain(1); i <= t; i <<= 1 {
  1354  		if t&i == 0 {
  1355  			continue
  1356  		}
  1357  		ft.update(parent, v, w, i, r)
  1358  	}
  1359  }
  1360  
  1361  // addLocalInductiveFacts adds inductive facts when visiting b, where
  1362  // b is a join point in a loop. In contrast with findIndVar, this
  1363  // depends on facts established for b, which is why it happens when
  1364  // visiting b.
  1365  //
  1366  // TODO: It would be nice to combine this with findIndVar.
  1367  func addLocalInductiveFacts(ft *factsTable, b *Block) {
  1368  	// This looks for a specific pattern of induction:
  1369  	//
  1370  	// 1. i1 = OpPhi(min, i2) in b
  1371  	// 2. i2 = i1 + 1
  1372  	// 3. i2 < max at exit from b.Preds[1]
  1373  	// 4. min < max
  1374  	//
  1375  	// If all of these conditions are true, then i1 < max and i1 >= min.
  1376  
  1377  	// To ensure this is a loop header node.
  1378  	if len(b.Preds) != 2 {
  1379  		return
  1380  	}
  1381  
  1382  	for _, i1 := range b.Values {
  1383  		if i1.Op != OpPhi {
  1384  			continue
  1385  		}
  1386  
  1387  		// Check for conditions 1 and 2. This is easy to do
  1388  		// and will throw out most phis.
  1389  		min, i2 := i1.Args[0], i1.Args[1]
  1390  		if i1q, delta := isConstDelta(i2); i1q != i1 || delta != 1 {
  1391  			continue
  1392  		}
  1393  
  1394  		// Try to prove condition 3. We can't just query the
  1395  		// fact table for this because we don't know what the
  1396  		// facts of b.Preds[1] are (in general, b.Preds[1] is
  1397  		// a loop-back edge, so we haven't even been there
  1398  		// yet). As a conservative approximation, we look for
  1399  		// this condition in the predecessor chain until we
  1400  		// hit a join point.
  1401  		uniquePred := func(b *Block) *Block {
  1402  			if len(b.Preds) == 1 {
  1403  				return b.Preds[0].b
  1404  			}
  1405  			return nil
  1406  		}
  1407  		pred, child := b.Preds[1].b, b
  1408  		for ; pred != nil; pred, child = uniquePred(pred), pred {
  1409  			if pred.Kind != BlockIf {
  1410  				continue
  1411  			}
  1412  			control := pred.Controls[0]
  1413  
  1414  			br := unknown
  1415  			if pred.Succs[0].b == child {
  1416  				br = positive
  1417  			}
  1418  			if pred.Succs[1].b == child {
  1419  				if br != unknown {
  1420  					continue
  1421  				}
  1422  				br = negative
  1423  			}
  1424  			if br == unknown {
  1425  				continue
  1426  			}
  1427  
  1428  			tr, has := domainRelationTable[control.Op]
  1429  			if !has {
  1430  				continue
  1431  			}
  1432  			r := tr.r
  1433  			if br == negative {
  1434  				// Negative branch taken to reach b.
  1435  				// Complement the relations.
  1436  				r = (lt | eq | gt) ^ r
  1437  			}
  1438  
  1439  			// Check for i2 < max or max > i2.
  1440  			var max *Value
  1441  			if r == lt && control.Args[0] == i2 {
  1442  				max = control.Args[1]
  1443  			} else if r == gt && control.Args[1] == i2 {
  1444  				max = control.Args[0]
  1445  			} else {
  1446  				continue
  1447  			}
  1448  
  1449  			// Check condition 4 now that we have a
  1450  			// candidate max. For this we can query the
  1451  			// fact table. We "prove" min < max by showing
  1452  			// that min >= max is unsat. (This may simply
  1453  			// compare two constants; that's fine.)
  1454  			ft.checkpoint()
  1455  			ft.update(b, min, max, tr.d, gt|eq)
  1456  			proved := ft.unsat
  1457  			ft.restore()
  1458  
  1459  			if proved {
  1460  				// We know that min <= i1 < max.
