...

Source file src/cmd/compile/internal/types2/named.go

Documentation: cmd/compile/internal/types2

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package types2
     6  
     7  import (
     8  	"cmd/compile/internal/syntax"
     9  	"sync"
    10  	"sync/atomic"
    11  )
    12  
    13  // Type-checking Named types is subtle, because they may be recursively
    14  // defined, and because their full details may be spread across multiple
    15  // declarations (via methods). For this reason they are type-checked lazily,
    16  // to avoid information being accessed before it is complete.
    17  //
    18  // Conceptually, it is helpful to think of named types as having two distinct
    19  // sets of information:
    20  //  - "LHS" information, defining their identity: Obj() and TypeArgs()
    21  //  - "RHS" information, defining their details: TypeParams(), Underlying(),
    22  //    and methods.
    23  //
    24  // In this taxonomy, LHS information is available immediately, but RHS
    25  // information is lazy. Specifically, a named type N may be constructed in any
    26  // of the following ways:
    27  //  1. type-checked from the source
    28  //  2. loaded eagerly from export data
    29  //  3. loaded lazily from export data (when using unified IR)
    30  //  4. instantiated from a generic type
    31  //
    32  // In cases 1, 3, and 4, it is possible that the underlying type or methods of
    33  // N may not be immediately available.
    34  //  - During type-checking, we allocate N before type-checking its underlying
    35  //    type or methods, so that we may resolve recursive references.
    36  //  - When loading from export data, we may load its methods and underlying
    37  //    type lazily using a provided load function.
    38  //  - After instantiating, we lazily expand the underlying type and methods
    39  //    (note that instances may be created while still in the process of
    40  //    type-checking the original type declaration).
    41  //
    42  // In cases 3 and 4 this lazy construction may also occur concurrently, due to
    43  // concurrent use of the type checker API (after type checking or importing has
    44  // finished). It is critical that we keep track of state, so that Named types
    45  // are constructed exactly once and so that we do not access their details too
    46  // soon.
    47  //
    48  // We achieve this by tracking state with an atomic state variable, and
    49  // guarding potentially concurrent calculations with a mutex. At any point in
    50  // time this state variable determines which data on N may be accessed. As
    51  // state monotonically progresses, any data available at state M may be
    52  // accessed without acquiring the mutex at state N, provided N >= M.
    53  //
    54  // GLOSSARY: Here are a few terms used in this file to describe Named types:
    55  //  - We say that a Named type is "instantiated" if it has been constructed by
    56  //    instantiating a generic named type with type arguments.
    57  //  - We say that a Named type is "declared" if it corresponds to a type
    58  //    declaration in the source. Instantiated named types correspond to a type
    59  //    instantiation in the source, not a declaration. But their Origin type is
    60  //    a declared type.
    61  //  - We say that a Named type is "resolved" if its RHS information has been
    62  //    loaded or fully type-checked. For Named types constructed from export
    63  //    data, this may involve invoking a loader function to extract information
    64  //    from export data. For instantiated named types this involves reading
    65  //    information from their origin.
    66  //  - We say that a Named type is "expanded" if it is an instantiated type and
    67  //    type parameters in its underlying type and methods have been substituted
    68  //    with the type arguments from the instantiation. A type may be partially
    69  //    expanded if some but not all of these details have been substituted.
    70  //    Similarly, we refer to these individual details (underlying type or
    71  //    method) as being "expanded".
    72  //  - When all information is known for a named type, we say it is "complete".
    73  //
    74  // Some invariants to keep in mind: each declared Named type has a single
    75  // corresponding object, and that object's type is the (possibly generic) Named
    76  // type. Declared Named types are identical if and only if their pointers are
    77  // identical. On the other hand, multiple instantiated Named types may be
    78  // identical even though their pointers are not identical. One has to use
    79  // Identical to compare them. For instantiated named types, their obj is a
    80  // synthetic placeholder that records their position of the corresponding
    81  // instantiation in the source (if they were constructed during type checking).
    82  //
    83  // To prevent infinite expansion of named instances that are created outside of
    84  // type-checking, instances share a Context with other instances created during
    85  // their expansion. Via the pidgeonhole principle, this guarantees that in the
    86  // presence of a cycle of named types, expansion will eventually find an
    87  // existing instance in the Context and short-circuit the expansion.
    88  //
    89  // Once an instance is complete, we can nil out this shared Context to unpin
    90  // memory, though this Context may still be held by other incomplete instances
    91  // in its "lineage".
