// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements typechecking of statements. package types2 import ( "cmd/compile/internal/syntax" "go/constant" "internal/buildcfg" . "internal/types/errors" "sort" ) func (check *Checker) funcBody(decl *declInfo, name string, sig *Signature, body *syntax.BlockStmt, iota constant.Value) { if check.conf.IgnoreFuncBodies { panic("function body not ignored") } if check.conf.Trace { check.trace(body.Pos(), "-- %s: %s", name, sig) } // save/restore current environment and set up function environment // (and use 0 indentation at function start) defer func(env environment, indent int) { check.environment = env check.indent = indent }(check.environment, check.indent) check.environment = environment{ decl: decl, scope: sig.scope, iota: iota, sig: sig, } check.indent = 0 check.stmtList(0, body.List) if check.hasLabel && !check.conf.IgnoreBranchErrors { check.labels(body) } if sig.results.Len() > 0 && !check.isTerminating(body, "") { check.error(body.Rbrace, MissingReturn, "missing return") } // spec: "Implementation restriction: A compiler may make it illegal to // declare a variable inside a function body if the variable is never used." check.usage(sig.scope) } func (check *Checker) usage(scope *Scope) { var unused []*Var for name, elem := range scope.elems { elem = resolve(name, elem) if v, _ := elem.(*Var); v != nil && !v.used { unused = append(unused, v) } } sort.Slice(unused, func(i, j int) bool { return cmpPos(unused[i].pos, unused[j].pos) < 0 }) for _, v := range unused { check.softErrorf(v.pos, UnusedVar, "%s declared and not used", v.name) } for _, scope := range scope.children { // Don't go inside function literal scopes a second time; // they are handled explicitly by funcBody. if !scope.isFunc { check.usage(scope) } } } // stmtContext is a bitset describing which // control-flow statements are permissible, // and provides additional context information // for better error messages. type stmtContext uint const ( // permissible control-flow statements breakOk stmtContext = 1 << iota continueOk fallthroughOk // additional context information finalSwitchCase inTypeSwitch ) func (check *Checker) simpleStmt(s syntax.Stmt) { if s != nil { check.stmt(0, s) } } func trimTrailingEmptyStmts(list []syntax.Stmt) []syntax.Stmt { for i := len(list); i > 0; i-- { if _, ok := list[i-1].(*syntax.EmptyStmt); !ok { return list[:i] } } return nil } func (check *Checker) stmtList(ctxt stmtContext, list []syntax.Stmt) { ok := ctxt&fallthroughOk != 0 inner := ctxt &^ fallthroughOk list = trimTrailingEmptyStmts(list) // trailing empty statements are "invisible" to fallthrough analysis for i, s := range list { inner := inner if ok && i+1 == len(list) { inner |= fallthroughOk } check.stmt(inner, s) } } func (check *Checker) multipleSwitchDefaults(list []*syntax.CaseClause) { var first *syntax.CaseClause for _, c := range list { if c.Cases == nil { if first != nil { check.errorf(c, DuplicateDefault, "multiple defaults (first at %s)", first.Pos()) // TODO(gri) probably ok to bail out after first error (and simplify this code) } else { first = c } } } } func (check *Checker) multipleSelectDefaults(list []*syntax.CommClause) { var first *syntax.CommClause for _, c := range list { if c.Comm == nil { if first != nil { check.errorf(c, DuplicateDefault, "multiple defaults (first at %s)", first.Pos()) // TODO(gri) probably ok to bail out after first error (and simplify this code) } else { first = c } } } } func (check *Checker) openScope(node syntax.Node, comment string) { check.openScopeUntil(node, syntax.EndPos(node), comment) } func (check *Checker) openScopeUntil(node syntax.Node, end syntax.Pos, comment string) { scope := NewScope(check.scope, node.Pos(), end, comment) check.recordScope(node, scope) check.scope = scope } func (check *Checker) closeScope() { check.scope = check.scope.Parent() } func (check *Checker) suspendedCall(keyword string, call syntax.Expr) { code := InvalidDefer if keyword == "go" { code = InvalidGo } if _, ok := call.