...

Source file src/cmd/vendor/github.com/google/pprof/internal/report/report.go

Documentation: cmd/vendor/github.com/google/pprof/internal/report

     1  // Copyright 2014 Google Inc. All Rights Reserved.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  // Package report summarizes a performance profile into a
    16  // human-readable report.
    17  package report
    18  
    19  import (
    20  	"fmt"
    21  	"io"
    22  	"path/filepath"
    23  	"regexp"
    24  	"sort"
    25  	"strconv"
    26  	"strings"
    27  	"text/tabwriter"
    28  	"time"
    29  
    30  	"github.com/google/pprof/internal/graph"
    31  	"github.com/google/pprof/internal/measurement"
    32  	"github.com/google/pprof/internal/plugin"
    33  	"github.com/google/pprof/profile"
    34  )
    35  
    36  // Output formats.
    37  const (
    38  	Callgrind = iota
    39  	Comments
    40  	Dis
    41  	Dot
    42  	List
    43  	Proto
    44  	Raw
    45  	Tags
    46  	Text
    47  	TopProto
    48  	Traces
    49  	Tree
    50  	WebList
    51  )
    52  
    53  // Options are the formatting and filtering options used to generate a
    54  // profile.
    55  type Options struct {
    56  	OutputFormat int
    57  
    58  	CumSort       bool
    59  	CallTree      bool
    60  	DropNegative  bool
    61  	CompactLabels bool
    62  	Ratio         float64
    63  	Title         string
    64  	ProfileLabels []string
    65  	ActiveFilters []string
    66  	NumLabelUnits map[string]string
    67  
    68  	NodeCount    int
    69  	NodeFraction float64
    70  	EdgeFraction float64
    71  
    72  	SampleValue       func(s []int64) int64
    73  	SampleMeanDivisor func(s []int64) int64
    74  	SampleType        string
    75  	SampleUnit        string // Unit for the sample data from the profile.
    76  
    77  	OutputUnit string // Units for data formatting in report.
    78  
    79  	Symbol     *regexp.Regexp // Symbols to include on disassembly report.
    80  	SourcePath string         // Search path for source files.
    81  	TrimPath   string         // Paths to trim from source file paths.
    82  
    83  	IntelSyntax bool // Whether or not to print assembly in Intel syntax.
    84  }
    85  
    86  // Generate generates a report as directed by the Report.
    87  func Generate(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
    88  	o := rpt.options
    89  
    90  	switch o.OutputFormat {
    91  	case Comments:
    92  		return printComments(w, rpt)
    93  	case Dot:
    94  		return printDOT(w, rpt)
    95  	case Tree:
    96  		return printTree(w, rpt)
    97  	case Text:
    98  		return printText(w, rpt)
    99  	case Traces:
   100  		return printTraces(w, rpt)
   101  	case Raw:
   102  		fmt.Fprint(w, rpt.prof.String())
   103  		return nil
   104  	case Tags:
   105  		return printTags(w, rpt)
   106  	case Proto:
   107  		return printProto(w, rpt)
   108  	case TopProto:
   109  		return printTopProto(w, rpt)
   110  	case Dis:
   111  		return printAssembly(w, rpt, obj)
   112  	case List:
   113  		return printSource(w, rpt)
   114  	case WebList:
   115  		return printWebSource(w, rpt, obj)
   116  	case Callgrind:
   117  		return printCallgrind(w, rpt)
   118  	}
   119  	return fmt.Errorf("unexpected output format")
   120  }
   121  
   122  // newTrimmedGraph creates a graph for this report, trimmed according
   123  // to the report options.
   124  func (rpt *Report) newTrimmedGraph() (g *graph.Graph, origCount, droppedNodes, droppedEdges int) {
   125  	o := rpt.options
   126  
   127  	// Build a graph and refine it. On each refinement step we must rebuild the graph from the samples,
   128  	// as the graph itself doesn't contain enough information to preserve full precision.
   129  	visualMode := o.OutputFormat == Dot
   130  	cumSort := o.CumSort
   131  
   132  	// The call_tree option is only honored when generating visual representations of the callgraph.
   133  	callTree := o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind)
   134  
   135  	// First step: Build complete graph to identify low frequency nodes, based on their cum weight.
   136  	g = rpt.newGraph(nil)
   137  	totalValue, _ := g.Nodes.Sum()
   138  	nodeCutoff := abs64(int64(float64(totalValue) * o.NodeFraction))
   139  	edgeCutoff := abs64(int64(float64(totalValue) * o.EdgeFraction))
   140  
   141  	// Filter out nodes with cum value below nodeCutoff.
   142  	if nodeCutoff > 0 {
   143  		if callTree {
   144  			if nodesKept := g.DiscardLowFrequencyNodePtrs(nodeCutoff); len(g.Nodes) != len(nodesKept) {
   145  				droppedNodes = len(g.Nodes) - len(nodesKept)
   146  				g.TrimTree(nodesKept)
   147  			}
   148  		} else {
   149  			if nodesKept := g.DiscardLowFrequencyNodes(nodeCutoff); len(g.Nodes) != len(nodesKept) {
   150  				droppedNodes = len(g.Nodes) - len(nodesKept)
   151  				g = rpt.newGraph(nodesKept)
   152  			}
   153  		}
   154  	}
   155  	origCount = len(g.Nodes)
   156  
   157  	// Second step: Limit the total number of nodes. Apply specialized heuristics to improve
   158  	// visualization when generating dot output.
   159  	g.SortNodes(cumSort, visualMode)
   160  	if nodeCount := o.NodeCount; nodeCount > 0 {
   161  		// Remove low frequency tags and edges as they affect selection.
   162  		g.TrimLowFrequencyTags(nodeCutoff)
   163  		g.TrimLowFrequencyEdges(edgeCutoff)
   164  		if callTree {
   165  			if nodesKept := g.SelectTopNodePtrs(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
   166  				g.TrimTree(nodesKept)
   167  				g.SortNodes(cumSort, visualMode)
   168  			}
   169  		} else {
   170  			if nodesKept := g.SelectTopNodes(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
   171  				g = rpt.newGraph(nodesKept)
   172  				g.SortNodes(cumSort, visualMode)
   173  			}
   174  		}
   175  	}
   176  
   177  	// Final step: Filter out low frequency tags and edges, and remove redundant edges that clutter
   178  	// the graph.
   179  	g.TrimLowFrequencyTags(nodeCutoff)
   180  	droppedEdges = g.TrimLowFrequencyEdges(edgeCutoff)
   181  	if visualMode {
   182  		g.RemoveRedundantEdges()
   183  	}
   184  	return
   185  }
   186  
   187  func (rpt *Report) selectOutputUnit(g *graph.Graph) {
   188  	o := rpt.options
   189  
   190  	// Select best unit for profile output.
