...

Source file src/compress/flate/deflate.go

Documentation: compress/flate

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package flate
     6  
     7  import (
     8  	"errors"
     9  	"fmt"
    10  	"io"
    11  	"math"
    12  )
    13  
    14  const (
    15  	NoCompression      = 0
    16  	BestSpeed          = 1
    17  	BestCompression    = 9
    18  	DefaultCompression = -1
    19  
    20  	// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
    21  	// entropy encoding. This mode is useful in compressing data that has
    22  	// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
    23  	// that lacks an entropy encoder. Compression gains are achieved when
    24  	// certain bytes in the input stream occur more frequently than others.
    25  	//
    26  	// Note that HuffmanOnly produces a compressed output that is
    27  	// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
    28  	// continue to be able to decompress this output.
    29  	HuffmanOnly = -2
    30  )
    31  
    32  const (
    33  	logWindowSize = 15
    34  	windowSize    = 1 << logWindowSize
    35  	windowMask    = windowSize - 1
    36  
    37  	// The LZ77 step produces a sequence of literal tokens and <length, offset>
    38  	// pair tokens. The offset is also known as distance. The underlying wire
    39  	// format limits the range of lengths and offsets. For example, there are
    40  	// 256 legitimate lengths: those in the range [3, 258]. This package's
    41  	// compressor uses a higher minimum match length, enabling optimizations
    42  	// such as finding matches via 32-bit loads and compares.
    43  	baseMatchLength = 3       // The smallest match length per the RFC section 3.2.5
    44  	minMatchLength  = 4       // The smallest match length that the compressor actually emits
    45  	maxMatchLength  = 258     // The largest match length
    46  	baseMatchOffset = 1       // The smallest match offset
    47  	maxMatchOffset  = 1 << 15 // The largest match offset
    48  
    49  	// The maximum number of tokens we put into a single flate block, just to
    50  	// stop things from getting too large.
    51  	maxFlateBlockTokens = 1 << 14
    52  	maxStoreBlockSize   = 65535
    53  	hashBits            = 17 // After 17 performance degrades
    54  	hashSize            = 1 << hashBits
    55  	hashMask            = (1 << hashBits) - 1
    56  	maxHashOffset       = 1 << 24
    57  
    58  	skipNever = math.MaxInt32
    59  )
    60  
    61  type compressionLevel struct {
    62  	level, good, lazy, nice, chain, fastSkipHashing int
    63  }
    64  
    65  var levels = []compressionLevel{
    66  	{0, 0, 0, 0, 0, 0}, // NoCompression.
    67  	{1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go.
    68  	// For levels 2-3 we don't bother trying with lazy matches.
    69  	{2, 4, 0, 16, 8, 5},
    70  	{3, 4, 0, 32, 32, 6},
    71  	// Levels 4-9 use increasingly more lazy matching
    72  	// and increasingly stringent conditions for "good enough".
    73  	{4, 4, 4, 16, 16, skipNever},
    74  	{5, 8, 16, 32, 32, skipNever},
    75  	{6, 8, 16, 128, 128, skipNever},
    76  	{7, 8, 32, 128, 256, skipNever},
    77  	{8, 32, 128, 258, 1024, skipNever},
    78  	{9, 32, 258, 258, 4096, skipNever},
    79  }
    80  
    81  type compressor struct {
    82  	compressionLevel
    83  
    84  	w          *huffmanBitWriter
    85  	bulkHasher func([]byte, []uint32)
    86  
    87  	// compression algorithm
    88  	fill      func(*compressor, []byte) int // copy data to window
    89  	step      func(*compressor)             // process window
    90  	sync      bool                          // requesting flush
    91  	bestSpeed *deflateFast                  // Encoder for BestSpeed
    92  
    93  	// Input hash chains
    94  	// hashHead[hashValue] contains the largest inputIndex with the specified hash value
    95  	// If hashHead[hashValue] is within the current window, then
    96  	// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
    97  	// with the same hash value.