(*syntax.CallExpr); !ok { check.errorf(call, code, "expression in %s must be function call", keyword) check.use(call) return } var x operand var msg string switch check.rawExpr(nil, &x, call, nil, false) { case conversion: msg = "requires function call, not conversion" case expression: msg = "discards result of" code = UnusedResults case statement: return default: unreachable() } check.errorf(&x, code, "%s %s %s", keyword, msg, &x) } // goVal returns the Go value for val, or nil. func goVal(val constant.Value) interface{} { // val should exist, but be conservative and check if val == nil { return nil } // Match implementation restriction of other compilers. // gc only checks duplicates for integer, floating-point // and string values, so only create Go values for these // types. switch val.Kind() { case constant.Int: if x, ok := constant.Int64Val(val); ok { return x } if x, ok := constant.Uint64Val(val); ok { return x } case constant.Float: if x, ok := constant.Float64Val(val); ok { return x } case constant.String: return constant.StringVal(val) } return nil } // A valueMap maps a case value (of a basic Go type) to a list of positions // where the same case value appeared, together with the corresponding case // types. // Since two case values may have the same "underlying" value but different // types we need to also check the value's types (e.g., byte(1) vs myByte(1)) // when the switch expression is of interface type. type ( valueMap map[interface{}][]valueType // underlying Go value -> valueType valueType struct { pos syntax.Pos typ Type } ) func (check *Checker) caseValues(x *operand, values []syntax.Expr, seen valueMap) { L: for _, e := range values { var v operand check.expr(nil, &v, e) if x.mode == invalid || v.mode == invalid { continue L } check.convertUntyped(&v, x.typ) if v.mode == invalid { continue L } // Order matters: By comparing v against x, error positions are at the case values. res := v // keep original v unchanged check.comparison(&res, x, syntax.Eql, true) if res.mode == invalid { continue L } if v.mode != constant_ { continue L // we're done } // look for duplicate values if val := goVal(v.val); val != nil { // look for duplicate types for a given value // (quadratic algorithm, but these lists tend to be very short) for _, vt := range seen[val] { if Identical(v.typ, vt.typ) { var err error_ err.code = DuplicateCase err.errorf(&v, "duplicate case %s in expression switch", &v) err.errorf(vt.pos, "previous case") check.report(&err) continue L } } seen[val] = append(seen[val], valueType{v.Pos(), v.typ}) } } } // isNil reports whether the expression e denotes the predeclared value nil. func (check *Checker) isNil(e syntax.Expr) bool { // The only way to express the nil value is by literally writing nil (possibly in parentheses). if name, _ := syntax.Unparen(e).(*syntax.Name); name != nil { _, ok := check.lookup(name.Value).(*Nil) return ok } return false } // If the type switch expression is invalid, x is nil. func (check *Checker) caseTypes(x *operand, types []syntax.Expr, seen map[Type]syntax.Expr) (T Type) { var dummy operand L: for _, e := range types { // The spec allows the value nil instead of a type. if check.isNil(e) { T = nil check.expr(nil, &dummy, e) // run e through expr so we get the usual Info recordings } else { T = check.varType(e) if !isValid(T) { continue L } } // look for duplicate types // (quadratic algorithm, but type switches tend to be reasonably small) for t, other := range seen { if T == nil && t == nil || T != nil && t != nil && Identical(T, t) { // talk about "case" rather than "type" because of nil case Ts := "nil" if T != nil { Ts = TypeString(T, check.qualifier) } var err error_ err.code = DuplicateCase err.errorf(e, "duplicate case %s in type switch", Ts) err.errorf(other, "previous case") check.report(&err) continue L } } seen[T] = e if x != nil && T != nil { check.typeAssertion(e, x, T, true) } } return } // TODO(gri) Once we are certain that typeHash is correct in all situations, use this version of caseTypes instead. // (Currently it may be possible that different