   191  	// Find the appropriate units for the smallest non-zero sample
   192  	if o.OutputUnit != "minimum" || len(g.Nodes) == 0 {
   193  		return
   194  	}
   195  	var minValue int64
   196  
   197  	for _, n := range g.Nodes {
   198  		nodeMin := abs64(n.FlatValue())
   199  		if nodeMin == 0 {
   200  			nodeMin = abs64(n.CumValue())
   201  		}
   202  		if nodeMin > 0 && (minValue == 0 || nodeMin < minValue) {
   203  			minValue = nodeMin
   204  		}
   205  	}
   206  	maxValue := rpt.total
   207  	if minValue == 0 {
   208  		minValue = maxValue
   209  	}
   210  
   211  	if r := o.Ratio; r > 0 && r != 1 {
   212  		minValue = int64(float64(minValue) * r)
   213  		maxValue = int64(float64(maxValue) * r)
   214  	}
   215  
   216  	_, minUnit := measurement.Scale(minValue, o.SampleUnit, "minimum")
   217  	_, maxUnit := measurement.Scale(maxValue, o.SampleUnit, "minimum")
   218  
   219  	unit := minUnit
   220  	if minUnit != maxUnit && minValue*100 < maxValue && o.OutputFormat != Callgrind {
   221  		// Minimum and maximum values have different units. Scale
   222  		// minimum by 100 to use larger units, allowing minimum value to
   223  		// be scaled down to 0.01, except for callgrind reports since
   224  		// they can only represent integer values.
   225  		_, unit = measurement.Scale(100*minValue, o.SampleUnit, "minimum")
   226  	}
   227  
   228  	if unit != "" {
   229  		o.OutputUnit = unit
   230  	} else {
   231  		o.OutputUnit = o.SampleUnit
   232  	}
   233  }
   234  
   235  // newGraph creates a new graph for this report. If nodes is non-nil,
   236  // only nodes whose info matches are included. Otherwise, all nodes
   237  // are included, without trimming.
   238  func (rpt *Report) newGraph(nodes graph.NodeSet) *graph.Graph {
   239  	o := rpt.options
   240  
   241  	// Clean up file paths using heuristics.
   242  	prof := rpt.prof
   243  	for _, f := range prof.Function {
   244  		f.Filename = trimPath(f.Filename, o.TrimPath, o.SourcePath)
   245  	}
   246  	// Removes all numeric tags except for the bytes tag prior
   247  	// to making graph.
   248  	// TODO: modify to select first numeric tag if no bytes tag
   249  	for _, s := range prof.Sample {
   250  		numLabels := make(map[string][]int64, len(s.NumLabel))
   251  		numUnits := make(map[string][]string, len(s.NumLabel))
   252  		for k, vs := range s.NumLabel {
   253  			if k == "bytes" {
   254  				unit := o.NumLabelUnits[k]
   255  				numValues := make([]int64, len(vs))
   256  				numUnit := make([]string, len(vs))
   257  				for i, v := range vs {
   258  					numValues[i] = v
   259  					numUnit[i] = unit
   260  				}
   261  				numLabels[k] = append(numLabels[k], numValues...)
   262  				numUnits[k] = append(numUnits[k], numUnit...)
   263  			}
   264  		}
   265  		s.NumLabel = numLabels
   266  		s.NumUnit = numUnits
   267  	}
   268  
   269  	// Remove label marking samples from the base profiles, so it does not appear
   270  	// as a nodelet in the graph view.
   271  	prof.RemoveLabel("pprof::base")
   272  
   273  	formatTag := func(v int64, key string) string {
   274  		return measurement.ScaledLabel(v, key, o.OutputUnit)
   275  	}
   276  
   277  	gopt := &graph.Options{
   278  		SampleValue:       o.SampleValue,
   279  		SampleMeanDivisor: o.SampleMeanDivisor,
   280  		FormatTag:         formatTag,
   281  		CallTree:          o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind),
   282  		DropNegative:      o.DropNegative,
   283  		KeptNodes:         nodes,
   284  	}
   285  
   286  	// Only keep binary names for disassembly-based reports, otherwise
   287  	// remove it to allow merging of functions across binaries.
   288  	switch o.OutputFormat {
   289  	case Raw, List, WebList, Dis, Callgrind:
   290  		gopt.ObjNames = true
   291  	}
   292  
   293  	return graph.New(rpt.prof, gopt)
   294  }
   295  
   296  // printProto writes the incoming proto via thw writer w.
   297  // If the divide_by option has been specified, samples are scaled appropriately.
   298  func printProto(w io.Writer, rpt *Report) error {
   299  	p, o := rpt.prof, rpt.options
   300  
   301  	// Apply the sample ratio to all samples before saving the profile.
   302  	if r := o.Ratio; r > 0 && r != 1 {
   303  		for _, sample := range p.Sample {
   304  			for i, v := range sample.Value {
   305  				sample.Value[i] = int64(float64(v) * r)
   306  			}
   307  		}
   308  	}
   309  	return p.Write(w)
   310  }
   311  
   312  // printTopProto writes a list of the hottest routines in a profile as a profile.proto.
   313  func printTopProto(w io.Writer, rpt *Report) error {
   314  	p := rpt.prof
   315  	o := rpt.options
   316  	g, _, _, _ := rpt.newTrimmedGraph()
   317  	rpt.selectOutputUnit(g)
   318  
   319  	out := profile.Profile{
   320  		SampleType: []*profile.ValueType{
   321  			{Type: "cum", Unit: o.OutputUnit},
   322  			{Type: "flat", Unit: o.OutputUnit},
   323  		},
   324  		TimeNanos:     p.TimeNanos,
   325  		DurationNanos: p.DurationNanos,
   326  		PeriodType:    p.PeriodType,
   327  		Period:        p.Period,
   328  	}
   329  	functionMap := make(functionMap)
   330  	for i, n := range g.Nodes {
   331  		f, added := functionMap.findOrAdd(n.Info)
   332  		if added {
   333  			out.Function = append(out.Function, f)
   334  		}
   335  		flat, cum := n.FlatValue(), n.CumValue()
   336  		l := &profile.Location{
   337  			ID:      uint64(i + 1),
   338  			Address: n.Info.Address,
   339  			Line: []profile.Line{
   340  				{
   341  					Line:     int64(n.Info.Lineno),
   342  					Function: f,
   343  				},
   344  			},
   345  		}
   346  
   347  		fv, _ := measurement.Scale(flat, o.SampleUnit, o.OutputUnit)
   348  		cv, _ := measurement.Scale(cum, o.SampleUnit, o.OutputUnit)
   349  		s := &profile.Sample{
   350  			Location: []*profile.Location{l},
   351  			Value:    []int64{int64(cv), int64(fv)},
   352  		}
   353  		out.Location = append(out.Location, l)
   354  		out.Sample = append(out.Sample, s)
   355  	}
   356  
   357  	return out.Write(w)
   358  }
   359  
   360  type functionMap map[string]*profile.Function
   361  
   362  // findOrAdd takes a node representing a function, adds the function
   363  // represented by the node to the map if the function is not already present,
   364  // and returns the function the node represents. This also returns a boolean,
   365  // which is true if the function was added and false otherwise.
