...

Source file src/cmd/compile/internal/ssagen/pgen.go

Documentation: cmd/compile/internal/ssagen

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssagen
     6  
     7  import (
     8  	"fmt"
     9  	"internal/buildcfg"
    10  	"os"
    11  	"sort"
    12  	"sync"
    13  
    14  	"cmd/compile/internal/base"
    15  	"cmd/compile/internal/ir"
    16  	"cmd/compile/internal/objw"
    17  	"cmd/compile/internal/ssa"
    18  	"cmd/compile/internal/types"
    19  	"cmd/internal/obj"
    20  	"cmd/internal/objabi"
    21  	"cmd/internal/src"
    22  )
    23  
    24  // cmpstackvarlt reports whether the stack variable a sorts before b.
    25  func cmpstackvarlt(a, b *ir.Name) bool {
    26  	// Sort non-autos before autos.
    27  	if needAlloc(a) != needAlloc(b) {
    28  		return needAlloc(b)
    29  	}
    30  
    31  	// If both are non-auto (e.g., parameters, results), then sort by
    32  	// frame offset (defined by ABI).
    33  	if !needAlloc(a) {
    34  		return a.FrameOffset() < b.FrameOffset()
    35  	}
    36  
    37  	// From here on, a and b are both autos (i.e., local variables).
    38  
    39  	// Sort used before unused (so AllocFrame can truncate unused
    40  	// variables).
    41  	if a.Used() != b.Used() {
    42  		return a.Used()
    43  	}
    44  
    45  	// Sort pointer-typed before non-pointer types.
    46  	// Keeps the stack's GC bitmap compact.
    47  	ap := a.Type().HasPointers()
    48  	bp := b.Type().HasPointers()
    49  	if ap != bp {
    50  		return ap
    51  	}
    52  
    53  	// Group variables that need zeroing, so we can efficiently zero
    54  	// them altogether.
    55  	ap = a.Needzero()
    56  	bp = b.Needzero()
    57  	if ap != bp {
    58  		return ap
    59  	}
    60  
    61  	// Sort variables in descending alignment order, so we can optimally
    62  	// pack variables into the frame.
    63  	if a.Type().Alignment() != b.Type().Alignment() {
    64  		return a.Type().Alignment() > b.Type().Alignment()
    65  	}
    66  
    67  	// Sort normal variables before open-coded-defer slots, so that the
    68  	// latter are grouped together and near the top of the frame (to
    69  	// minimize varint encoding of their varp offset).
    70  	if a.OpenDeferSlot() != b.OpenDeferSlot() {
    71  		return a.OpenDeferSlot()
    72  	}
    73  
    74  	// If a and b are both open-coded defer slots, then order them by
    75  	// index in descending order, so they'll be laid out in the frame in
    76  	// ascending order.
    77  	//
    78  	// Their index was saved in FrameOffset in state.openDeferSave.
    79  	if a.OpenDeferSlot() {
    80  		return a.FrameOffset() > b.FrameOffset()
    81  	}
    82  
    83  	// Tie breaker for stable results.
    84  	return a.Sym().Name < b.Sym().Name
    85  }
    86  
    87  // byStackVar implements sort.Interface for []*Node using cmpstackvarlt.
    88  type byStackVar []*ir.Name
    89  
    90  func (s byStackVar) Len() int           { return len(s) }
    91  func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
    92  func (s byStackVar) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
    93  
    94  // needAlloc reports whether n is within the current frame, for which we need to
    95  // allocate space. In particular, it excludes arguments and results, which are in
    96  // the callers frame.