  1461  				if b.Func.pass.debug > 0 {
  1462  					printIndVar(b, i1, min, max, 1, 0)
  1463  				}
  1464  				ft.update(b, min, i1, tr.d, lt|eq)
  1465  				ft.update(b, i1, max, tr.d, lt)
  1466  			}
  1467  		}
  1468  	}
  1469  }
  1470  
  1471  var ctzNonZeroOp = map[Op]Op{OpCtz8: OpCtz8NonZero, OpCtz16: OpCtz16NonZero, OpCtz32: OpCtz32NonZero, OpCtz64: OpCtz64NonZero}
  1472  var mostNegativeDividend = map[Op]int64{
  1473  	OpDiv16: -1 << 15,
  1474  	OpMod16: -1 << 15,
  1475  	OpDiv32: -1 << 31,
  1476  	OpMod32: -1 << 31,
  1477  	OpDiv64: -1 << 63,
  1478  	OpMod64: -1 << 63}
  1479  
  1480  // simplifyBlock simplifies some constant values in b and evaluates
  1481  // branches to non-uniquely dominated successors of b.
  1482  func simplifyBlock(sdom SparseTree, ft *factsTable, b *Block) {
  1483  	for _, v := range b.Values {
  1484  		switch v.Op {
  1485  		case OpSlicemask:
  1486  			// Replace OpSlicemask operations in b with constants where possible.
  1487  			x, delta := isConstDelta(v.Args[0])
  1488  			if x == nil {
  1489  				break
  1490  			}
  1491  			// slicemask(x + y)
  1492  			// if x is larger than -y (y is negative), then slicemask is -1.
  1493  			lim, ok := ft.limits[x.ID]
  1494  			if !ok {
  1495  				break
  1496  			}
  1497  			if lim.umin > uint64(-delta) {
  1498  				if v.Args[0].Op == OpAdd64 {
  1499  					v.reset(OpConst64)
  1500  				} else {
  1501  					v.reset(OpConst32)
  1502  				}
  1503  				if b.Func.pass.debug > 0 {
  1504  					b.Func.Warnl(v.Pos, "Proved slicemask not needed")
  1505  				}
  1506  				v.AuxInt = -1
  1507  			}
  1508  		case OpCtz8, OpCtz16, OpCtz32, OpCtz64:
  1509  			// On some architectures, notably amd64, we can generate much better
  1510  			// code for CtzNN if we know that the argument is non-zero.
  1511  			// Capture that information here for use in arch-specific optimizations.
  1512  			x := v.Args[0]
  1513  			lim, ok := ft.limits[x.ID]
  1514  			if !ok {
  1515  				break
  1516  			}
  1517  			if lim.umin > 0 || lim.min > 0 || lim.max < 0 {
  1518  				if b.Func.pass.debug > 0 {
  1519  					b.Func.Warnl(v.Pos, "Proved %v non-zero", v.Op)
  1520  				}
  1521  				v.Op = ctzNonZeroOp[v.Op]
  1522  			}
  1523  		case OpRsh8x8, OpRsh8x16, OpRsh8x32, OpRsh8x64,
  1524  			OpRsh16x8, OpRsh16x16, OpRsh16x32, OpRsh16x64,
  1525  			OpRsh32x8, OpRsh32x16, OpRsh32x32, OpRsh32x64,
  1526  			OpRsh64x8, OpRsh64x16, OpRsh64x32, OpRsh64x64:
  1527  			// Check whether, for a >> b, we know that a is non-negative
  1528  			// and b is all of a's bits except the MSB. If so, a is shifted to zero.
  1529  			bits := 8 * v.Type.Size()
  1530  			if v.Args[1].isGenericIntConst() && v.Args[1].AuxInt >= bits-1 && ft.isNonNegative(v.Args[0]) {
  1531  				if b.Func.pass.debug > 0 {
  1532  					b.Func.Warnl(v.Pos, "Proved %v shifts to zero", v.Op)
  1533  				}
  1534  				switch bits {
  1535  				case 64:
  1536  					v.reset(OpConst64)
  1537  				case 32:
  1538  					v.reset(OpConst32)
  1539  				case 16:
  1540  					v.reset(OpConst16)
  1541  				case 8:
  1542  					v.reset(OpConst8)
  1543  				default:
  1544  					panic("unexpected integer size")
  1545  				}
  1546  				v.AuxInt = 0
  1547  				break // Be sure not to fallthrough - this is no longer OpRsh.