   366  func (fm functionMap) findOrAdd(ni graph.NodeInfo) (*profile.Function, bool) {
   367  	fName := fmt.Sprintf("%q%q%q%d", ni.Name, ni.OrigName, ni.File, ni.StartLine)
   368  
   369  	if f := fm[fName]; f != nil {
   370  		return f, false
   371  	}
   372  
   373  	f := &profile.Function{
   374  		ID:         uint64(len(fm) + 1),
   375  		Name:       ni.Name,
   376  		SystemName: ni.OrigName,
   377  		Filename:   ni.File,
   378  		StartLine:  int64(ni.StartLine),
   379  	}
   380  	fm[fName] = f
   381  	return f, true
   382  }
   383  
   384  // printAssembly prints an annotated assembly listing.
   385  func printAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
   386  	return PrintAssembly(w, rpt, obj, -1)
   387  }
   388  
   389  // PrintAssembly prints annotated disassembly of rpt to w.
   390  func PrintAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool, maxFuncs int) error {
   391  	o := rpt.options
   392  	prof := rpt.prof
   393  
   394  	g := rpt.newGraph(nil)
   395  
   396  	// If the regexp source can be parsed as an address, also match
   397  	// functions that land on that address.
   398  	var address *uint64
   399  	if hex, err := strconv.ParseUint(o.Symbol.String(), 0, 64); err == nil {
   400  		address = &hex
   401  	}
   402  
   403  	fmt.Fprintln(w, "Total:", rpt.formatValue(rpt.total))
   404  	symbols := symbolsFromBinaries(prof, g, o.Symbol, address, obj)
   405  	symNodes := nodesPerSymbol(g.Nodes, symbols)
   406  
   407  	// Sort for printing.
   408  	var syms []*objSymbol
   409  	for s := range symNodes {
   410  		syms = append(syms, s)
   411  	}
   412  	byName := func(a, b *objSymbol) bool {
   413  		if na, nb := a.sym.Name[0], b.sym.Name[0]; na != nb {
   414  			return na < nb
   415  		}
   416  		return a.sym.Start < b.sym.Start
   417  	}
   418  	if maxFuncs < 0 {
   419  		sort.Sort(orderSyms{syms, byName})
   420  	} else {
   421  		byFlatSum := func(a, b *objSymbol) bool {
   422  			suma, _ := symNodes[a].Sum()
   423  			sumb, _ := symNodes[b].Sum()
   424  			if suma != sumb {
   425  				return suma > sumb
   426  			}
   427  			return byName(a, b)
   428  		}
   429  		sort.Sort(orderSyms{syms, byFlatSum})
   430  		if len(syms) > maxFuncs {
   431  			syms = syms[:maxFuncs]
   432  		}
   433  	}
   434  
   435  	if len(syms) == 0 {
   436  		// The symbol regexp case
   437  		if address == nil {
   438  			return fmt.Errorf("no matches found for regexp %s", o.Symbol)
   439  		}
   440  
   441  		// The address case
   442  		if len(symbols) == 0 {
   443  			return fmt.Errorf("no matches found for address 0x%x", *address)
   444  		}
   445  		return fmt.Errorf("address 0x%x found in binary, but the corresponding symbols do not have samples in the profile", *address)
   446  	}
   447  
   448  	// Correlate the symbols from the binary with the profile samples.
   449  	for _, s := range syms {
   450  		sns := symNodes[s]
   451  
   452  		// Gather samples for this symbol.
   453  		flatSum, cumSum := sns.Sum()
   454  
   455  		// Get the function assembly.
   456  		insts, err := obj.Disasm(s.sym.File, s.sym.Start, s.sym.End, o.IntelSyntax)
   457  		if err != nil {
   458  			return err
   459  		}
   460  
   461  		ns := annotateAssembly(insts, sns, s.file)
   462  
   463  		fmt.Fprintf(w, "ROUTINE ======================== %s\n", s.sym.Name[0])
   464  		for _, name := range s.sym.Name[1:] {
   465  			fmt.Fprintf(w, "    AKA ======================== %s\n", name)
   466  		}
   467  		fmt.Fprintf(w, "%10s %10s (flat, cum) %s of Total\n",
   468  			rpt.formatValue(flatSum), rpt.formatValue(cumSum),
   469  			measurement.Percentage(cumSum, rpt.total))
   470  
   471  		function, file, line := "", "", 0
   472  		for _, n := range ns {
   473  			locStr := ""
   474  			// Skip loc information if it hasn't changed from previous instruction.
   475  			if n.function != function || n.file != file || n.line != line {
   476  				function, file, line = n.function, n.file, n.line
   477  				if n.function != "" {
   478  					locStr = n.function + " "
   479  				}
   480  				if n.file != "" {
   481  					locStr += n.file
   482  					if n.line != 0 {
   483  						locStr += fmt.Sprintf(":%d", n.line)
   484  					}
   485  				}
   486  			}
   487  			switch {
   488  			case locStr == "":
   489  				// No location info, just print the instruction.
   490  				fmt.Fprintf(w, "%10s %10s %10x: %s\n",
   491  					valueOrDot(n.flatValue(), rpt),
   492  					valueOrDot(n.cumValue(), rpt),
   493  					n.address, n.instruction,
   494  				)
   495  			case len(n.instruction) < 40:
   496  				// Short instruction, print loc on the same line.
   497  				fmt.Fprintf(w, "%10s %10s %10x: %-40s;%s\n",
   498  					valueOrDot(n.flatValue(), rpt),
   499  					valueOrDot(n.cumValue(), rpt),
   500  					n.address, n.instruction,
   501  					locStr,
   502  				)
   503  			default:
   504  				// Long instruction, print loc on a separate line.
   505  				fmt.Fprintf(w, "%74s;%s\n", "", locStr)
   506  				fmt.Fprintf(w, "%10s %10s %10x: %s\n",
   507  					valueOrDot(n.flatValue(), rpt),
   508  					valueOrDot(n.cumValue(), rpt),
   509  					n.address, n.instruction,
   510  				)
   511  			}
   512  		}
   513  	}
   514  	return nil
   515  }
   516  
   517  // symbolsFromBinaries examines the binaries listed on the profile that have
   518  // associated samples, and returns the identified symbols matching rx.
   519  func symbolsFromBinaries(prof *profile.Profile, g *graph.Graph, rx *regexp.Regexp, address *uint64, obj plugin.ObjTool) []*objSymbol {
   520  	// fileHasSamplesAndMatched is for optimization to speed up pprof: when later
   521  	// walking through the profile mappings, it will only examine the ones that have
   522  	// samples and are matched to the regexp.