    98  	chainHead  int
    99  	hashHead   [hashSize]uint32
   100  	hashPrev   [windowSize]uint32
   101  	hashOffset int
   102  
   103  	// input window: unprocessed data is window[index:windowEnd]
   104  	index         int
   105  	window        []byte
   106  	windowEnd     int
   107  	blockStart    int  // window index where current tokens start
   108  	byteAvailable bool // if true, still need to process window[index-1].
   109  
   110  	// queued output tokens
   111  	tokens []token
   112  
   113  	// deflate state
   114  	length         int
   115  	offset         int
   116  	maxInsertIndex int
   117  	err            error
   118  
   119  	// hashMatch must be able to contain hashes for the maximum match length.
   120  	hashMatch [maxMatchLength - 1]uint32
   121  }
   122  
   123  func (d *compressor) fillDeflate(b []byte) int {
   124  	if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
   125  		// shift the window by windowSize
   126  		copy(d.window, d.window[windowSize:2*windowSize])
   127  		d.index -= windowSize
   128  		d.windowEnd -= windowSize
   129  		if d.blockStart >= windowSize {
   130  			d.blockStart -= windowSize
   131  		} else {
   132  			d.blockStart = math.MaxInt32
   133  		}
   134  		d.hashOffset += windowSize
   135  		if d.hashOffset > maxHashOffset {
   136  			delta := d.hashOffset - 1
   137  			d.hashOffset -= delta
   138  			d.chainHead -= delta
   139  
   140  			// Iterate over slices instead of arrays to avoid copying
   141  			// the entire table onto the stack (Issue #18625).
   142  			for i, v := range d.hashPrev[:] {
   143  				if int(v) > delta {
   144  					d.hashPrev[i] = uint32(int(v) - delta)
   145  				} else {
   146  					d.hashPrev[i] = 0
   147  				}
   148  			}
   149  			for i, v := range d.hashHead[:] {
   150  				if int(v) > delta {
   151  					d.hashHead[i] = uint32(int(v) - delta)
   152  				} else {
   153  					d.hashHead[i] = 0
   154  				}
   155  			}
   156  		}
   157  	}
   158  	n := copy(d.window[d.windowEnd:], b)
   159  	d.windowEnd += n
   160  	return n
   161  }
   162  
   163  func (d *compressor) writeBlock(tokens []token, index int) error {
   164  	if index > 0 {
   165  		var window []byte
   166  		if d.blockStart <= index {
   167  			window = d.window[d.blockStart:index]
   168  		}
   169  		d.blockStart = index
   170  		d.w.writeBlock(tokens, false, window)
   171  		return d.w.err
   172  	}
   173  	return nil
   174  }
   175  
   176  // fillWindow will fill the current window with the supplied
   177  // dictionary and calculate all hashes.
   178  // This is much faster than doing a full encode.
   179  // Should only be used after a reset.
   180  func (d *compressor) fillWindow(b []byte) {
   181  	// Do not fill window if we are in store-only mode.
   182  	if d.compressionLevel.level < 2 {
   183  		return
   184  	}
   185  	if d.index != 0 || d.windowEnd != 0 {
   186  		panic("internal error: fillWindow called with stale data")
   187  	}
   188  
   189  	// If we are given too much, cut it.
   190  	if len(b) > windowSize {
   191  		b = b[len(b)-windowSize:]
   192  	}
   193  	// Add all to window.
   194  	n := copy(d.window, b)
   195  
   196  	// Calculate 256 hashes at the time (more L1 cache hits)
   197  	loops := (n + 256 - minMatchLength) / 256
   198  	for j := 0; j < loops; j++ {
   199  		index := j * 256
   200  		end := index + 256 + minMatchLength - 1
   201  		if end > n {
   202  			end = n
   203  		}
   204  		toCheck := d.window[index:end]
   205  		dstSize := len(toCheck) - minMatchLength + 1
   206  
   207  		if dstSize <= 0 {
   208  			continue
   209  		}
   210  
   211  		dst := d.hashMatch[:dstSize]
   212  		d.bulkHasher(toCheck, dst)
   213  		for i, val := range dst {
   214  			di := i + index
   215  			hh := &d.hashHead[val&hashMask]
   216  			// Get previous value with the same hash.