  1548  			}
  1549  			// If the Rsh hasn't been replaced with 0, still check if it is bounded.
  1550  			fallthrough
  1551  		case OpLsh8x8, OpLsh8x16, OpLsh8x32, OpLsh8x64,
  1552  			OpLsh16x8, OpLsh16x16, OpLsh16x32, OpLsh16x64,
  1553  			OpLsh32x8, OpLsh32x16, OpLsh32x32, OpLsh32x64,
  1554  			OpLsh64x8, OpLsh64x16, OpLsh64x32, OpLsh64x64,
  1555  			OpRsh8Ux8, OpRsh8Ux16, OpRsh8Ux32, OpRsh8Ux64,
  1556  			OpRsh16Ux8, OpRsh16Ux16, OpRsh16Ux32, OpRsh16Ux64,
  1557  			OpRsh32Ux8, OpRsh32Ux16, OpRsh32Ux32, OpRsh32Ux64,
  1558  			OpRsh64Ux8, OpRsh64Ux16, OpRsh64Ux32, OpRsh64Ux64:
  1559  			// Check whether, for a << b, we know that b
  1560  			// is strictly less than the number of bits in a.
  1561  			by := v.Args[1]
  1562  			lim, ok := ft.limits[by.ID]
  1563  			if !ok {
  1564  				break
  1565  			}
  1566  			bits := 8 * v.Args[0].Type.Size()
  1567  			if lim.umax < uint64(bits) || (lim.max < bits && ft.isNonNegative(by)) {
  1568  				v.AuxInt = 1 // see shiftIsBounded
  1569  				if b.Func.pass.debug > 0 {
  1570  					b.Func.Warnl(v.Pos, "Proved %v bounded", v.Op)
  1571  				}
  1572  			}
  1573  		case OpDiv16, OpDiv32, OpDiv64, OpMod16, OpMod32, OpMod64:
  1574  			// On amd64 and 386 fix-up code can be avoided if we know
  1575  			//  the divisor is not -1 or the dividend > MinIntNN.
  1576  			// Don't modify AuxInt on other architectures,
  1577  			// as that can interfere with CSE.
  1578  			// TODO: add other architectures?
  1579  			if b.Func.Config.arch != "386" && b.Func.Config.arch != "amd64" {
  1580  				break
  1581  			}
  1582  			divr := v.Args[1]
  1583  			divrLim, divrLimok := ft.limits[divr.ID]
  1584  			divd := v.Args[0]
  1585  			divdLim, divdLimok := ft.limits[divd.ID]
  1586  			if (divrLimok && (divrLim.max < -1 || divrLim.min > -1)) ||
  1587  				(divdLimok && divdLim.min > mostNegativeDividend[v.Op]) {
  1588  				// See DivisionNeedsFixUp in rewrite.go.
  1589  				// v.AuxInt = 1 means we have proved both that the divisor is not -1
  1590  				// and that the dividend is not the most negative integer,
  1591  				// so we do not need to add fix-up code.
  1592  				v.AuxInt = 1
  1593  				if b.Func.pass.debug > 0 {
  1594  					b.Func.Warnl(v.Pos, "Proved %v does not need fix-up", v.Op)
  1595  				}
  1596  			}
  1597  		}
  1598  		// Fold provable constant results.
  1599  		// Helps in cases where we reuse a value after branching on its equality.