   523  	fileHasSamplesAndMatched := make(map[string]bool)
   524  	for _, n := range g.Nodes {
   525  		if name := n.Info.PrintableName(); rx.MatchString(name) && n.Info.Objfile != "" {
   526  			fileHasSamplesAndMatched[n.Info.Objfile] = true
   527  		}
   528  	}
   529  
   530  	// Walk all mappings looking for matching functions with samples.
   531  	var objSyms []*objSymbol
   532  	for _, m := range prof.Mapping {
   533  		// Skip the mapping if its file does not have samples or is not matched to
   534  		// the regexp (unless the regexp is an address and the mapping's range covers
   535  		// the address)
   536  		if !fileHasSamplesAndMatched[m.File] {
   537  			if address == nil || !(m.Start <= *address && *address <= m.Limit) {
   538  				continue
   539  			}
   540  		}
   541  
   542  		f, err := obj.Open(m.File, m.Start, m.Limit, m.Offset, m.KernelRelocationSymbol)
   543  		if err != nil {
   544  			fmt.Printf("%v\n", err)
   545  			continue
   546  		}
   547  
   548  		// Find symbols in this binary matching the user regexp.
   549  		var addr uint64
   550  		if address != nil {
   551  			addr = *address
   552  		}
   553  		msyms, err := f.Symbols(rx, addr)
   554  		f.Close()
   555  		if err != nil {
   556  			continue
   557  		}
   558  		for _, ms := range msyms {
   559  			objSyms = append(objSyms,
   560  				&objSymbol{
   561  					sym:  ms,
   562  					file: f,
   563  				},
   564  			)
   565  		}
   566  	}
   567  
   568  	return objSyms
   569  }
   570  
   571  // objSym represents a symbol identified from a binary. It includes
   572  // the SymbolInfo from the disasm package and the base that must be
   573  // added to correspond to sample addresses
   574  type objSymbol struct {
   575  	sym  *plugin.Sym
   576  	file plugin.ObjFile
   577  }
   578  
   579  // orderSyms is a wrapper type to sort []*objSymbol by a supplied comparator.
   580  type orderSyms struct {
   581  	v    []*objSymbol
   582  	less func(a, b *objSymbol) bool
   583  }
   584  
   585  func (o orderSyms) Len() int           { return len(o.v) }
   586  func (o orderSyms) Less(i, j int) bool { return o.less(o.v[i], o.v[j]) }
   587  func (o orderSyms) Swap(i, j int)      { o.v[i], o.v[j] = o.v[j], o.v[i] }
   588  
   589  // nodesPerSymbol classifies nodes into a group of symbols.
   590  func nodesPerSymbol(ns graph.Nodes, symbols []*objSymbol) map[*objSymbol]graph.Nodes {
   591  	symNodes := make(map[*objSymbol]graph.Nodes)
   592  	for _, s := range symbols {
   593  		// Gather samples for this symbol.
   594  		for _, n := range ns {
   595  			if address, err := s.file.ObjAddr(n.Info.Address); err == nil && address >= s.sym.Start && address < s.sym.End {
   596  				symNodes[s] = append(symNodes[s], n)
   597  			}
   598  		}
   599  	}
   600  	return symNodes
   601  }
   602  
   603  type assemblyInstruction struct {
   604  	address         uint64
   605  	instruction     string
   606  	function        string
   607  	file            string
   608  	line            int
   609  	flat, cum       int64
   610  	flatDiv, cumDiv int64
   611  	startsBlock     bool
   612  	inlineCalls     []callID
   613  }
   614  
   615  type callID struct {
   616  	file string
   617  	line int
   618  }
   619  
   620  func (a *assemblyInstruction) flatValue() int64 {
   621  	if a.flatDiv != 0 {
   622  		return a.flat / a.flatDiv
   623  	}
   624  	return a.flat
   625  }
   626  
   627  func (a *assemblyInstruction) cumValue() int64 {
   628  	if a.cumDiv != 0 {
   629  		return a.cum / a.cumDiv
   630  	}
   631  	return a.cum
   632  }
   633  
   634  // annotateAssembly annotates a set of assembly instructions with a
   635  // set of samples. It returns a set of nodes to display. base is an
   636  // offset to adjust the sample addresses.
   637  func annotateAssembly(insts []plugin.Inst, samples graph.Nodes, file plugin.ObjFile) []assemblyInstruction {
   638  	// Add end marker to simplify printing loop.
   639  	insts = append(insts, plugin.Inst{
   640  		Addr: ^uint64(0),
   641  	})
   642  
   643  	// Ensure samples are sorted by address.
   644  	samples.Sort(graph.AddressOrder)
   645  
   646  	s := 0
   647  	asm := make([]assemblyInstruction, 0, len(insts))
   648  	for ix, in := range insts[:len(insts)-1] {
   649  		n := assemblyInstruction{
   650  			address:     in.Addr,
   651  			instruction: in.Text,
   652  			function:    in.Function,
   653  			line:        in.Line,
   654  		}
   655  		if in.File != "" {
   656  			n.file = filepath.Base(in.File)
   657  		}
   658  
   659  		// Sum all the samples until the next instruction (to account
   660  		// for samples attributed to the middle of an instruction).
   661  		for next := insts[ix+1].Addr; s < len(samples); s++ {
   662  			if addr, err := file.ObjAddr(samples[s].Info.Address); err != nil || addr >= next {
   663  				break
   664  			}
   665  			sample := samples[s]
   666  			n.flatDiv += sample.FlatDiv
   667  			n.flat += sample.Flat
   668  			n.cumDiv += sample.CumDiv
   669  			n.cum += sample.Cum
   670  			if f := sample.Info.File; f != "" && n.file == "" {
   671  				n.file = filepath.Base(f)
   672  			}
   673  			if ln := sample.Info.Lineno; ln != 0 && n.line == 0 {
   674  				n.line = ln
   675  			}
   676  			if f := sample.Info.Name; f != "" && n.function == "" {
   677  				n.function = f
   678  			}
   679  		}
   680  		asm = append(asm, n)
   681  	}
   682  
   683  	return asm
   684  }
   685  
   686  // valueOrDot formats a value according to a report, intercepting zero
   687  // values.
   688  func valueOrDot(value int64, rpt *Report) string {
   689  	if value == 0 {
   690  		return "."
   691  	}
   692  	return rpt.formatValue(value)
   693  }
   694  
   695  // printTags collects all tags referenced in the profile and prints
   696  // them in a sorted table.