types have identical names and import paths due to ImporterFrom.) // // func (check *Checker) caseTypes(x *operand, xtyp *Interface, types []syntax.Expr, seen map[string]syntax.Expr) (T Type) { // var dummy operand // L: // for _, e := range types { // // The spec allows the value nil instead of a type. // var hash string // if check.isNil(e) { // check.expr(nil, &dummy, e) // run e through expr so we get the usual Info recordings // T = nil // hash = "" // avoid collision with a type named nil // } else { // T = check.varType(e) // if !isValid(T) { // continue L // } // hash = typeHash(T, nil) // } // // look for duplicate types // if other := seen[hash]; other != nil { // // talk about "case" rather than "type" because of nil case // Ts := "nil" // if T != nil { // Ts = TypeString(T, check.qualifier) // } // var err error_ // err.code = _DuplicateCase // err.errorf(e, "duplicate case %s in type switch", Ts) // err.errorf(other, "previous case") // check.report(&err) // continue L // } // seen[hash] = e // if T != nil { // check.typeAssertion(e, x, xtyp, T, true) // } // } // return // } // stmt typechecks statement s. func (check *Checker) stmt(ctxt stmtContext, s syntax.Stmt) { // statements must end with the same top scope as they started with if debug { defer func(scope *Scope) { // don't check if code is panicking if p := recover(); p != nil { panic(p) } assert(scope == check.scope) }(check.scope) } // process collected function literals before scope changes defer check.processDelayed(len(check.delayed)) // reset context for statements of inner blocks inner := ctxt &^ (fallthroughOk | finalSwitchCase | inTypeSwitch) switch s := s.(type) { case *syntax.EmptyStmt: // ignore case *syntax.DeclStmt: check.declStmt(s.DeclList) case *syntax.LabeledStmt: check.hasLabel = true check.stmt(ctxt, s.Stmt) case *syntax.ExprStmt: // spec: "With the exception of specific built-in functions, // function and method calls and receive operations can appear // in statement context. Such statements may be parenthesized." var x operand kind := check.rawExpr(nil, &x, s.X, nil, false) var msg string var code Code switch x.mode { default: if kind == statement { return } msg = "is not used" code = UnusedExpr case builtin: msg = "must be called" code = UncalledBuiltin case typexpr: msg = "is not an expression" code = NotAnExpr } check.errorf(&x, code, "%s %s", &x, msg) case *syntax.SendStmt: var ch, val operand check.expr(nil, &ch, s.Chan) check.expr(nil, &val, s.Value) if ch.mode == invalid || val.mode == invalid { return } u := coreType(ch.typ) if u == nil { check.errorf(s, InvalidSend, invalidOp+"cannot send to %s: no core type", &ch) return } uch, _ := u.(*Chan) if uch == nil { check.errorf(s, InvalidSend, invalidOp+"cannot send to non-channel %s", &ch) return } if uch.dir == RecvOnly { check.errorf(s, InvalidSend, invalidOp+"cannot send to receive-only channel %s", &ch) return } check.assignment(&val, uch.elem, "send") case *syntax.AssignStmt: if s.Rhs == nil { // x++ or x-- // (no need to call unpackExpr as s.Lhs must be single-valued) var x operand check.expr(nil, &x, s.Lhs) if x.mode == invalid { return } if !allNumeric(x.typ) { check.errorf(s.Lhs, NonNumericIncDec, invalidOp+"%s%s%s (non-numeric type %s)", s.Lhs, s.Op, s.Op, x.typ) return } check.assignVar(s.Lhs, nil, &x, "assignment") return } lhs := syntax.UnpackListExpr(s.Lhs) rhs := syntax.UnpackListExpr(s.Rhs) switch s.Op { case 0: check.assignVars(lhs, rhs) return case syntax.Def: check.shortVarDecl(s.Pos(), lhs, rhs) return } // assignment operations if len(lhs) != 1 || len(rhs) != 1 { check.errorf(s, MultiValAssignOp, "assignment operation %s requires single-valued expressions", s.Op) return } var x operand check.binary(&x, nil, lhs[0], rhs[0], s.Op) check.assignVar(lhs[0], nil, &x, "assignment") case *syntax.CallStmt: kind := "go" if s.Tok == syntax.Defer { kind = "defer" } check.suspendedCall(kind, s.Call) case *syntax.ReturnStmt: res := check.sig.results // Return with implicit results allowed for function with named results. // (If one