...

Source file src/cmd/compile/internal/types2/validtype.go

Documentation: cmd/compile/internal/types2

     1  // Copyright 2022 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package types2
     6  
     7  // validType verifies that the given type does not "expand" indefinitely
     8  // producing a cycle in the type graph.
     9  // (Cycles involving alias types, as in "type A = [10]A" are detected
    10  // earlier, via the objDecl cycle detection mechanism.)
    11  func (check *Checker) validType(typ *Named) {
    12  	check.validType0(typ, nil, nil)
    13  }
    14  
    15  // validType0 checks if the given type is valid. If typ is a type parameter
    16  // its value is looked up in the type argument list of the instantiated
    17  // (enclosing) type, if it exists. Otherwise the type parameter must be from
    18  // an enclosing function and can be ignored.
    19  // The nest list describes the stack (the "nest in memory") of types which
    20  // contain (or embed in the case of interfaces) other types. For instance, a
    21  // struct named S which contains a field of named type F contains (the memory
    22  // of) F in S, leading to the nest S->F. If a type appears in its own nest
    23  // (say S->F->S) we have an invalid recursive type. The path list is the full
    24  // path of named types in a cycle, it is only needed for error reporting.
    25  func (check *Checker) validType0(typ Type, nest, path []*Named) bool {
    26  	switch t := Unalias(typ).(type) {
    27  	case nil:
    28  		// We should never see a nil type but be conservative and panic
    29  		// only in debug mode.
    30  		if debug {
    31  			panic("validType0(nil)")
    32  		}
    33  
    34  	case *Array:
    35  		return check.validType0(t.elem, nest, path)
    36  
    37  	case *Struct:
    38  		for _, f := range t.fields {
    39  			if !check.validType0(f.typ, nest, path) {
    40  				return false
    41  			}
    42  		}
    43  
    44  	case *Union:
    45  		for _, t := range t.terms {
    46  			if !check.validType0(t.typ, nest, path) {
    47  				return false
    48  			}
    49  		}
    50  
    51  	case *Interface:
    52  		for _, etyp := range t.embeddeds {
    53  			if !check.validType0(etyp, nest, path) {
    54  				return false
    55  			}
    56  		}
    57  
    58  	case *Named:
    59  		// Exit early if we already know t is valid.
    60  		// This is purely an optimization but it prevents excessive computation
    61  		// times in pathological cases such as testdata/fixedbugs/issue6977.go.
    62  		// (Note: The valids map could also be allocated locally, once for each
    63  		// validType call.)
    64  		if check.valids.lookup(t) != nil {
    65  			break
    66  		}
    67  
    68  		// Don't report a 2nd error if we already know the type is invalid
    69  		// (e.g., if a cycle was detected earlier, via under).
    70  		// Note: ensure that t.orig is fully resolved by calling Underlying().
    71  		if !isValid(t.Underlying()) {
    72  			return false
    73  		}
    74  
    75  		// If the current type t is also found in nest, (the memory of) t is
    76  		// embedded in itself, indicating an invalid recursive type.
    77  		for _, e := range nest {
    78  			if Identical(e, t) {
    79  				// We have a cycle. If t != t.Origin() then t is an instance of
    80  				// the generic type t.Origin(). Because t is in the nest, t must
    81  				// occur within the definition (RHS) of the generic type t.Origin(),
    82  				// directly or indirectly, after expansion of the RHS.
    83  				// Therefore t.Origin() must be invalid, no matter how it is
    84  				// instantiated since the instantiation t of t.Origin() happens
    85  				// inside t.Origin()'s RHS and thus is always the same and always
    86  				// present.
    87  				// Therefore we can mark the underlying of both t and t.Origin()
    88  				// as invalid. If t is not an instance of a generic type, t and
    89  				// t.Origin() are the same.
    90  				// Furthermore, because we check all types in a package for validity
    91  				// before type checking is complete, any exported type that is invalid
    92  				// will have an invalid underlying type and we can't reach here with
    93  				// such a type (invalid types are excluded above).
    94  				// Thus, if we reach here with a type t, both t and t.Origin() (if
    95  				// different in the first place) must be from the current package;
    96  				// they cannot have been imported.
    97  				// Therefore it is safe to change their underlying types; there is
    98  				// no chance for a race condition (the types of the current package
    99  				// are not yet available to other goroutines).
   100  				assert(t.obj.pkg == check.pkg)
   101  				assert(t.Origin().obj.pkg == check.pkg)
   102  				t.underlying = Typ[Invalid]
   103  				t.Origin().underlying = Typ[Invalid]
   104  
   105  				// Find the starting point of the cycle and report it.
   106  				// Because each type in nest must also appear in path (see invariant below),
   107  				// type t must be in path since it was found in nest. But not every type in path
   108  				// is in nest. Specifically t may appear in path with an earlier index than the
   109  				// index of t in nest. Search again.
   110  				for start, p := range path {
   111  					if Identical(p, t) {
   112  						check.cycleError(makeObjList(path[start:]))
   113  						return false
   114  					}
   115  				}
   116  				panic("cycle start not found")