   697  func printTags(w io.Writer, rpt *Report) error {
   698  	p := rpt.prof
   699  
   700  	o := rpt.options
   701  	formatTag := func(v int64, key string) string {
   702  		return measurement.ScaledLabel(v, key, o.OutputUnit)
   703  	}
   704  
   705  	// Hashtable to keep accumulate tags as key,value,count.
   706  	tagMap := make(map[string]map[string]int64)
   707  	for _, s := range p.Sample {
   708  		for key, vals := range s.Label {
   709  			for _, val := range vals {
   710  				valueMap, ok := tagMap[key]
   711  				if !ok {
   712  					valueMap = make(map[string]int64)
   713  					tagMap[key] = valueMap
   714  				}
   715  				valueMap[val] += o.SampleValue(s.Value)
   716  			}
   717  		}
   718  		for key, vals := range s.NumLabel {
   719  			unit := o.NumLabelUnits[key]
   720  			for _, nval := range vals {
   721  				val := formatTag(nval, unit)
   722  				valueMap, ok := tagMap[key]
   723  				if !ok {
   724  					valueMap = make(map[string]int64)
   725  					tagMap[key] = valueMap
   726  				}
   727  				valueMap[val] += o.SampleValue(s.Value)
   728  			}
   729  		}
   730  	}
   731  
   732  	tagKeys := make([]*graph.Tag, 0, len(tagMap))
   733  	for key := range tagMap {
   734  		tagKeys = append(tagKeys, &graph.Tag{Name: key})
   735  	}
   736  	tabw := tabwriter.NewWriter(w, 0, 0, 1, ' ', tabwriter.AlignRight)
   737  	for _, tagKey := range graph.SortTags(tagKeys, true) {
   738  		var total int64
   739  		key := tagKey.Name
   740  		tags := make([]*graph.Tag, 0, len(tagMap[key]))
   741  		for t, c := range tagMap[key] {
   742  			total += c
   743  			tags = append(tags, &graph.Tag{Name: t, Flat: c})
   744  		}
   745  
   746  		f, u := measurement.Scale(total, o.SampleUnit, o.OutputUnit)
   747  		fmt.Fprintf(tabw, "%s:\t Total %.1f%s\n", key, f, u)
   748  		for _, t := range graph.SortTags(tags, true) {
   749  			f, u := measurement.Scale(t.FlatValue(), o.SampleUnit, o.OutputUnit)
   750  			if total > 0 {
   751  				fmt.Fprintf(tabw, " \t%.1f%s (%s):\t %s\n", f, u, measurement.Percentage(t.FlatValue(), total), t.Name)
   752  			} else {
   753  				fmt.Fprintf(tabw, " \t%.1f%s:\t %s\n", f, u, t.Name)
   754  			}
   755  		}
   756  		fmt.Fprintln(tabw)
   757  	}
   758  	return tabw.Flush()
   759  }
   760  
   761  // printComments prints all freeform comments in the profile.
   762  func printComments(w io.Writer, rpt *Report) error {
   763  	p := rpt.prof
   764  
   765  	for _, c := range p.Comments {
   766  		fmt.Fprintln(w, c)
   767  	}
   768  	return nil
   769  }
   770  
   771  // TextItem holds a single text report entry.
   772  type TextItem struct {
   773  	Name                  string
   774  	InlineLabel           string // Not empty if inlined
   775  	Flat, Cum             int64  // Raw values
   776  	FlatFormat, CumFormat string // Formatted values
   777  }
   778  
   779  // TextItems returns a list of text items from the report and a list
   780  // of labels that describe the report.
   781  func TextItems(rpt *Report) ([]TextItem, []string) {
   782  	g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
   783  	rpt.selectOutputUnit(g)
   784  	labels := reportLabels(rpt, g, origCount, droppedNodes, 0, false)
   785  
   786  	var items []TextItem
   787  	var flatSum int64
   788  	for _, n := range g.Nodes {
   789  		name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()
   790  
   791  		var inline, noinline bool
   792  		for _, e := range n.In {
   793  			if e.Inline {
   794  				inline = true
   795  			} else {
   796  				noinline = true
   797  			}
   798  		}
   799  
   800  		var inl string
   801  		if inline {
   802  			if noinline {
   803  				inl = "(partial-inline)"
   804  			} else {
   805  				inl = "(inline)"
   806  			}
   807  		}
   808  
   809  		flatSum += flat
   810  		items = append(items, TextItem{
   811  			Name:        name,
   812  			InlineLabel: inl,
   813  			Flat:        flat,
   814  			Cum:         cum,
   815  			FlatFormat:  rpt.formatValue(flat),
   816  			CumFormat:   rpt.formatValue(cum),
   817  		})
   818  	}
   819  	return items, labels
   820  }
   821  
   822  // printText prints a flat text report for a profile.
   823  func printText(w io.Writer, rpt *Report) error {
   824  	items, labels := TextItems(rpt)
   825  	fmt.Fprintln(w, strings.Join(labels, "\n"))
   826  	fmt.Fprintf(w, "%10s %5s%% %5s%% %10s %5s%%\n",
   827  		"flat", "flat", "sum", "cum", "cum")
   828  	var flatSum int64
   829  	for _, item := range items {
   830  		inl := item.InlineLabel
   831  		if inl != "" {
   832  			inl = " " + inl
   833  		}
   834  		flatSum += item.Flat
   835  		fmt.Fprintf(w, "%10s %s %s %10s %s  %s%s\n",
   836  			item.FlatFormat, measurement.Percentage(item.Flat, rpt.total),
   837  			measurement.Percentage(flatSum, rpt.total),
   838  			item.CumFormat, measurement.Percentage(item.Cum, rpt.total),
   839  			item.Name, inl)
   840  	}
   841  	return nil
   842  }
   843  
   844  // printTraces prints all traces from a profile.
   845  func printTraces(w io.Writer, rpt *Report) error {
   846  	fmt.Fprintln(w, strings.Join(ProfileLabels(rpt), "\n"))
   847  
   848  	prof := rpt.prof
   849  	o := rpt.options
   850  
   851  	const separator = "-----------+-------------------------------------------------------"
   852  
   853  	_, locations := graph.CreateNodes(prof, &graph.Options{})
   854  	for _, sample := range prof.Sample {
   855  		type stk struct {
   856  			*graph.NodeInfo
   857  			inline bool
   858  		}
   859  		var stack []stk
   860  		for _, loc := range sample.Location {
   861  			nodes := locations[loc.ID]
   862  			for i, n := range nodes {
   863  				// The inline flag may be inaccurate if 'show' or 'hide' filter is
   864  				// used. See https://github.com/google/pprof/issues/511.
   865  				inline := i != len(nodes)-1
   866  				stack = append(stack, stk{&n.Info, inline})
   867  			}
   868  		}
   869  
   870  		if len(stack) == 0 {
   871  			continue
   872  		}
   873  
   874  		fmt.Fprintln(w, separator)
   875  		// Print any text labels for the sample.