    97  func needAlloc(n *ir.Name) bool {
    98  	if n.Op() != ir.ONAME {
    99  		base.FatalfAt(n.Pos(), "%v has unexpected Op %v", n, n.Op())
   100  	}
   101  
   102  	switch n.Class {
   103  	case ir.PAUTO:
   104  		return true
   105  	case ir.PPARAM:
   106  		return false
   107  	case ir.PPARAMOUT:
   108  		return n.IsOutputParamInRegisters()
   109  
   110  	default:
   111  		base.FatalfAt(n.Pos(), "%v has unexpected Class %v", n, n.Class)
   112  		return false
   113  	}
   114  }
   115  
   116  func (s *ssafn) AllocFrame(f *ssa.Func) {
   117  	s.stksize = 0
   118  	s.stkptrsize = 0
   119  	s.stkalign = int64(types.RegSize)
   120  	fn := s.curfn
   121  
   122  	// Mark the PAUTO's unused.
   123  	for _, ln := range fn.Dcl {
   124  		if ln.OpenDeferSlot() {
   125  			// Open-coded defer slots have indices that were assigned
   126  			// upfront during SSA construction, but the defer statement can
   127  			// later get removed during deadcode elimination (#61895). To
   128  			// keep their relative offsets correct, treat them all as used.
   129  			continue
   130  		}
   131  
   132  		if needAlloc(ln) {
   133  			ln.SetUsed(false)
   134  		}
   135  	}
   136  
   137  	for _, l := range f.RegAlloc {
   138  		if ls, ok := l.(ssa.LocalSlot); ok {
   139  			ls.N.SetUsed(true)
   140  		}
   141  	}
   142  
   143  	for _, b := range f.Blocks {
   144  		for _, v := range b.Values {
   145  			if n, ok := v.Aux.(*ir.Name); ok {
   146  				switch n.Class {
   147  				case ir.PPARAMOUT:
   148  					if n.IsOutputParamInRegisters() && v.Op == ssa.OpVarDef {
   149  						// ignore VarDef, look for "real" uses.
   150  						// TODO: maybe do this for PAUTO as well?
   151  						continue
   152  					}
   153  					fallthrough
   154  				case ir.PPARAM, ir.PAUTO:
   155  					n.SetUsed(true)
   156  				}
   157  			}
   158  		}
   159  	}
   160  
   161  	// Use sort.Stable instead of sort.Sort so stack layout (and thus
   162  	// compiler output) is less sensitive to frontend changes that
   163  	// introduce or remove unused variables.
   164  	sort.Stable(byStackVar(fn.Dcl))
   165  
   166  	// Reassign stack offsets of the locals that are used.
   167  	lastHasPtr := false
   168  	for i, n := range fn.Dcl {
   169  		if n.Op() != ir.ONAME || n.Class != ir.PAUTO && !(n.Class == ir.PPARAMOUT && n.IsOutputParamInRegisters()) {
   170  			// i.e., stack assign if AUTO, or if PARAMOUT in registers (which has no predefined spill locations)
   171  			continue
   172  		}
   173  		if !n.Used() {
   174  			fn.DebugInfo.(*ssa.FuncDebug).OptDcl = fn.Dcl[i:]
   175  			fn.Dcl = fn.Dcl[:i]
   176  			break
   177  		}
   178  
   179  		types.CalcSize(n.Type())
   180  		w := n.Type().Size()
   181  		if w >= types.MaxWidth || w < 0 {
   182  			base.Fatalf("bad width")
   183  		}
   184  		if w == 0 && lastHasPtr {
   185  			// Pad between a pointer-containing object and a zero-sized object.
   186  			// This prevents a pointer to the zero-sized object from being interpreted
   187  			// as a pointer to the pointer-containing object (and causing it
   188  			// to be scanned when it shouldn't be). See issue 24993.