   217  			// Our chain should point to the previous value.
   218  			d.hashPrev[di&windowMask] = *hh
   219  			// Set the head of the hash chain to us.
   220  			*hh = uint32(di + d.hashOffset)
   221  		}
   222  	}
   223  	// Update window information.
   224  	d.windowEnd = n
   225  	d.index = n
   226  }
   227  
   228  // Try to find a match starting at index whose length is greater than prevSize.
   229  // We only look at chainCount possibilities before giving up.
   230  func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
   231  	minMatchLook := maxMatchLength
   232  	if lookahead < minMatchLook {
   233  		minMatchLook = lookahead
   234  	}
   235  
   236  	win := d.window[0 : pos+minMatchLook]
   237  
   238  	// We quit when we get a match that's at least nice long
   239  	nice := len(win) - pos
   240  	if d.nice < nice {
   241  		nice = d.nice
   242  	}
   243  
   244  	// If we've got a match that's good enough, only look in 1/4 the chain.
   245  	tries := d.chain
   246  	length = prevLength
   247  	if length >= d.good {
   248  		tries >>= 2
   249  	}
   250  
   251  	wEnd := win[pos+length]
   252  	wPos := win[pos:]
   253  	minIndex := pos - windowSize
   254  
   255  	for i := prevHead; tries > 0; tries-- {
   256  		if wEnd == win[i+length] {
   257  			n := matchLen(win[i:], wPos, minMatchLook)
   258  
   259  			if n > length && (n > minMatchLength || pos-i <= 4096) {
   260  				length = n
   261  				offset = pos - i
   262  				ok = true
   263  				if n >= nice {
   264  					// The match is good enough that we don't try to find a better one.
   265  					break
   266  				}
   267  				wEnd = win[pos+n]
   268  			}
   269  		}
   270  		if i == minIndex {
   271  			// hashPrev[i & windowMask] has already been overwritten, so stop now.
   272  			break
   273  		}
   274  		i = int(d.hashPrev[i&windowMask]) - d.hashOffset
   275  		if i < minIndex || i < 0 {
   276  			break
   277  		}
   278  	}
   279  	return
   280  }
   281  
   282  func (d *compressor) writeStoredBlock(buf []byte) error {
   283  	if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
   284  		return d.w.err
   285  	}
   286  	d.w.writeBytes(buf)
   287  	return d.w.err
   288  }
   289  
   290  const hashmul = 0x1e35a7bd
   291  
   292  // hash4 returns a hash representation of the first 4 bytes
   293  // of the supplied slice.
   294  // The caller must ensure that len(b) >= 4.
   295  func hash4(b []byte) uint32 {
   296  	return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
   297  }
   298  
   299  // bulkHash4 will compute hashes using the same
   300  // algorithm as hash4.
   301  func bulkHash4(b []byte, dst []uint32) {
   302  	if len(b) < minMatchLength {
   303  		return
   304  	}
   305  	hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
   306  	dst[0] = (hb * hashmul) >> (32 - hashBits)
   307  	end := len(b) - minMatchLength + 1
   308  	for i := 1; i < end; i++ {
   309  		hb = (hb << 8) | uint32(b[i+3])
   310  		dst[i] = (hb * hashmul) >> (32 - hashBits)
   311  	}
   312  }
   313  
   314  // matchLen returns the number of matching bytes in a and b
   315  // up to length 'max'. Both slices must be at least 'max'
   316  // bytes in size.
   317  func matchLen(a, b []byte, max int) int {
   318  	a = a[:max]
   319  	b = b[:len(a)]
   320  	for i, av := range a {
   321  		if b[i] != av {
   322  			return i
   323  		}
   324  	}
   325  	return max
   326  }
   327  
   328  // encSpeed will compress and store the currently added data,
   329  // if enough has been accumulated or we at the end of the stream.