   876  		var labels []string
   877  		for s, vs := range sample.Label {
   878  			labels = append(labels, fmt.Sprintf("%10s:  %s\n", s, strings.Join(vs, " ")))
   879  		}
   880  		sort.Strings(labels)
   881  		fmt.Fprint(w, strings.Join(labels, ""))
   882  
   883  		// Print any numeric labels for the sample
   884  		var numLabels []string
   885  		for key, vals := range sample.NumLabel {
   886  			unit := o.NumLabelUnits[key]
   887  			numValues := make([]string, len(vals))
   888  			for i, vv := range vals {
   889  				numValues[i] = measurement.Label(vv, unit)
   890  			}
   891  			numLabels = append(numLabels, fmt.Sprintf("%10s:  %s\n", key, strings.Join(numValues, " ")))
   892  		}
   893  		sort.Strings(numLabels)
   894  		fmt.Fprint(w, strings.Join(numLabels, ""))
   895  
   896  		var d, v int64
   897  		v = o.SampleValue(sample.Value)
   898  		if o.SampleMeanDivisor != nil {
   899  			d = o.SampleMeanDivisor(sample.Value)
   900  		}
   901  		// Print call stack.
   902  		if d != 0 {
   903  			v = v / d
   904  		}
   905  		for i, s := range stack {
   906  			var vs, inline string
   907  			if i == 0 {
   908  				vs = rpt.formatValue(v)
   909  			}
   910  			if s.inline {
   911  				inline = " (inline)"
   912  			}
   913  			fmt.Fprintf(w, "%10s   %s%s\n", vs, s.PrintableName(), inline)
   914  		}
   915  	}
   916  	fmt.Fprintln(w, separator)
   917  	return nil
   918  }
   919  
   920  // printCallgrind prints a graph for a profile on callgrind format.
   921  func printCallgrind(w io.Writer, rpt *Report) error {
   922  	o := rpt.options
   923  	rpt.options.NodeFraction = 0
   924  	rpt.options.EdgeFraction = 0
   925  	rpt.options.NodeCount = 0
   926  
   927  	g, _, _, _ := rpt.newTrimmedGraph()
   928  	rpt.selectOutputUnit(g)
   929  
   930  	nodeNames := getDisambiguatedNames(g)
   931  
   932  	fmt.Fprintln(w, "positions: instr line")
   933  	fmt.Fprintln(w, "events:", o.SampleType+"("+o.OutputUnit+")")
   934  
   935  	objfiles := make(map[string]int)
   936  	files := make(map[string]int)
   937  	names := make(map[string]int)
   938  
   939  	// prevInfo points to the previous NodeInfo.
   940  	// It is used to group cost lines together as much as possible.
   941  	var prevInfo *graph.NodeInfo
   942  	for _, n := range g.Nodes {
   943  		if prevInfo == nil || n.Info.Objfile != prevInfo.Objfile || n.Info.File != prevInfo.File || n.Info.Name != prevInfo.Name {
   944  			fmt.Fprintln(w)
   945  			fmt.Fprintln(w, "ob="+callgrindName(objfiles, n.Info.Objfile))
   946  			fmt.Fprintln(w, "fl="+callgrindName(files, n.Info.File))
   947  			fmt.Fprintln(w, "fn="+callgrindName(names, n.Info.Name))
   948  		}
   949  
   950  		addr := callgrindAddress(prevInfo, n.Info.Address)
   951  		sv, _ := measurement.Scale(n.FlatValue(), o.SampleUnit, o.OutputUnit)
   952  		fmt.Fprintf(w, "%s %d %d\n", addr, n.Info.Lineno, int64(sv))
   953  
   954  		// Print outgoing edges.
   955  		for _, out := range n.Out.Sort() {
   956  			c, _ := measurement.Scale(out.Weight, o.SampleUnit, o.OutputUnit)
   957  			callee := out.Dest
   958  			fmt.Fprintln(w, "cfl="+callgrindName(files, callee.Info.File))
   959  			fmt.Fprintln(w, "cfn="+callgrindName(names, nodeNames[callee]))
   960  			// pprof doesn't have a flat weight for a call, leave as 0.
   961  			fmt.Fprintf(w, "calls=0 %s %d\n", callgrindAddress(prevInfo, callee.Info.Address), callee.Info.Lineno)
   962  			// TODO: This address may be in the middle of a call
   963  			// instruction. It would be best to find the beginning
   964  			// of the instruction, but the tools seem to handle
   965  			// this OK.
   966  			fmt.Fprintf(w, "* * %d\n", int64(c))
   967  		}
   968  
   969  		prevInfo = &n.Info
   970  	}
   971  
   972  	return nil
   973  }
   974  
   975  // getDisambiguatedNames returns a map from each node in the graph to
   976  // the name to use in the callgrind output. Callgrind merges all
   977  // functions with the same [file name, function name]. Add a [%d/n]
   978  // suffix to disambiguate nodes with different values of
   979  // node.Function, which we want to keep separate. In particular, this
   980  // affects graphs created with --call_tree, where nodes from different
   981  // contexts are associated to different Functions.
   982  func getDisambiguatedNames(g *graph.Graph) map[*graph.Node]string {
   983  	nodeName := make(map[*graph.Node]string, len(g.Nodes))
   984  
   985  	type names struct {
   986  		file, function string
   987  	}
   988  
   989  	// nameFunctionIndex maps the callgrind names (filename, function)
   990  	// to the node.Function values found for that name, and each
   991  	// node.Function value to a sequential index to be used on the
   992  	// disambiguated name.
   993  	nameFunctionIndex := make(map[names]map[*graph.Node]int)
   994  	for _, n := range g.Nodes {
   995  		nm := names{n.Info.File, n.Info.Name}
   996  		p, ok := nameFunctionIndex[nm]
   997  		if !ok {
   998  			p = make(map[*graph.Node]int)
   999  			nameFunctionIndex[nm] = p
  1000  		}
  1001  		if _, ok := p[n.Function]; !ok {
  1002  			p[n.Function] = len(p)
  1003  		}
  1004  	}
  1005  
  1006  	for _, n := range g.Nodes {
  1007  		nm := names{n.Info.File, n.Info.Name}
  1008  		nodeName[n] = n.Info.Name
  1009  		if p := nameFunctionIndex[nm]; len(p) > 1 {
  1010  			// If there is more than one function, add suffix to disambiguate.
  1011  			nodeName[n] += fmt.Sprintf(" [%d/%d]", p[n.Function]+1, len(p))
  1012  		}
  1013  	}
  1014  	return nodeName
  1015  }
  1016  
  1017  // callgrindName implements the callgrind naming compression scheme.
  1018  // For names not previously seen returns "(N) name", where N is a
  1019  // unique index. For names previously seen returns "(N)" where N is
  1020  // the index returned the first time.