is named, all are named.) results := syntax.UnpackListExpr(s.Results) if len(results) == 0 && res.Len() > 0 && res.vars[0].name != "" { // spec: "Implementation restriction: A compiler may disallow an empty expression // list in a "return" statement if a different entity (constant, type, or variable) // with the same name as a result parameter is in scope at the place of the return." for _, obj := range res.vars { if alt := check.lookup(obj.name); alt != nil && alt != obj { var err error_ err.code = OutOfScopeResult err.errorf(s, "result parameter %s not in scope at return", obj.name) err.errorf(alt, "inner declaration of %s", obj) check.report(&err) // ok to continue } } } else { var lhs []*Var if res.Len() > 0 { lhs = res.vars } check.initVars(lhs, results, s) } case *syntax.BranchStmt: if s.Label != nil { check.hasLabel = true break // checked in 2nd pass (check.labels) } if check.conf.IgnoreBranchErrors { break } switch s.Tok { case syntax.Break: if ctxt&breakOk == 0 { check.error(s, MisplacedBreak, "break not in for, switch, or select statement") } case syntax.Continue: if ctxt&continueOk == 0 { check.error(s, MisplacedContinue, "continue not in for statement") } case syntax.Fallthrough: if ctxt&fallthroughOk == 0 { var msg string switch { case ctxt&finalSwitchCase != 0: msg = "cannot fallthrough final case in switch" case ctxt&inTypeSwitch != 0: msg = "cannot fallthrough in type switch" default: msg = "fallthrough statement out of place" } check.error(s, MisplacedFallthrough, msg) } case syntax.Goto: // goto's must have labels, should have been caught above fallthrough default: check.errorf(s, InvalidSyntaxTree, "branch statement: %s", s.Tok) } case *syntax.BlockStmt: check.openScope(s, "block") defer check.closeScope() check.stmtList(inner, s.List) case *syntax.IfStmt: check.openScope(s, "if") defer check.closeScope() check.simpleStmt(s.Init) var x operand check.expr(nil, &x, s.Cond) if x.mode != invalid && !allBoolean(x.typ) { check.error(s.Cond, InvalidCond, "non-boolean condition in if statement") } check.stmt(inner, s.Then) // The parser produces a correct AST but if it was modified // elsewhere the else branch may be invalid. Check again. switch s.Else.(type) { case nil: // valid or error already reported case *syntax.IfStmt, *syntax.BlockStmt: check.stmt(inner, s.Else) default: check.error(s.Else, InvalidSyntaxTree, "invalid else branch in if statement") } case *syntax.SwitchStmt: inner |= breakOk check.openScope(s, "switch") defer check.closeScope() check.simpleStmt(s.Init) if g, _ := s.Tag.(*syntax.TypeSwitchGuard); g != nil { check.typeSwitchStmt(inner|inTypeSwitch, s, g) } else { check.switchStmt(inner, s) } case *syntax.SelectStmt: inner |= breakOk check.multipleSelectDefaults(s.Body) for i, clause := range s.Body { if clause == nil { continue // error reported before } // clause.Comm must be a SendStmt, RecvStmt, or default case valid := false var rhs syntax.Expr // rhs of RecvStmt, or nil switch s := clause.Comm.(type) { case nil, *syntax.SendStmt: valid = true case *syntax.AssignStmt: if _, ok := s.Rhs.(*syntax.ListExpr); !ok { rhs = s.Rhs } case *syntax.ExprStmt: rhs = s.X } // if present, rhs must be a receive operation if rhs != nil { if x, _ := syntax.Unparen(rhs).(*syntax.Operation); x != nil && x.Y == nil && x.Op == syntax.Recv { valid = true } } if !valid { check.error(clause.Comm, InvalidSelectCase, "select case must be send or receive (possibly with assignment)") continue } end := s.Rbrace if i+1 < len(s.Body) { end = s.Body[i+1].Pos() } check.openScopeUntil(clause, end, "case") if clause.Comm != nil { check.stmt(inner, clause.Comm) } check.stmtList(inner, clause.Body) check.closeScope() } case *syntax.ForStmt: inner |= breakOk | continueOk if rclause, _ := s.Init.(*syntax.RangeClause); rclause != nil { check.rangeStmt(inner, s, rclause) break } check.openScope(s, "for") defer check.closeScope() check.simpleStmt(s.Init) if s.Cond != nil { var x operand check.expr(nil, &x, s.Cond) if x.mode != invalid && !allBoolean(x.typ) { check.error(s.Cond, InvalidCond, "non-boolean condition in for statement") } } check.simpleStmt(s.Post) // spec: "The init statement may be a short variable // declaration, but the post statement must not." if s, _ := s.Post.