    92  
    93  // A Named represents a named (defined) type.
    94  type Named struct {
    95  	check *Checker  // non-nil during type-checking; nil otherwise
    96  	obj   *TypeName // corresponding declared object for declared types; see above for instantiated types
    97  
    98  	// fromRHS holds the type (on RHS of declaration) this *Named type is derived
    99  	// from (for cycle reporting). Only used by validType, and therefore does not
   100  	// require synchronization.
   101  	fromRHS Type
   102  
   103  	// information for instantiated types; nil otherwise
   104  	inst *instance
   105  
   106  	mu         sync.Mutex     // guards all fields below
   107  	state_     uint32         // the current state of this type; must only be accessed atomically
   108  	underlying Type           // possibly a *Named during setup; never a *Named once set up completely
   109  	tparams    *TypeParamList // type parameters, or nil
   110  
   111  	// methods declared for this type (not the method set of this type)
   112  	// Signatures are type-checked lazily.
   113  	// For non-instantiated types, this is a fully populated list of methods. For
   114  	// instantiated types, methods are individually expanded when they are first
   115  	// accessed.
   116  	methods []*Func
   117  
   118  	// loader may be provided to lazily load type parameters, underlying type, and methods.
   119  	loader func(*Named) (tparams []*TypeParam, underlying Type, methods []*Func)
   120  }
   121  
   122  // instance holds information that is only necessary for instantiated named
   123  // types.
   124  type instance struct {
   125  	orig            *Named    // original, uninstantiated type
   126  	targs           *TypeList // type arguments
   127  	expandedMethods int       // number of expanded methods; expandedMethods <= len(orig.methods)
   128  	ctxt            *Context  // local Context; set to nil after full expansion
   129  }
   130  
   131  // namedState represents the possible states that a named type may assume.
   132  type namedState uint32
   133  
   134  const (
   135  	unresolved namedState = iota // tparams, underlying type and methods might be unavailable
   136  	resolved                     // resolve has run; methods might be incomplete (for instances)
   137  	complete                     // all data is known
   138  )
   139  
   140  // NewNamed returns a new named type for the given type name, underlying type, and associated methods.
   141  // If the given type name obj doesn't have a type yet, its type is set to the returned named type.
   142  // The underlying type must not be a *Named.
   143  func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
   144  	if asNamed(underlying) != nil {
   145  		panic("underlying type must not be *Named")
   146  	}
   147  	return (*Checker)(nil).newNamed(obj, underlying, methods)
   148  }
   149  
   150  // resolve resolves the type parameters, methods, and underlying type of n.
   151  // This information may be loaded from a provided loader function, or computed
   152  // from an origin type (in the case of instances).
   153  //
   154  // After resolution, the type parameters, methods, and underlying type of n are
   155  // accessible; but if n is an instantiated type, its methods may still be
   156  // unexpanded.
   157  func (n *Named) resolve() *Named {
   158  	if n.state() >= resolved { // avoid locking below
   159  		return n
   160  	}
   161  
   162  	// TODO(rfindley): if n.check is non-nil we can avoid locking here, since
   163  	// type-checking is not concurrent. Evaluate if this is worth doing.
   164  	n.mu.Lock()
   165  	defer n.mu.Unlock()
   166  
   167  	if n.state() >= resolved {
   168  		return n
   169  	}
   170  
   171  	if n.inst != nil {
   172  		assert(n.underlying == nil) // n is an unresolved instance
   173  		assert(n.loader == nil)     // instances are created by instantiation, in which case n.loader is nil
   174  
   175  		orig := n.inst.orig
   176  		orig.resolve()
   177  		underlying := n.expandUnderlying()
   178  
   179  		n.tparams = orig.tparams
   180  		n.underlying = underlying
   181  		n.fromRHS = orig.fromRHS // for cycle detection
   182  
   183  		if len(orig.methods) == 0 {
   184  			n.setState(complete) // nothing further to do
   185  			n.inst.ctxt = nil
   186  		} else {
   187  			n.setState(resolved)
   188  		}
   189  		return n
   190  	}
   191  
   192  	// TODO(mdempsky): Since we're passing n to the loader anyway
   193  	// (necessary because types2 expects the receiver type for methods
   194  	// on defined interface types to be the Named rather than the
   195  	// underlying Interface), maybe it should just handle calling
   196  	// SetTypeParams, SetUnderlying, and AddMethod instead?  Those
   197  	// methods would need to support reentrant calls though. It would
   198  	// also make the API more future-proof towards further extensions.