  1021  func callgrindName(names map[string]int, name string) string {
  1022  	if name == "" {
  1023  		return ""
  1024  	}
  1025  	if id, ok := names[name]; ok {
  1026  		return fmt.Sprintf("(%d)", id)
  1027  	}
  1028  	id := len(names) + 1
  1029  	names[name] = id
  1030  	return fmt.Sprintf("(%d) %s", id, name)
  1031  }
  1032  
  1033  // callgrindAddress implements the callgrind subposition compression scheme if
  1034  // possible. If prevInfo != nil, it contains the previous address. The current
  1035  // address can be given relative to the previous address, with an explicit +/-
  1036  // to indicate it is relative, or * for the same address.
  1037  func callgrindAddress(prevInfo *graph.NodeInfo, curr uint64) string {
  1038  	abs := fmt.Sprintf("%#x", curr)
  1039  	if prevInfo == nil {
  1040  		return abs
  1041  	}
  1042  
  1043  	prev := prevInfo.Address
  1044  	if prev == curr {
  1045  		return "*"
  1046  	}
  1047  
  1048  	diff := int64(curr - prev)
  1049  	relative := fmt.Sprintf("%+d", diff)
  1050  
  1051  	// Only bother to use the relative address if it is actually shorter.
  1052  	if len(relative) < len(abs) {
  1053  		return relative
  1054  	}
  1055  
  1056  	return abs
  1057  }
  1058  
  1059  // printTree prints a tree-based report in text form.
  1060  func printTree(w io.Writer, rpt *Report) error {
  1061  	const separator = "----------------------------------------------------------+-------------"
  1062  	const legend = "      flat  flat%   sum%        cum   cum%   calls calls% + context 	 	 "
  1063  
  1064  	g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
  1065  	rpt.selectOutputUnit(g)
  1066  
  1067  	fmt.Fprintln(w, strings.Join(reportLabels(rpt, g, origCount, droppedNodes, 0, false), "\n"))
  1068  
  1069  	fmt.Fprintln(w, separator)
  1070  	fmt.Fprintln(w, legend)
  1071  	var flatSum int64
  1072  
  1073  	rx := rpt.options.Symbol
  1074  	matched := 0
  1075  	for _, n := range g.Nodes {
  1076  		name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()
  1077  
  1078  		// Skip any entries that do not match the regexp (for the "peek" command).
  1079  		if rx != nil && !rx.MatchString(name) {
  1080  			continue
  1081  		}
  1082  		matched++
  1083  
  1084  		fmt.Fprintln(w, separator)
  1085  		// Print incoming edges.
  1086  		inEdges := n.In.Sort()
  1087  		for _, in := range inEdges {
  1088  			var inline string
  1089  			if in.Inline {
  1090  				inline = " (inline)"
  1091  			}
  1092  			fmt.Fprintf(w, "%50s %s |   %s%s\n", rpt.formatValue(in.Weight),
  1093  				measurement.Percentage(in.Weight, cum), in.Src.Info.PrintableName(), inline)
  1094  		}
  1095  
  1096  		// Print current node.
  1097  		flatSum += flat
  1098  		fmt.Fprintf(w, "%10s %s %s %10s %s                | %s\n",
  1099  			rpt.formatValue(flat),
  1100  			measurement.Percentage(flat, rpt.total),
  1101  			measurement.Percentage(flatSum, rpt.total),
  1102  			rpt.formatValue(cum),
  1103  			measurement.Percentage(cum, rpt.total),
  1104  			name)
  1105  
  1106  		// Print outgoing edges.
  1107  		outEdges := n.Out.Sort()
  1108  		for _, out := range outEdges {
  1109  			var inline string
  1110  			if out.Inline {
  1111  				inline = " (inline)"
  1112  			}
  1113  			fmt.Fprintf(w, "%50s %s |   %s%s\n", rpt.formatValue(out.Weight),
  1114  				measurement.Percentage(out.Weight, cum), out.Dest.Info.PrintableName(), inline)
  1115  		}
  1116  	}
  1117  	if len(g.Nodes) > 0 {
  1118  		fmt.Fprintln(w, separator)
  1119  	}
  1120  	if rx != nil && matched == 0 {
  1121  		return fmt.Errorf("no matches found for regexp: %s", rx)
  1122  	}
  1123  	return nil
  1124  }
  1125  
  1126  // GetDOT returns a graph suitable for dot processing along with some
  1127  // configuration information.
  1128  func GetDOT(rpt *Report) (*graph.Graph, *graph.DotConfig) {
  1129  	g, origCount, droppedNodes, droppedEdges := rpt.newTrimmedGraph()
  1130  	rpt.selectOutputUnit(g)
  1131  	labels := reportLabels(rpt, g, origCount, droppedNodes, droppedEdges, true)
  1132  
  1133  	c := &graph.DotConfig{
  1134  		Title:       rpt.options.Title,
  1135  		Labels:      labels,
  1136  		FormatValue: rpt.formatValue,
  1137  		Total:       rpt.total,
  1138  	}
  1139  	return g, c
  1140  }
  1141  
  1142  // printDOT prints an annotated callgraph in DOT format.
  1143  func printDOT(w io.Writer, rpt *Report) error {
  1144  	g, c := GetDOT(rpt)
  1145  	graph.ComposeDot(w, g, &graph.DotAttributes{}, c)
  1146  	return nil
  1147  }
  1148  
  1149  // ProfileLabels returns printable labels for a profile.
  1150  func ProfileLabels(rpt *Report) []string {
  1151  	label := []string{}
  1152  	prof := rpt.prof
  1153  	o := rpt.options
  1154  	if len(prof.Mapping) > 0 {
  1155  		if prof.Mapping[0].File != "" {
  1156  			label = append(label, "File: "+filepath.Base(prof.Mapping[0].File))
  1157  		}
  1158  		if prof.Mapping[0].BuildID != "" {
  1159  			label = append(label, "Build ID: "+prof.Mapping[0].BuildID)
  1160  		}
  1161  	}
  1162  	// Only include comments that do not start with '#'.
  1163  	for _, c := range prof.Comments {
  1164  		if !strings.HasPrefix(c, "#") {
  1165  			label = append(label, c)
  1166  		}
  1167  	}
  1168  	if o.SampleType != "" {
  1169  		label = append(label, "Type: "+o.SampleType)
  1170  	}
  1171  	if prof.TimeNanos != 0 {
  1172  		const layout = "Jan 2, 2006 at 3:04pm (MST)"
  1173  		label = append(label, "Time: "+time.Unix(0, prof.TimeNanos).Format(layout))
  1174  	}
  1175  	if prof.DurationNanos != 0 {
  1176  		duration := measurement.Label(prof.DurationNanos, "nanoseconds")
  1177  		totalNanos, totalUnit := measurement.Scale(rpt.total, o.SampleUnit, "nanoseconds")
  1178  		var ratio string
  1179  		if totalUnit == "ns" && totalNanos != 0 {
  1180  			ratio = "(" + measurement.Percentage(int64(totalNanos), prof.DurationNanos) + ")"
  1181  		}
  1182  		label = append(label, fmt.Sprintf("Duration: %s, Total samples = %s %s", duration, rpt.formatValue(rpt.total), ratio))
  1183  	}
  1184  	return label
  1185  }
  1186  
  1187  // reportLabels returns printable labels for a report. Includes
  1188  // profileLabels.