   117  			}
   118  		}
   119  
   120  		// No cycle was found. Check the RHS of t.
   121  		// Every type added to nest is also added to path; thus every type that is in nest
   122  		// must also be in path (invariant). But not every type in path is in nest, since
   123  		// nest may be pruned (see below, *TypeParam case).
   124  		if !check.validType0(t.Origin().fromRHS, append(nest, t), append(path, t)) {
   125  			return false
   126  		}
   127  
   128  		check.valids.add(t) // t is valid
   129  
   130  	case *TypeParam:
   131  		// A type parameter stands for the type (argument) it was instantiated with.
   132  		// Check the corresponding type argument for validity if we are in an
   133  		// instantiated type.
   134  		if len(nest) > 0 {
   135  			inst := nest[len(nest)-1] // the type instance
   136  			// Find the corresponding type argument for the type parameter
   137  			// and proceed with checking that type argument.
   138  			for i, tparam := range inst.TypeParams().list() {
   139  				// The type parameter and type argument lists should
   140  				// match in length but be careful in case of errors.
   141  				if t == tparam && i < inst.TypeArgs().Len() {
   142  					targ := inst.TypeArgs().At(i)
   143  					// The type argument must be valid in the enclosing
   144  					// type (where inst was instantiated), hence we must
   145  					// check targ's validity in the type nest excluding
   146  					// the current (instantiated) type (see the example
   147  					// at the end of this file).
   148  					// For error reporting we keep the full path.
   149  					return check.validType0(targ, nest[:len(nest)-1], path)
   150  				}
   151  			}
   152  		}
   153  	}
   154  
   155  	return true
   156  }
   157  
   158  // makeObjList returns the list of type name objects for the given
   159  // list of named types.
   160  func makeObjList(tlist []*Named) []Object {
   161  	olist := make([]Object, len(tlist))
   162  	for i, t := range tlist {
   163  		olist[i] = t.obj
   164  	}
   165  	return olist
   166  }
   167  
   168  // Here is an example illustrating why we need to exclude the
   169  // instantiated type from nest when evaluating the validity of
   170  // a type parameter. Given the declarations
   171  //
   172  //   var _ A[A[string]]
   173  //
   174  //   type A[P any] struct { _ B[P] }
   175  //   type B[P any] struct { _ P }
   176  //
   177  // we want to determine if the type A[A[string]] is valid.
   178  // We start evaluating A[A[string]] outside any type nest:
   179  //
   180  //   A[A[string]]
   181  //         nest =
   182  //         path =
   183  //
   184  // The RHS of A is now evaluated in the A[A[string]] nest:
   185  //
   186  //   struct{_ B[P₁]}
   187  //         nest = A[A[string]]
   188  //         path = A[A[string]]
   189  //
   190  // The struct has a single field of type B[P₁] with which
   191  // we continue:
   192  //
   193  //   B[P₁]
   194  //         nest = A[A[string]]
   195  //         path = A[A[string]]
   196  //
   197  //   struct{_ P₂}
   198  //         nest = A[A[string]]->B[P]
   199  //         path = A[A[string]]->B[P]
   200  //
   201  // Eventually we reach the type parameter P of type B (P₂):
   202  //
   203  //   P₂
   204  //         nest = A[A[string]]->B[P]
   205  //         path = A[A[string]]->B[P]
   206  //
   207  // The type argument for P of B is the type parameter P of A (P₁).
   208  // It must be evaluated in the type nest that existed when B was
   209  // instantiated:
   210  //
   211  //   P₁
   212  //         nest = A[A[string]]        <== type nest at B's instantiation time
   213  //         path = A[A[string]]->B[P]
   214  //
   215  // If we'd use the current nest it would correspond to the path
   216  // which will be wrong as we will see shortly. P's type argument
   217  // is A[string], which again must be evaluated in the type nest
   218  // that existed when A was instantiated with A[string]. That type
   219  // nest is empty:
   220  //
   221  //   A[string]
   222  //         nest =                     <== type nest at A's instantiation time
   223  //         path = A[A[string]]->B[P]
   224  //
   225  // Evaluation then proceeds as before for A[string]:
   226  //
   227  //   struct{_ B[P₁]}
   228  //         nest = A[string]
   229  //         path = A[A[string]]->B[P]->A[string]
   230  //
   231  // Now we reach B[P] again. If we had not adjusted nest, it would
   232  // correspond to path, and we would find B[P] in nest, indicating
   233  // a cycle, which would clearly be wrong since there's no cycle in
   234  // A[string]:
   235  //
   236  //   B[P₁]
   237  //         nest = A[string]
   238  //         path = A[A[string]]->B[P]->A[string]  <== path contains B[P]!
   239  //
   240  // But because we use the correct type nest, evaluation proceeds without
   241  // errors and we get the evaluation sequence:
   242  //
   243  //   struct{_ P₂}
   244  //         nest = A[string]->B[P]
   245  //         path = A[A[string]]->B[P]->A[string]->B[P]
   246  //   P₂
   247  //         nest = A[string]->B[P]
   248  //         path = A[A[string]]->B[P]->A[string]->B[P]
   249  //   P₁
   250  //         nest = A[string]
   251  //         path = A[A[string]]->B[P]->A[string]->B[P]
   252  //   string
   253  //         nest =
   254  //         path = A[A[string]]->B[P]->A[string]->B[P]
   255  //
   256  // At this point we're done and A[A[string]] and is valid.
   257  

View as plain text