(*syntax.AssignStmt); s != nil && s.Op == syntax.Def { // The parser already reported an error. check.use(s.Lhs) // avoid follow-up errors } check.stmt(inner, s.Body) default: check.error(s, InvalidSyntaxTree, "invalid statement") } } func (check *Checker) switchStmt(inner stmtContext, s *syntax.SwitchStmt) { // init statement already handled var x operand if s.Tag != nil { check.expr(nil, &x, s.Tag) // By checking assignment of x to an invisible temporary // (as a compiler would), we get all the relevant checks. check.assignment(&x, nil, "switch expression") if x.mode != invalid && !Comparable(x.typ) && !hasNil(x.typ) { check.errorf(&x, InvalidExprSwitch, "cannot switch on %s (%s is not comparable)", &x, x.typ) x.mode = invalid } } else { // spec: "A missing switch expression is // equivalent to the boolean value true." x.mode = constant_ x.typ = Typ[Bool] x.val = constant.MakeBool(true) // TODO(gri) should have a better position here pos := s.Rbrace if len(s.Body) > 0 { pos = s.Body[0].Pos() } x.expr = syntax.NewName(pos, "true") } check.multipleSwitchDefaults(s.Body) seen := make(valueMap) // map of seen case values to positions and types for i, clause := range s.Body { if clause == nil { check.error(clause, InvalidSyntaxTree, "incorrect expression switch case") continue } end := s.Rbrace inner := inner if i+1 < len(s.Body) { end = s.Body[i+1].Pos() inner |= fallthroughOk } else { inner |= finalSwitchCase } check.caseValues(&x, syntax.UnpackListExpr(clause.Cases), seen) check.openScopeUntil(clause, end, "case") check.stmtList(inner, clause.Body) check.closeScope() } } func (check *Checker) typeSwitchStmt(inner stmtContext, s *syntax.SwitchStmt, guard *syntax.TypeSwitchGuard) { // init statement already handled // A type switch guard must be of the form: // // TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . // \__lhs__/ \___rhs___/ // check lhs, if any lhs := guard.Lhs if lhs != nil { if lhs.Value == "_" { // _ := x.(type) is an invalid short variable declaration check.softErrorf(lhs, NoNewVar, "no new variable on left side of :=") lhs = nil // avoid declared and not used error below } else { check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause } } // check rhs var x operand check.expr(nil, &x, guard.X) if x.mode == invalid { return } // TODO(gri) we may want to permit type switches on type parameter values at some point var sx *operand // switch expression against which cases are compared against; nil if invalid if isTypeParam(x.typ) { check.errorf(&x, InvalidTypeSwitch, "cannot use type switch on type parameter value %s", &x) } else { if _, ok := under(x.typ).(*Interface); ok { sx = &x } else { check.errorf(&x, InvalidTypeSwitch, "%s is not an interface", &x) } } check.multipleSwitchDefaults(s.Body) var lhsVars []*Var // list of implicitly declared lhs variables seen := make(map[Type]syntax.Expr) // map of seen types to positions for i, clause := range s.Body { if clause == nil { check.error(s, InvalidSyntaxTree, "incorrect type switch case") continue } end := s.Rbrace if i+1 < len(s.Body) { end = s.Body[i+1].Pos() } // Check each type in this type switch case. cases := syntax.UnpackListExpr(clause.Cases) T := check.caseTypes(sx, cases, seen) check.openScopeUntil(clause, end, "case") // If lhs exists, declare a corresponding variable in the case-local scope. if lhs != nil { // spec: "The TypeSwitchGuard may include a short variable declaration. // When that form is used, the variable is declared at the beginning of // the implicit block in each clause. In clauses with a case listing // exactly one type, the variable has that type; otherwise, the variable // has the type of the expression in the TypeSwitchGuard." if len(cases) != 1 || T == nil { T = x.typ } obj := NewVar(lhs.Pos(), check.pkg, lhs.Value, T) // TODO(mdempsky): Just use clause.Colon? Why did I even suggest // "at the