...

Source file src/compress/bzip2/huffman.go

Documentation: compress/bzip2

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package bzip2
     6  
     7  import "sort"
     8  
     9  // A huffmanTree is a binary tree which is navigated, bit-by-bit to reach a
    10  // symbol.
    11  type huffmanTree struct {
    12  	// nodes contains all the non-leaf nodes in the tree. nodes[0] is the
    13  	// root of the tree and nextNode contains the index of the next element
    14  	// of nodes to use when the tree is being constructed.
    15  	nodes    []huffmanNode
    16  	nextNode int
    17  }
    18  
    19  // A huffmanNode is a node in the tree. left and right contain indexes into the
    20  // nodes slice of the tree. If left or right is invalidNodeValue then the child
    21  // is a left node and its value is in leftValue/rightValue.
    22  //
    23  // The symbols are uint16s because bzip2 encodes not only MTF indexes in the
    24  // tree, but also two magic values for run-length encoding and an EOF symbol.
    25  // Thus there are more than 256 possible symbols.
    26  type huffmanNode struct {
    27  	left, right           uint16
    28  	leftValue, rightValue uint16
    29  }
    30  
    31  // invalidNodeValue is an invalid index which marks a leaf node in the tree.
    32  const invalidNodeValue = 0xffff
    33  
    34  // Decode reads bits from the given bitReader and navigates the tree until a
    35  // symbol is found.
    36  func (t *huffmanTree) Decode(br *bitReader) (v uint16) {
    37  	nodeIndex := uint16(0) // node 0 is the root of the tree.
    38  
    39  	for {
    40  		node := &t.nodes[nodeIndex]
    41  
    42  		var bit uint16
    43  		if br.bits > 0 {
    44  			// Get next bit - fast path.
    45  			br.bits--
    46  			bit = uint16(br.n>>(br.bits&63)) & 1
    47  		} else {
    48  			// Get next bit - slow path.
    49  			// Use ReadBits to retrieve a single bit
    50  			// from the underling io.ByteReader.
    51  			bit = uint16(br.ReadBits(1))
    52  		}
    53  
    54  		// Trick a compiler into generating conditional move instead of branch,
    55  		// by making both loads unconditional.
    56  		l, r := node.left, node.right
    57  
    58  		if bit == 1 {
    59  			nodeIndex = l
    60  		} else {
    61  			nodeIndex = r
    62  		}
    63  
    64  		if nodeIndex == invalidNodeValue {
    65  			// We found a leaf. Use the value of bit to decide
    66  			// whether is a left or a right value.
    67  			l, r := node.leftValue, node.rightValue
    68  			if bit == 1 {
    69  				v = l
    70  			} else {
    71  				v = r
    72  			}
    73  			return
    74  		}
    75  	}
    76  }
    77  
    78  // newHuffmanTree builds a Huffman tree from a slice containing the code
    79  // lengths of each symbol. The maximum code length is 32 bits.
    80  func newHuffmanTree(lengths []uint8) (huffmanTree, error) {
    81  	// There are many possible trees that assign the same code length to
    82  	// each symbol (consider reflecting a tree down the middle, for
    83  	// example). Since the code length assignments determine the
    84  	// efficiency of the tree, each of these trees is equally good. In
    85  	// order to minimize the amount of information needed to build a tree
    86  	// bzip2 uses a canonical tree so that it can be reconstructed given
    87  	// only the code length assignments.
    88  
    89  	if len(lengths) < 2 {
    90  		panic("newHuffmanTree: too few symbols")
    91  	}
    92  
    93  	var t huffmanTree
    94  
    95  	// First we sort the code length assignments by ascending code length,
    96  	// using the symbol value to break ties.
    97  	pairs := make([]huffmanSymbolLengthPair, len(lengths))
    98  	for i, length := range lengths {
    99  		pairs[i].value = uint16(i)
   100  		pairs[i].length = length
   101  	}
   102  
   103  	sort.Slice(pairs, func(i, j int) bool {
   104  		if pairs[i].length < pairs[j].length {
   105  			return true
   106  		}
   107  		if pairs[i].length > pairs[j].length {
   108  			return false
   109  		}
   110  		if pairs[i].value < pairs[j].value {
   111  			return true
   112  		}
   113  		return false
   114  	})
   115  
   116  	// Now we assign codes to the symbols, starting with the longest code.
   117  	// We keep the codes packed into a uint32, at the most-significant end.