  1600  		for i, arg := range v.Args {
  1601  			switch arg.Op {
  1602  			case OpConst64, OpConst32, OpConst16, OpConst8:
  1603  				continue
  1604  			}
  1605  			lim, ok := ft.limits[arg.ID]
  1606  			if !ok {
  1607  				continue
  1608  			}
  1609  
  1610  			var constValue int64
  1611  			typ := arg.Type
  1612  			bits := 8 * typ.Size()
  1613  			switch {
  1614  			case lim.min == lim.max:
  1615  				constValue = lim.min
  1616  			case lim.umin == lim.umax:
  1617  				// truncate then sign extand
  1618  				switch bits {
  1619  				case 64:
  1620  					constValue = int64(lim.umin)
  1621  				case 32:
  1622  					constValue = int64(int32(lim.umin))
  1623  				case 16:
  1624  					constValue = int64(int16(lim.umin))
  1625  				case 8:
  1626  					constValue = int64(int8(lim.umin))
  1627  				default:
  1628  					panic("unexpected integer size")
  1629  				}
  1630  			default:
  1631  				continue
  1632  			}
  1633  			var c *Value
  1634  			f := b.Func
  1635  			switch bits {
  1636  			case 64:
  1637  				c = f.ConstInt64(typ, constValue)
  1638  			case 32:
  1639  				c = f.ConstInt32(typ, int32(constValue))
  1640  			case 16:
  1641  				c = f.ConstInt16(typ, int16(constValue))
  1642  			case 8:
  1643  				c = f.ConstInt8(typ, int8(constValue))
  1644  			default:
  1645  				panic("unexpected integer size")
  1646  			}
  1647  			v.SetArg(i, c)
  1648  			if b.Func.pass.debug > 1 {
  1649  				b.Func.Warnl(v.Pos, "Proved %v's arg %d (%v) is constant %d", v, i, arg, constValue)
  1650  			}
  1651  		}
  1652  	}
  1653  
  1654  	if b.Kind != BlockIf {
  1655  		return
  1656  	}
  1657  
  1658  	// Consider outgoing edges from this block.
  1659  	parent := b
  1660  	for i, branch := range [...]branch{positive, negative} {
  1661  		child := parent.Succs[i].b
  1662  		if getBranch(sdom, parent, child) != unknown {
  1663  			// For edges to uniquely dominated blocks, we
  1664  			// already did this when we visited the child.
  1665  			continue
  1666  		}
  1667  		// For edges to other blocks, this can trim a branch
  1668  		// even if we couldn't get rid of the child itself.
  1669  		ft.checkpoint()
  1670  		addBranchRestrictions(ft, parent, branch)
  1671  		unsat := ft.unsat
  1672  		ft.restore()
  1673  		if unsat {
  1674  			// This branch is impossible, so remove it
  1675  			// from the block.
  1676  			removeBranch(parent, branch)
  1677  			// No point in considering the other branch.
  1678  			// (It *is* possible for both to be
  1679  			// unsatisfiable since the fact table is
  1680  			// incomplete. We could turn this into a
  1681  			// BlockExit, but it doesn't seem worth it.)
  1682  			break
  1683  		}
  1684  	}
  1685  }
  1686  
  1687  func removeBranch(b *Block, branch branch) {
  1688  	c := b.Controls[0]
  1689  	if b.Func.pass.debug > 0 {
  1690  		verb := "Proved"
  1691  		if branch == positive {
  1692  			verb = "Disproved"
  1693  		}
  1694  		if b.Func.pass.debug > 1 {
  1695  			b.Func.Warnl(b.Pos, "%s %s (%s)", verb, c.Op, c)
  1696  		} else {
  1697  			b.Func.Warnl(b.Pos, "%s %s", verb, c.Op)
  1698  		}
  1699  	}
  1700  	if c != nil && c.Pos.IsStmt() == src.PosIsStmt && c.Pos.SameFileAndLine(b.Pos) {
  1701  		// attempt to preserve statement marker.
  1702  		b.Pos = b.Pos.WithIsStmt()
  1703  	}
  1704  	if branch == positive || branch == negative {
  1705  		b.Kind = BlockFirst
  1706  		b.ResetControls()
  1707  		if branch == positive {
  1708  			b.swapSuccessors()
  1709  		}
  1710  	} else {
  1711  		// TODO: figure out how to remove an entry from a jump table
  1712  	}
  1713  }
  1714  
  1715  // isNonNegative reports whether v is known to be greater or equal to zero.
  1716  func isNonNegative(v *Value) bool {
  1717  	if !v.Type.IsInteger() {
  1718  		v.Fatalf("isNonNegative bad type: %v", v.Type)
  1719  	}
  1720  	// TODO: return true if !v.Type.IsSigned()
  1721  	// SSA isn't type-safe enough to do that now (issue 37753).
  1722  	// The checks below depend only on the pattern of bits.