  1189  func reportLabels(rpt *Report, g *graph.Graph, origCount, droppedNodes, droppedEdges int, fullHeaders bool) []string {
  1190  	nodeFraction := rpt.options.NodeFraction
  1191  	edgeFraction := rpt.options.EdgeFraction
  1192  	nodeCount := len(g.Nodes)
  1193  
  1194  	var label []string
  1195  	if len(rpt.options.ProfileLabels) > 0 {
  1196  		label = append(label, rpt.options.ProfileLabels...)
  1197  	} else if fullHeaders || !rpt.options.CompactLabels {
  1198  		label = ProfileLabels(rpt)
  1199  	}
  1200  
  1201  	var flatSum int64
  1202  	for _, n := range g.Nodes {
  1203  		flatSum = flatSum + n.FlatValue()
  1204  	}
  1205  
  1206  	if len(rpt.options.ActiveFilters) > 0 {
  1207  		activeFilters := legendActiveFilters(rpt.options.ActiveFilters)
  1208  		label = append(label, activeFilters...)
  1209  	}
  1210  
  1211  	label = append(label, fmt.Sprintf("Showing nodes accounting for %s, %s of %s total", rpt.formatValue(flatSum), strings.TrimSpace(measurement.Percentage(flatSum, rpt.total)), rpt.formatValue(rpt.total)))
  1212  
  1213  	if rpt.total != 0 {
  1214  		if droppedNodes > 0 {
  1215  			label = append(label, genLabel(droppedNodes, "node", "cum",
  1216  				rpt.formatValue(abs64(int64(float64(rpt.total)*nodeFraction)))))
  1217  		}
  1218  		if droppedEdges > 0 {
  1219  			label = append(label, genLabel(droppedEdges, "edge", "freq",
  1220  				rpt.formatValue(abs64(int64(float64(rpt.total)*edgeFraction)))))
  1221  		}
  1222  		if nodeCount > 0 && nodeCount < origCount {
  1223  			label = append(label, fmt.Sprintf("Showing top %d nodes out of %d",
  1224  				nodeCount, origCount))
  1225  		}
  1226  	}
  1227  
  1228  	// Help new users understand the graph.
  1229  	// A new line is intentionally added here to better show this message.
  1230  	if fullHeaders {
  1231  		label = append(label, "\nSee https://git.io/JfYMW for how to read the graph")
  1232  	}
  1233  
  1234  	return label
  1235  }
  1236  
  1237  func legendActiveFilters(activeFilters []string) []string {
  1238  	legendActiveFilters := make([]string, len(activeFilters)+1)
  1239  	legendActiveFilters[0] = "Active filters:"
  1240  	for i, s := range activeFilters {
  1241  		if len(s) > 80 {
  1242  			s = s[:80] + "…"
  1243  		}
  1244  		legendActiveFilters[i+1] = "   " + s
  1245  	}
  1246  	return legendActiveFilters
  1247  }
  1248  
  1249  func genLabel(d int, n, l, f string) string {
  1250  	if d > 1 {
  1251  		n = n + "s"
  1252  	}
  1253  	return fmt.Sprintf("Dropped %d %s (%s <= %s)", d, n, l, f)
  1254  }
  1255  
  1256  // New builds a new report indexing the sample values interpreting the
  1257  // samples with the provided function.
  1258  func New(prof *profile.Profile, o *Options) *Report {
  1259  	format := func(v int64) string {
  1260  		if r := o.Ratio; r > 0 && r != 1 {
  1261  			fv := float64(v) * r
  1262  			v = int64(fv)
  1263  		}
  1264  		return measurement.ScaledLabel(v, o.SampleUnit, o.OutputUnit)
  1265  	}
  1266  	return &Report{prof, computeTotal(prof, o.SampleValue, o.SampleMeanDivisor),
  1267  		o, format}
  1268  }
  1269  
  1270  // NewDefault builds a new report indexing the last sample value
  1271  // available.
  1272  func NewDefault(prof *profile.Profile, options Options) *Report {
  1273  	index := len(prof.SampleType) - 1
  1274  	o := &options
  1275  	if o.Title == "" && len(prof.Mapping) > 0 && prof.Mapping[0].File != "" {
  1276  		o.Title = filepath.Base(prof.Mapping[0].File)
  1277  	}
  1278  	o.SampleType = prof.SampleType[index].Type
  1279  	o.SampleUnit = strings.ToLower(prof.SampleType[index].Unit)
  1280  	o.SampleValue = func(v []int64) int64 {
  1281  		return v[index]
  1282  	}
  1283  	return New(prof, o)
  1284  }
  1285  
  1286  // computeTotal computes the sum of the absolute value of all sample values.
  1287  // If any samples have label indicating they belong to the diff base, then the
  1288  // total will only include samples with that label.
  1289  func computeTotal(prof *profile.Profile, value, meanDiv func(v []int64) int64) int64 {
  1290  	var div, total, diffDiv, diffTotal int64
  1291  	for _, sample := range prof.Sample {
  1292  		var d, v int64
  1293  		v = value(sample.Value)
  1294  		if meanDiv != nil {
  1295  			d = meanDiv(sample.Value)
  1296  		}
  1297  		if v < 0 {
  1298  			v = -v
  1299  		}
  1300  		total += v
  1301  		div += d
  1302  		if sample.DiffBaseSample() {
  1303  			diffTotal += v
  1304  			diffDiv += d
  1305  		}
  1306  	}
  1307  	if diffTotal > 0 {
  1308  		total = diffTotal
  1309  		div = diffDiv
  1310  	}
  1311  	if div != 0 {
  1312  		return total / div
  1313  	}
  1314  	return total
  1315  }
  1316  
  1317  // Report contains the data and associated routines to extract a
  1318  // report from a profile.
  1319  type Report struct {
  1320  	prof        *profile.Profile
  1321  	total       int64
  1322  	options     *Options
  1323  	formatValue func(int64) string
  1324  }
  1325  
  1326  // Total returns the total number of samples in a report.
  1327  func (rpt *Report) Total() int64 { return rpt.total }
  1328  
  1329  func abs64(i int64) int64 {
  1330  	if i < 0 {
  1331  		return -i
  1332  	}
  1333  	return i
  1334  }
  1335  

View as plain text