   118  	// So branches are taken from the MSB downwards. This makes it easy to
   119  	// sort them later.
   120  	code := uint32(0)
   121  	length := uint8(32)
   122  
   123  	codes := make([]huffmanCode, len(lengths))
   124  	for i := len(pairs) - 1; i >= 0; i-- {
   125  		if length > pairs[i].length {
   126  			length = pairs[i].length
   127  		}
   128  		codes[i].code = code
   129  		codes[i].codeLen = length
   130  		codes[i].value = pairs[i].value
   131  		// We need to 'increment' the code, which means treating |code|
   132  		// like a |length| bit number.
   133  		code += 1 << (32 - length)
   134  	}
   135  
   136  	// Now we can sort by the code so that the left half of each branch are
   137  	// grouped together, recursively.
   138  	sort.Slice(codes, func(i, j int) bool {
   139  		return codes[i].code < codes[j].code
   140  	})
   141  
   142  	t.nodes = make([]huffmanNode, len(codes))
   143  	_, err := buildHuffmanNode(&t, codes, 0)
   144  	return t, err
   145  }
   146  
   147  // huffmanSymbolLengthPair contains a symbol and its code length.
   148  type huffmanSymbolLengthPair struct {
   149  	value  uint16
   150  	length uint8
   151  }
   152  
   153  // huffmanCode contains a symbol, its code and code length.
   154  type huffmanCode struct {
   155  	code    uint32
   156  	codeLen uint8
   157  	value   uint16
   158  }
   159  
   160  // buildHuffmanNode takes a slice of sorted huffmanCodes and builds a node in
   161  // the Huffman tree at the given level. It returns the index of the newly
   162  // constructed node.
   163  func buildHuffmanNode(t *huffmanTree, codes []huffmanCode, level uint32) (nodeIndex uint16, err error) {
   164  	test := uint32(1) << (31 - level)
   165  
   166  	// We have to search the list of codes to find the divide between the left and right sides.
   167  	firstRightIndex := len(codes)
   168  	for i, code := range codes {
   169  		if code.code&test != 0 {
   170  			firstRightIndex = i
   171  			break
   172  		}
   173  	}
   174  
   175  	left := codes[:firstRightIndex]
   176  	right := codes[firstRightIndex:]
   177  
   178  	if len(left) == 0 || len(right) == 0 {
   179  		// There is a superfluous level in the Huffman tree indicating
   180  		// a bug in the encoder. However, this bug has been observed in
   181  		// the wild so we handle it.
   182  
   183  		// If this function was called recursively then we know that
   184  		// len(codes) >= 2 because, otherwise, we would have hit the
   185  		// "leaf node" case, below, and not recurred.
   186  		//
   187  		// However, for the initial call it's possible that len(codes)
   188  		// is zero or one. Both cases are invalid because a zero length
   189  		// tree cannot encode anything and a length-1 tree can only
   190  		// encode EOF and so is superfluous. We reject both.
   191  		if len(codes) < 2 {
   192  			return 0, StructuralError("empty Huffman tree")
   193  		}
   194  
   195  		// In this case the recursion doesn't always reduce the length
   196  		// of codes so we need to ensure termination via another
   197  		// mechanism.
   198  		if level == 31 {
   199  			// Since len(codes) >= 2 the only way that the values
   200  			// can match at all 32 bits is if they are equal, which
   201  			// is invalid. This ensures that we never enter
   202  			// infinite recursion.
   203  			return 0, StructuralError("equal symbols in Huffman tree")
   204  		}
   205  
   206  		if len(left) == 0 {
   207  			return buildHuffmanNode(t, right, level+1)
   208  		}
   209  		return buildHuffmanNode(t, left, level+1)
   210  	}
   211  
   212  	nodeIndex = uint16(t.nextNode)
   213  	node := &t.nodes[t.nextNode]
   214  	t.nextNode++
   215  
   216  	if len(left) == 1 {
   217  		// leaf node
   218  		node.left = invalidNodeValue
   219  		node.leftValue = left[0].value
   220  	} else {
   221  		node.left, err = buildHuffmanNode(t, left, level+1)
   222  	}
   223  
   224  	if err != nil {
   225  		return
   226  	}
   227  
   228  	if len(right) == 1 {
   229  		// leaf node
   230  		node.right = invalidNodeValue
   231  		node.rightValue = right[0].value
   232  	} else {
   233  		node.right, err = buildHuffmanNode(t, right, level+1)
   234  	}
   235  
   236  	return
   237  }
   238  

View as plain text