   199  	if n.loader != nil {
   200  		assert(n.underlying == nil)
   201  		assert(n.TypeArgs().Len() == 0) // instances are created by instantiation, in which case n.loader is nil
   202  
   203  		tparams, underlying, methods := n.loader(n)
   204  
   205  		n.tparams = bindTParams(tparams)
   206  		n.underlying = underlying
   207  		n.fromRHS = underlying // for cycle detection
   208  		n.methods = methods
   209  		n.loader = nil
   210  	}
   211  
   212  	n.setState(complete)
   213  	return n
   214  }
   215  
   216  // state atomically accesses the current state of the receiver.
   217  func (n *Named) state() namedState {
   218  	return namedState(atomic.LoadUint32(&n.state_))
   219  }
   220  
   221  // setState atomically stores the given state for n.
   222  // Must only be called while holding n.mu.
   223  func (n *Named) setState(state namedState) {
   224  	atomic.StoreUint32(&n.state_, uint32(state))
   225  }
   226  
   227  // newNamed is like NewNamed but with a *Checker receiver.
   228  func (check *Checker) newNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
   229  	typ := &Named{check: check, obj: obj, fromRHS: underlying, underlying: underlying, methods: methods}
   230  	if obj.typ == nil {
   231  		obj.typ = typ
   232  	}
   233  	// Ensure that typ is always sanity-checked.
   234  	if check != nil {
   235  		check.needsCleanup(typ)
   236  	}
   237  	return typ
   238  }
   239  
   240  // newNamedInstance creates a new named instance for the given origin and type
   241  // arguments, recording pos as the position of its synthetic object (for error
   242  // reporting).
   243  //
   244  // If set, expanding is the named type instance currently being expanded, that
   245  // led to the creation of this instance.
   246  func (check *Checker) newNamedInstance(pos syntax.Pos, orig *Named, targs []Type, expanding *Named) *Named {
   247  	assert(len(targs) > 0)
   248  
   249  	obj := NewTypeName(pos, orig.obj.pkg, orig.obj.name, nil)
   250  	inst := &instance{orig: orig, targs: newTypeList(targs)}
   251  
   252  	// Only pass the expanding context to the new instance if their packages
   253  	// match. Since type reference cycles are only possible within a single
   254  	// package, this is sufficient for the purposes of short-circuiting cycles.
   255  	// Avoiding passing the context in other cases prevents unnecessary coupling
   256  	// of types across packages.
   257  	if expanding != nil && expanding.Obj().pkg == obj.pkg {
   258  		inst.ctxt = expanding.inst.ctxt
   259  	}
   260  	typ := &Named{check: check, obj: obj, inst: inst}
   261  	obj.typ = typ
   262  	// Ensure that typ is always sanity-checked.
   263  	if check != nil {
   264  		check.needsCleanup(typ)
   265  	}
   266  	return typ
   267  }
   268  
   269  func (t *Named) cleanup() {
   270  	assert(t.inst == nil || t.inst.orig.inst == nil)
   271  	// Ensure that every defined type created in the course of type-checking has
   272  	// either non-*Named underlying type, or is unexpanded.
   273  	//
   274  	// This guarantees that we don't leak any types whose underlying type is
   275  	// *Named, because any unexpanded instances will lazily compute their
   276  	// underlying type by substituting in the underlying type of their origin.
   277  	// The origin must have either been imported or type-checked and expanded
   278  	// here, and in either case its underlying type will be fully expanded.
   279  	switch t.underlying.(type) {
   280  	case nil:
   281  		if t.TypeArgs().Len() == 0 {
   282  			panic("nil underlying")
   283  		}
   284  	case *Named:
   285  		t.under() // t.under may add entries to check.cleaners
   286  	}
   287  	t.check = nil
   288  }
   289  
   290  // Obj returns the type name for the declaration defining the named type t. For
   291  // instantiated types, this is same as the type name of the origin type.
   292  func (t *Named) Obj() *TypeName {
   293  	if t.inst == nil {
   294  		return t.obj
   295  	}
   296  	return t.inst.orig.obj
   297  }
   298  
   299  // Origin returns the generic type from which the named type t is
   300  // instantiated. If t is not an instantiated type, the result is t.
   301  func (t *Named) Origin() *Named {
   302  	if t.inst == nil {
   303  		return t
   304  	}
   305  	return t.inst.orig
   306  }
   307  
   308  // TypeParams returns the type parameters of the named type t, or nil.
   309  // The result is non-nil for an (originally) generic type even if it is instantiated.