   189  			w = 1
   190  		}
   191  		s.stksize += w
   192  		s.stksize = types.RoundUp(s.stksize, n.Type().Alignment())
   193  		if n.Type().Alignment() > int64(types.RegSize) {
   194  			s.stkalign = n.Type().Alignment()
   195  		}
   196  		if n.Type().HasPointers() {
   197  			s.stkptrsize = s.stksize
   198  			lastHasPtr = true
   199  		} else {
   200  			lastHasPtr = false
   201  		}
   202  		n.SetFrameOffset(-s.stksize)
   203  	}
   204  
   205  	s.stksize = types.RoundUp(s.stksize, s.stkalign)
   206  	s.stkptrsize = types.RoundUp(s.stkptrsize, s.stkalign)
   207  }
   208  
   209  const maxStackSize = 1 << 30
   210  
   211  // Compile builds an SSA backend function,
   212  // uses it to generate a plist,
   213  // and flushes that plist to machine code.
   214  // worker indicates which of the backend workers is doing the processing.
   215  func Compile(fn *ir.Func, worker int) {
   216  	f := buildssa(fn, worker)
   217  	// Note: check arg size to fix issue 25507.
   218  	if f.Frontend().(*ssafn).stksize >= maxStackSize || f.OwnAux.ArgWidth() >= maxStackSize {
   219  		largeStackFramesMu.Lock()
   220  		largeStackFrames = append(largeStackFrames, largeStack{locals: f.Frontend().(*ssafn).stksize, args: f.OwnAux.ArgWidth(), pos: fn.Pos()})
   221  		largeStackFramesMu.Unlock()
   222  		return
   223  	}
   224  	pp := objw.NewProgs(fn, worker)
   225  	defer pp.Free()
   226  	genssa(f, pp)
   227  	// Check frame size again.
   228  	// The check above included only the space needed for local variables.
   229  	// After genssa, the space needed includes local variables and the callee arg region.
   230  	// We must do this check prior to calling pp.Flush.
   231  	// If there are any oversized stack frames,
   232  	// the assembler may emit inscrutable complaints about invalid instructions.
   233  	if pp.Text.To.Offset >= maxStackSize {
   234  		largeStackFramesMu.Lock()
   235  		locals := f.Frontend().(*ssafn).stksize
   236  		largeStackFrames = append(largeStackFrames, largeStack{locals: locals, args: f.OwnAux.ArgWidth(), callee: pp.Text.To.Offset - locals, pos: fn.Pos()})
   237  		largeStackFramesMu.Unlock()
   238  		return
   239  	}
   240  
   241  	pp.Flush() // assemble, fill in boilerplate, etc.
   242  
   243  	// If we're compiling the package init function, search for any
   244  	// relocations that target global map init outline functions and
   245  	// turn them into weak relocs.
   246  	if fn.IsPackageInit() && base.Debug.WrapGlobalMapCtl != 1 {
   247  		weakenGlobalMapInitRelocs(fn)
   248  	}
   249  
   250  	// fieldtrack must be called after pp.Flush. See issue 20014.
   251  	fieldtrack(pp.Text.From.Sym, fn.FieldTrack)
   252  }
   253  
   254  // globalMapInitLsyms records the LSym of each map.init.NNN outlined
   255  // map initializer function created by the compiler.
   256  var globalMapInitLsyms map[*obj.LSym]struct{}
   257  
   258  // RegisterMapInitLsym records "s" in the set of outlined map initializer
   259  // functions.
   260  func RegisterMapInitLsym(s *obj.LSym) {
   261  	if globalMapInitLsyms == nil {
   262  		globalMapInitLsyms = make(map[*obj.LSym]struct{})
   263  	}
   264  	globalMapInitLsyms[s] = struct{}{}
   265  }
   266  
   267  // weakenGlobalMapInitRelocs walks through all of the relocations on a
   268  // given a package init function "fn" and looks for relocs that target
   269  // outlined global map initializer functions; if it finds any such
   270  // relocs, it flags them as R_WEAK.