end of the TypeSwitchCase" in go.dev/issue/16794 instead? scopePos := clause.Pos() // for default clause (len(List) == 0) if n := len(cases); n > 0 { scopePos = syntax.EndPos(cases[n-1]) } check.declare(check.scope, nil, obj, scopePos) check.recordImplicit(clause, obj) // For the "declared and not used" error, all lhs variables act as // one; i.e., if any one of them is 'used', all of them are 'used'. // Collect them for later analysis. lhsVars = append(lhsVars, obj) } check.stmtList(inner, clause.Body) check.closeScope() } // If lhs exists, we must have at least one lhs variable that was used. // (We can't use check.usage because that only looks at one scope; and // we don't want to use the same variable for all scopes and change the // variable type underfoot.) if lhs != nil { var used bool for _, v := range lhsVars { if v.used { used = true } v.used = true // avoid usage error when checking entire function } if !used { check.softErrorf(lhs, UnusedVar, "%s declared and not used", lhs.Value) } } } func (check *Checker) rangeStmt(inner stmtContext, s *syntax.ForStmt, rclause *syntax.RangeClause) { // Convert syntax form to local variables. type Expr = syntax.Expr type identType = syntax.Name identName := func(n *identType) string { return n.Value } sKey := rclause.Lhs // possibly nil var sValue, sExtra syntax.Expr if p, _ := sKey.(*syntax.ListExpr); p != nil { if len(p.ElemList) < 2 { check.error(s, InvalidSyntaxTree, "invalid lhs in range clause") return } // len(p.ElemList) >= 2 sKey = p.ElemList[0] sValue = p.ElemList[1] if len(p.ElemList) > 2 { // delay error reporting until we know more sExtra = p.ElemList[2] } } isDef := rclause.Def rangeVar := rclause.X noNewVarPos := s // Do not use rclause anymore. rclause = nil // Everything from here on is shared between cmd/compile/internal/types2 and go/types. // check expression to iterate over var x operand check.expr(nil, &x, rangeVar) // determine key/value types var key, val Type if x.mode != invalid { // Ranging over a type parameter is permitted if it has a core type. k, v, cause, isFunc, ok := rangeKeyVal(x.typ, func(v goVersion) bool { return check.allowVersion(check.pkg, x.expr, v) }) switch { case !ok && cause != "": check.softErrorf(&x, InvalidRangeExpr, "cannot range over %s: %s", &x, cause) case !ok: check.softErrorf(&x, InvalidRangeExpr, "cannot range over %s", &x) case k == nil && sKey != nil: check.softErrorf(sKey, InvalidIterVar, "range over %s permits no iteration variables", &x) case v == nil && sValue != nil: check.softErrorf(sValue, InvalidIterVar, "range over %s permits only one iteration variable", &x) case sExtra != nil: check.softErrorf(sExtra, InvalidIterVar, "range clause permits at most two iteration variables") case isFunc && ((k == nil) != (sKey == nil) || (v == nil) != (sValue == nil)): var count string switch { case k == nil: count = "no iteration variables" case v == nil: count = "one iteration variable" default: count = "two iteration variables" } check.softErrorf(&x, InvalidIterVar, "range over %s must have %s", &x, count) } key, val = k, v } // Open the for-statement block scope now, after the range clause. // Iteration variables declared with := need to go in this scope (was go.dev/issue/51437). check.openScope(s, "range") defer check.closeScope() // check assignment to/declaration of iteration variables // (irregular assignment, cannot easily map to existing assignment checks) // lhs expressions and initialization value (rhs) types lhs := [2]Expr{sKey, sValue} // sKey, sValue may be nil rhs := [2]Type{key, val} // key, val may be nil constIntRange := x.mode == constant_ && isInteger(x.typ) if isDef { // short variable declaration var vars []*Var for i, lhs := range lhs { if lhs == nil { continue } // determine lhs variable var obj *Var if ident, _ := lhs.