   310  func (t *Named) TypeParams() *TypeParamList { return t.resolve().tparams }
   311  
   312  // SetTypeParams sets the type parameters of the named type t.
   313  // t must not have type arguments.
   314  func (t *Named) SetTypeParams(tparams []*TypeParam) {
   315  	assert(t.inst == nil)
   316  	t.resolve().tparams = bindTParams(tparams)
   317  }
   318  
   319  // TypeArgs returns the type arguments used to instantiate the named type t.
   320  func (t *Named) TypeArgs() *TypeList {
   321  	if t.inst == nil {
   322  		return nil
   323  	}
   324  	return t.inst.targs
   325  }
   326  
   327  // NumMethods returns the number of explicit methods defined for t.
   328  func (t *Named) NumMethods() int {
   329  	return len(t.Origin().resolve().methods)
   330  }
   331  
   332  // Method returns the i'th method of named type t for 0 <= i < t.NumMethods().
   333  //
   334  // For an ordinary or instantiated type t, the receiver base type of this
   335  // method is the named type t. For an uninstantiated generic type t, each
   336  // method receiver is instantiated with its receiver type parameters.
   337  func (t *Named) Method(i int) *Func {
   338  	t.resolve()
   339  
   340  	if t.state() >= complete {
   341  		return t.methods[i]
   342  	}
   343  
   344  	assert(t.inst != nil) // only instances should have incomplete methods
   345  	orig := t.inst.orig
   346  
   347  	t.mu.Lock()
   348  	defer t.mu.Unlock()
   349  
   350  	if len(t.methods) != len(orig.methods) {
   351  		assert(len(t.methods) == 0)
   352  		t.methods = make([]*Func, len(orig.methods))
   353  	}
   354  
   355  	if t.methods[i] == nil {
   356  		assert(t.inst.ctxt != nil) // we should still have a context remaining from the resolution phase
   357  		t.methods[i] = t.expandMethod(i)
   358  		t.inst.expandedMethods++
   359  
   360  		// Check if we've created all methods at this point. If we have, mark the
   361  		// type as fully expanded.
   362  		if t.inst.expandedMethods == len(orig.methods) {
   363  			t.setState(complete)
   364  			t.inst.ctxt = nil // no need for a context anymore
   365  		}
   366  	}
   367  
   368  	return t.methods[i]
   369  }
   370  
   371  // expandMethod substitutes type arguments in the i'th method for an
   372  // instantiated receiver.
   373  func (t *Named) expandMethod(i int) *Func {
   374  	// t.orig.methods is not lazy. origm is the method instantiated with its
   375  	// receiver type parameters (the "origin" method).
   376  	origm := t.inst.orig.Method(i)
   377  	assert(origm != nil)
   378  
   379  	check := t.check
   380  	// Ensure that the original method is type-checked.
   381  	if check != nil {
   382  		check.objDecl(origm, nil)
   383  	}
   384  
   385  	origSig := origm.typ.(*Signature)
   386  	rbase, _ := deref(origSig.Recv().Type())
   387  
   388  	// If rbase is t, then origm is already the instantiated method we're looking
   389  	// for. In this case, we return origm to preserve the invariant that
   390  	// traversing Method->Receiver Type->Method should get back to the same
   391  	// method.
   392  	//
   393  	// This occurs if t is instantiated with the receiver type parameters, as in
   394  	// the use of m in func (r T[_]) m() { r.m() }.
   395  	if rbase == t {
   396  		return origm
   397  	}
   398  
   399  	sig := origSig
   400  	// We can only substitute if we have a correspondence between type arguments
   401  	// and type parameters. This check is necessary in the presence of invalid
   402  	// code.
   403  	if origSig.RecvTypeParams().Len() == t.inst.targs.Len() {
   404  		smap := makeSubstMap(origSig.RecvTypeParams().list(), t.inst.targs.list())
   405  		var ctxt *Context
   406  		if check != nil {
   407  			ctxt = check.context()
   408  		}
   409  		sig = check.subst(origm.pos, origSig, smap, t, ctxt).(*Signature)
   410  	}
   411  
   412  	if sig == origSig {
   413  		// No substitution occurred, but we still need to create a new signature to
   414  		// hold the instantiated receiver.
   415  		copy := *origSig
   416  		sig = &copy
   417  	}
   418  
   419  	var rtyp Type
   420  	if origm.hasPtrRecv() {
   421  		rtyp = NewPointer(t)
   422  	} else {
   423  		rtyp = t
   424  	}
   425  
   426  	sig.recv = substVar(origSig.recv, rtyp)
   427  	return substFunc(origm, sig)
   428  }
   429  
   430  // SetUnderlying sets the underlying type and marks t as complete.