   271  func weakenGlobalMapInitRelocs(fn *ir.Func) {
   272  	if globalMapInitLsyms == nil {
   273  		return
   274  	}
   275  	for i := range fn.LSym.R {
   276  		tgt := fn.LSym.R[i].Sym
   277  		if tgt == nil {
   278  			continue
   279  		}
   280  		if _, ok := globalMapInitLsyms[tgt]; !ok {
   281  			continue
   282  		}
   283  		if base.Debug.WrapGlobalMapDbg > 1 {
   284  			fmt.Fprintf(os.Stderr, "=-= weakify fn %v reloc %d %+v\n", fn, i,
   285  				fn.LSym.R[i])
   286  		}
   287  		// set the R_WEAK bit, leave rest of reloc type intact
   288  		fn.LSym.R[i].Type |= objabi.R_WEAK
   289  	}
   290  }
   291  
   292  // StackOffset returns the stack location of a LocalSlot relative to the
   293  // stack pointer, suitable for use in a DWARF location entry. This has nothing
   294  // to do with its offset in the user variable.
   295  func StackOffset(slot ssa.LocalSlot) int32 {
   296  	n := slot.N
   297  	var off int64
   298  	switch n.Class {
   299  	case ir.PPARAM, ir.PPARAMOUT:
   300  		if !n.IsOutputParamInRegisters() {
   301  			off = n.FrameOffset() + base.Ctxt.Arch.FixedFrameSize
   302  			break
   303  		}
   304  		fallthrough // PPARAMOUT in registers allocates like an AUTO
   305  	case ir.PAUTO:
   306  		off = n.FrameOffset()
   307  		if base.Ctxt.Arch.FixedFrameSize == 0 {
   308  			off -= int64(types.PtrSize)
   309  		}
   310  		if buildcfg.FramePointerEnabled {
   311  			off -= int64(types.PtrSize)
   312  		}
   313  	}
   314  	return int32(off + slot.Off)
   315  }
   316  
   317  // fieldtrack adds R_USEFIELD relocations to fnsym to record any
   318  // struct fields that it used.
   319  func fieldtrack(fnsym *obj.LSym, tracked map[*obj.LSym]struct{}) {
   320  	if fnsym == nil {
   321  		return
   322  	}
   323  	if !buildcfg.Experiment.FieldTrack || len(tracked) == 0 {
   324  		return
   325  	}
   326  
   327  	trackSyms := make([]*obj.LSym, 0, len(tracked))
   328  	for sym := range tracked {
   329  		trackSyms = append(trackSyms, sym)
   330  	}
   331  	sort.Slice(trackSyms, func(i, j int) bool { return trackSyms[i].Name < trackSyms[j].Name })
   332  	for _, sym := range trackSyms {
   333  		r := obj.Addrel(fnsym)
   334  		r.Sym = sym
   335  		r.Type = objabi.R_USEFIELD
   336  	}
   337  }
   338  
   339  // largeStack is info about a function whose stack frame is too large (rare).
   340  type largeStack struct {
   341  	locals int64
   342  	args   int64
   343  	callee int64
   344  	pos    src.XPos
   345  }
   346  
   347  var (
   348  	largeStackFramesMu sync.Mutex // protects largeStackFrames
   349  	largeStackFrames   []largeStack
   350  )
   351  
   352  func CheckLargeStacks() {
   353  	// Check whether any of the functions we have compiled have gigantic stack frames.
   354  	sort.Slice(largeStackFrames, func(i, j int) bool {
   355  		return largeStackFrames[i].pos.Before(largeStackFrames[j].pos)
   356  	})
   357  	for _, large := range largeStackFrames {
   358  		if large.callee != 0 {
   359  			base.ErrorfAt(large.pos, 0, "stack frame too large (>1GB): %d MB locals + %d MB args + %d MB callee", large.locals>>20, large.args>>20, large.callee>>20)
   360  		} else {
   361  			base.ErrorfAt(large.pos, 0, "stack frame too large (>1GB): %d MB locals + %d MB args", large.locals>>20, large.args>>20)
   362  		}
   363  	}
   364  }
   365  

View as plain text