  1723  
  1724  	switch v.Op {
  1725  	case OpConst64:
  1726  		return v.AuxInt >= 0
  1727  
  1728  	case OpConst32:
  1729  		return int32(v.AuxInt) >= 0
  1730  
  1731  	case OpConst16:
  1732  		return int16(v.AuxInt) >= 0
  1733  
  1734  	case OpConst8:
  1735  		return int8(v.AuxInt) >= 0
  1736  
  1737  	case OpStringLen, OpSliceLen, OpSliceCap,
  1738  		OpZeroExt8to64, OpZeroExt16to64, OpZeroExt32to64,
  1739  		OpZeroExt8to32, OpZeroExt16to32, OpZeroExt8to16,
  1740  		OpCtz64, OpCtz32, OpCtz16, OpCtz8,
  1741  		OpCtz64NonZero, OpCtz32NonZero, OpCtz16NonZero, OpCtz8NonZero,
  1742  		OpBitLen64, OpBitLen32, OpBitLen16, OpBitLen8:
  1743  		return true
  1744  
  1745  	case OpRsh64Ux64, OpRsh32Ux64:
  1746  		by := v.Args[1]
  1747  		return by.Op == OpConst64 && by.AuxInt > 0
  1748  
  1749  	case OpRsh64x64, OpRsh32x64, OpRsh8x64, OpRsh16x64, OpRsh32x32, OpRsh64x32,
  1750  		OpSignExt32to64, OpSignExt16to64, OpSignExt8to64, OpSignExt16to32, OpSignExt8to32:
  1751  		return isNonNegative(v.Args[0])
  1752  
  1753  	case OpAnd64, OpAnd32, OpAnd16, OpAnd8:
  1754  		return isNonNegative(v.Args[0]) || isNonNegative(v.Args[1])
  1755  
  1756  	case OpMod64, OpMod32, OpMod16, OpMod8,
  1757  		OpDiv64, OpDiv32, OpDiv16, OpDiv8,
  1758  		OpOr64, OpOr32, OpOr16, OpOr8,
  1759  		OpXor64, OpXor32, OpXor16, OpXor8:
  1760  		return isNonNegative(v.Args[0]) && isNonNegative(v.Args[1])
  1761  
  1762  		// We could handle OpPhi here, but the improvements from doing
  1763  		// so are very minor, and it is neither simple nor cheap.
  1764  	}
  1765  	return false
  1766  }
  1767  
  1768  // isConstDelta returns non-nil if v is equivalent to w+delta (signed).
  1769  func isConstDelta(v *Value) (w *Value, delta int64) {
  1770  	cop := OpConst64
  1771  	switch v.Op {
  1772  	case OpAdd32, OpSub32:
  1773  		cop = OpConst32
  1774  	case OpAdd16, OpSub16:
  1775  		cop = OpConst16
  1776  	case OpAdd8, OpSub8:
  1777  		cop = OpConst8
  1778  	}
  1779  	switch v.Op {
  1780  	case OpAdd64, OpAdd32, OpAdd16, OpAdd8:
  1781  		if v.Args[0].Op == cop {
  1782  			return v.Args[1], v.Args[0].AuxInt
  1783  		}
  1784  		if v.Args[1].Op == cop {
  1785  			return v.Args[0], v.Args[1].AuxInt
  1786  		}
  1787  	case OpSub64, OpSub32, OpSub16, OpSub8:
  1788  		if v.Args[1].Op == cop {
  1789  			aux := v.Args[1].AuxInt
  1790  			if aux != -aux { // Overflow; too bad
  1791  				return v.Args[0], -aux
  1792  			}
  1793  		}
  1794  	}
  1795  	return nil, 0
  1796  }
  1797  
  1798  // isCleanExt reports whether v is the result of a value-preserving
  1799  // sign or zero extension.
  1800  func isCleanExt(v *Value) bool {
  1801  	switch v.Op {
  1802  	case OpSignExt8to16, OpSignExt8to32, OpSignExt8to64,
  1803  		OpSignExt16to32, OpSignExt16to64, OpSignExt32to64:
  1804  		// signed -> signed is the only value-preserving sign extension
  1805  		return v.Args[0].Type.IsSigned() && v.Type.IsSigned()
  1806  
  1807  	case OpZeroExt8to16, OpZeroExt8to32, OpZeroExt8to64,
  1808  		OpZeroExt16to32, OpZeroExt16to64, OpZeroExt32to64:
  1809  		// unsigned -> signed/unsigned are value-preserving zero extensions
  1810  		return !v.Args[0].Type.IsSigned()
  1811  	}
  1812  	return false
  1813  }
  1814  

View as plain text