   431  // t must not have type arguments.
   432  func (t *Named) SetUnderlying(underlying Type) {
   433  	assert(t.inst == nil)
   434  	if underlying == nil {
   435  		panic("underlying type must not be nil")
   436  	}
   437  	if asNamed(underlying) != nil {
   438  		panic("underlying type must not be *Named")
   439  	}
   440  	t.resolve().underlying = underlying
   441  	if t.fromRHS == nil {
   442  		t.fromRHS = underlying // for cycle detection
   443  	}
   444  }
   445  
   446  // AddMethod adds method m unless it is already in the method list.
   447  // t must not have type arguments.
   448  func (t *Named) AddMethod(m *Func) {
   449  	assert(t.inst == nil)
   450  	t.resolve()
   451  	if i, _ := lookupMethod(t.methods, m.pkg, m.name, false); i < 0 {
   452  		t.methods = append(t.methods, m)
   453  	}
   454  }
   455  
   456  // TODO(gri) Investigate if Unalias can be moved to where underlying is set.
   457  func (t *Named) Underlying() Type { return Unalias(t.resolve().underlying) }
   458  func (t *Named) String() string   { return TypeString(t, nil) }
   459  
   460  // ----------------------------------------------------------------------------
   461  // Implementation
   462  //
   463  // TODO(rfindley): reorganize the loading and expansion methods under this
   464  // heading.
   465  
   466  // under returns the expanded underlying type of n0; possibly by following
   467  // forward chains of named types. If an underlying type is found, resolve
   468  // the chain by setting the underlying type for each defined type in the
   469  // chain before returning it. If no underlying type is found or a cycle
   470  // is detected, the result is Typ[Invalid]. If a cycle is detected and
   471  // n0.check != nil, the cycle is reported.
   472  //
   473  // This is necessary because the underlying type of named may be itself a
   474  // named type that is incomplete:
   475  //
   476  //	type (
   477  //		A B
   478  //		B *C
   479  //		C A
   480  //	)
   481  //
   482  // The type of C is the (named) type of A which is incomplete,
   483  // and which has as its underlying type the named type B.
   484  func (n0 *Named) under() Type {
   485  	u := n0.Underlying()
   486  
   487  	// If the underlying type of a defined type is not a defined
   488  	// (incl. instance) type, then that is the desired underlying
   489  	// type.
   490  	var n1 *Named
   491  	switch u1 := u.(type) {
   492  	case nil:
   493  		// After expansion via Underlying(), we should never encounter a nil
   494  		// underlying.
   495  		panic("nil underlying")
   496  	default:
   497  		// common case
   498  		return u
   499  	case *Named:
   500  		// handled below
   501  		n1 = u1
   502  	}
   503  
   504  	if n0.check == nil {
   505  		panic("Named.check == nil but type is incomplete")
   506  	}
   507  
   508  	// Invariant: after this point n0 as well as any named types in its
   509  	// underlying chain should be set up when this function exits.
   510  	check := n0.check
   511  	n := n0
   512  
   513  	seen := make(map[*Named]int) // types that need their underlying type resolved
   514  	var path []Object            // objects encountered, for cycle reporting
   515  
   516  loop:
   517  	for {
   518  		seen[n] = len(seen)
   519  		path = append(path, n.obj)
   520  		n = n1
   521  		if i, ok := seen[n]; ok {
   522  			// cycle
   523  			check.cycleError(path[i:])
   524  			u = Typ[Invalid]
   525  			break
   526  		}
   527  		u = n.Underlying()
   528  		switch u1 := u.(type) {
   529  		case nil:
   530  			u = Typ[Invalid]
   531  			break loop
   532  		default:
   533  			break loop
   534  		case *Named:
   535  			// Continue collecting *Named types in the chain.
   536  			n1 = u1
   537  		}
   538  	}
   539  
   540  	for n := range seen {
   541  		// We should never have to update the underlying type of an imported type;
   542  		// those underlying types should have been resolved during the import.
   543  		// Also, doing so would lead to a race condition (was go.dev/issue/31749).
   544  		// Do this check always, not just in debug mode (it's cheap).