(*identType); ident != nil { // declare new variable name := identName(ident) obj = NewVar(ident.Pos(), check.pkg, name, nil) check.recordDef(ident, obj) // _ variables don't count as new variables if name != "_" { vars = append(vars, obj) } } else { check.errorf(lhs, InvalidSyntaxTree, "cannot declare %s", lhs) obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable } // initialize lhs variable if constIntRange { check.initVar(obj, &x, "range clause") } else if typ := rhs[i]; typ != nil { x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = typ check.initVar(obj, &x, "assignment") // error is on variable, use "assignment" not "range clause" } else { obj.typ = Typ[Invalid] obj.used = true // don't complain about unused variable } } // declare variables if len(vars) > 0 { scopePos := s.Body.Pos() for _, obj := range vars { check.declare(check.scope, nil /* recordDef already called */, obj, scopePos) } } else { check.error(noNewVarPos, NoNewVar, "no new variables on left side of :=") } } else if sKey != nil /* lhs[0] != nil */ { // ordinary assignment for i, lhs := range lhs { if lhs == nil { continue } if constIntRange { check.assignVar(lhs, nil, &x, "range clause") } else if typ := rhs[i]; typ != nil { x.mode = value x.expr = lhs // we don't have a better rhs expression to use here x.typ = typ check.assignVar(lhs, nil, &x, "assignment") // error is on variable, use "assignment" not "range clause" } } } else if constIntRange { // If we don't have any iteration variables, we still need to // check that a (possibly untyped) integer range expression x // is valid. // We do this by checking the assignment _ = x. This ensures // that an untyped x can be converted to a value of type int. check.assignment(&x, nil, "range clause") } check.stmt(inner, s.Body) } // RangeKeyVal returns the key and value types for a range over typ. // Exported for use by the compiler (does not exist in go/types). func RangeKeyVal(typ Type) (Type, Type) { key, val, _, _, _ := rangeKeyVal(typ, nil) return key, val } // rangeKeyVal returns the key and value type produced by a range clause // over an expression of type typ. // If allowVersion != nil, it is used to check the required language version. // If the range clause is not permitted, rangeKeyVal returns ok = false. // When ok = false, rangeKeyVal may also return a reason in cause. func rangeKeyVal(typ Type, allowVersion func(goVersion) bool) (key, val Type, cause string, isFunc, ok bool) { bad := func(cause string) (Type, Type, string, bool, bool) { return Typ[Invalid], Typ[Invalid], cause, false, false } toSig := func(t Type) *Signature { sig, _ := coreType(t).(*Signature) return sig } orig := typ switch typ := arrayPtrDeref(coreType(typ)).(type) { case nil: return bad("no core type") case *Basic: if isString(typ) { return Typ[Int], universeRune, "", false, true // use 'rune' name } if isInteger(typ) { if allowVersion != nil && !allowVersion(go1_22) { return bad("requires go1.22 or later") } return orig, nil, "", false, true } case *Array: return Typ[Int], typ.elem, "", false, true case *Slice: return Typ[Int], typ.elem, "", false, true case *Map: return typ.key, typ.elem, "", false, true case *Chan: if typ.dir == SendOnly { return bad("receive from send-only channel") } return typ.elem, nil, "", false, true case *Signature: // TODO(gri) when this becomes enabled permanently, add version check if !buildcfg.Experiment.RangeFunc { break } assert(typ.Recv() == nil) switch { case typ.Params().Len() != 1: return bad("func must be func(yield func(...) bool): wrong argument count") case toSig(typ.Params().At(0).Type()) == nil: return bad("func must be func(yield func(...) bool): argument is not func") case typ.Results().Len() != 0: return bad("func must be func(yield func(...) bool): unexpected results") } cb := toSig(typ.Params().At(0).Type()) assert(cb.Recv() == nil) switch { case cb.Params().Len() > 2: return bad("func must be func(yield func(...) bool): yield func has too many parameters") case cb.Results().Len() != 1 || !isBoolean(cb.Results().At(0).Type()): return bad("func must be func(yield func(...) bool): yield func does not return bool") } if cb.Params().Len() >= 1 { key = cb.Params().At(0).Type() } if cb.Params().Len() >= 2 { val = cb.Params().At(1).Type() } return key, val, "", true, true } return }