   545  		if n.obj.pkg != check.pkg {
   546  			panic("imported type with unresolved underlying type")
   547  		}
   548  		n.underlying = u
   549  	}
   550  
   551  	return u
   552  }
   553  
   554  func (n *Named) lookupMethod(pkg *Package, name string, foldCase bool) (int, *Func) {
   555  	n.resolve()
   556  	// If n is an instance, we may not have yet instantiated all of its methods.
   557  	// Look up the method index in orig, and only instantiate method at the
   558  	// matching index (if any).
   559  	i, _ := lookupMethod(n.Origin().methods, pkg, name, foldCase)
   560  	if i < 0 {
   561  		return -1, nil
   562  	}
   563  	// For instances, m.Method(i) will be different from the orig method.
   564  	return i, n.Method(i)
   565  }
   566  
   567  // context returns the type-checker context.
   568  func (check *Checker) context() *Context {
   569  	if check.ctxt == nil {
   570  		check.ctxt = NewContext()
   571  	}
   572  	return check.ctxt
   573  }
   574  
   575  // expandUnderlying substitutes type arguments in the underlying type n.orig,
   576  // returning the result. Returns Typ[Invalid] if there was an error.
   577  func (n *Named) expandUnderlying() Type {
   578  	check := n.check
   579  	if check != nil && check.conf.Trace {
   580  		check.trace(n.obj.pos, "-- Named.expandUnderlying %s", n)
   581  		check.indent++
   582  		defer func() {
   583  			check.indent--
   584  			check.trace(n.obj.pos, "=> %s (tparams = %s, under = %s)", n, n.tparams.list(), n.underlying)
   585  		}()
   586  	}
   587  
   588  	assert(n.inst.orig.underlying != nil)
   589  	if n.inst.ctxt == nil {
   590  		n.inst.ctxt = NewContext()
   591  	}
   592  
   593  	orig := n.inst.orig
   594  	targs := n.inst.targs
   595  
   596  	if asNamed(orig.underlying) != nil {
   597  		// We should only get a Named underlying type here during type checking
   598  		// (for example, in recursive type declarations).
   599  		assert(check != nil)
   600  	}
   601  
   602  	if orig.tparams.Len() != targs.Len() {
   603  		// Mismatching arg and tparam length may be checked elsewhere.
   604  		return Typ[Invalid]
   605  	}
   606  
   607  	// Ensure that an instance is recorded before substituting, so that we
   608  	// resolve n for any recursive references.
   609  	h := n.inst.ctxt.instanceHash(orig, targs.list())
   610  	n2 := n.inst.ctxt.update(h, orig, n.TypeArgs().list(), n)
   611  	assert(n == n2)
   612  
   613  	smap := makeSubstMap(orig.tparams.list(), targs.list())
   614  	var ctxt *Context
   615  	if check != nil {
   616  		ctxt = check.context()
   617  	}
   618  	underlying := n.check.subst(n.obj.pos, orig.underlying, smap, n, ctxt)
   619  	// If the underlying type of n is an interface, we need to set the receiver of
   620  	// its methods accurately -- we set the receiver of interface methods on
   621  	// the RHS of a type declaration to the defined type.
   622  	if iface, _ := underlying.(*Interface); iface != nil {
   623  		if methods, copied := replaceRecvType(iface.methods, orig, n); copied {
   624  			// If the underlying type doesn't actually use type parameters, it's
   625  			// possible that it wasn't substituted. In this case we need to create
   626  			// a new *Interface before modifying receivers.
   627  			if iface == orig.underlying {
   628  				old := iface
   629  				iface = check.newInterface()
   630  				iface.embeddeds = old.embeddeds
   631  				assert(old.complete) // otherwise we are copying incomplete data
   632  				iface.complete = old.complete
   633  				iface.implicit = old.implicit // should be false but be conservative
   634  				underlying = iface
   635  			}
   636  			iface.methods = methods
   637  			iface.tset = nil // recompute type set with new methods
   638  
   639  			// If check != nil, check.newInterface will have saved the interface for later completion.
   640  			if check == nil { // golang/go#61561: all newly created interfaces must be fully evaluated
   641  				iface.typeSet()
   642  			}
   643  		}
   644  	}
   645  
   646  	return underlying
   647  }
   648  
   649  // safeUnderlying returns the underlying type of typ without expanding
   650  // instances, to avoid infinite recursion.
   651  //
   652  // TODO(rfindley): eliminate this function or give it a better name.
   653  func safeUnderlying(typ Type) Type {
   654  	if t := asNamed(typ); t != nil {
   655  		return t.underlying
   656  	}
   657  	return typ.Underlying()
   658  }
   659  

View as plain text