   330  // Any error that occurred will be in d.err
   331  func (d *compressor) encSpeed() {
   332  	// We only compress if we have maxStoreBlockSize.
   333  	if d.windowEnd < maxStoreBlockSize {
   334  		if !d.sync {
   335  			return
   336  		}
   337  
   338  		// Handle small sizes.
   339  		if d.windowEnd < 128 {
   340  			switch {
   341  			case d.windowEnd == 0:
   342  				return
   343  			case d.windowEnd <= 16:
   344  				d.err = d.writeStoredBlock(d.window[:d.windowEnd])
   345  			default:
   346  				d.w.writeBlockHuff(false, d.window[:d.windowEnd])
   347  				d.err = d.w.err
   348  			}
   349  			d.windowEnd = 0
   350  			d.bestSpeed.reset()
   351  			return
   352  		}
   353  
   354  	}
   355  	// Encode the block.
   356  	d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd])
   357  
   358  	// If we removed less than 1/16th, Huffman compress the block.
   359  	if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) {
   360  		d.w.writeBlockHuff(false, d.window[:d.windowEnd])
   361  	} else {
   362  		d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd])
   363  	}
   364  	d.err = d.w.err
   365  	d.windowEnd = 0
   366  }
   367  
   368  func (d *compressor) initDeflate() {
   369  	d.window = make([]byte, 2*windowSize)
   370  	d.hashOffset = 1
   371  	d.tokens = make([]token, 0, maxFlateBlockTokens+1)
   372  	d.length = minMatchLength - 1
   373  	d.offset = 0
   374  	d.byteAvailable = false
   375  	d.index = 0
   376  	d.chainHead = -1
   377  	d.bulkHasher = bulkHash4
   378  }
   379  
   380  func (d *compressor) deflate() {
   381  	if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
   382  		return
   383  	}
   384  
   385  	d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
   386  
   387  Loop:
   388  	for {
   389  		if d.index > d.windowEnd {
   390  			panic("index > windowEnd")
   391  		}
   392  		lookahead := d.windowEnd - d.index
   393  		if lookahead < minMatchLength+maxMatchLength {
   394  			if !d.sync {
   395  				break Loop
   396  			}
   397  			if d.index > d.windowEnd {
   398  				panic("index > windowEnd")
   399  			}
   400  			if lookahead == 0 {
   401  				// Flush current output block if any.
   402  				if d.byteAvailable {
   403  					// There is still one pending token that needs to be flushed
   404  					d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1])))
   405  					d.byteAvailable = false
   406  				}
   407  				if len(d.tokens) > 0 {
   408  					if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
   409  						return
   410  					}
   411  					d.tokens = d.tokens[:0]
   412  				}
   413  				break Loop
   414  			}
   415  		}
   416  		if d.index < d.maxInsertIndex {
   417  			// Update the hash
   418  			hash := hash4(d.window[d.index : d.index+minMatchLength])
   419  			hh := &d.hashHead[hash&hashMask]
   420  			d.chainHead = int(*hh)
   421  			d.hashPrev[d.index&windowMask] = uint32(d.chainHead)
   422  			*hh = uint32(d.index + d.hashOffset)
   423  		}
   424  		prevLength := d.length
   425  		prevOffset := d.offset
   426  		d.length = minMatchLength - 1
   427  		d.offset = 0
   428  		minIndex := d.index - windowSize
   429  		if minIndex < 0 {
   430  			minIndex = 0
   431  		}
   432  
   433  		if d.chainHead-d.hashOffset >= minIndex &&
   434  			(d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 ||
   435  				d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) {
   436  			if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
   437  				d.length = newLength
   438  				d.offset = newOffset
   439  			}
   440  		}
   441  		if d.fastSkipHashing != skipNever && d.length >= minMatchLength ||
   442  			d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength {
   443  			// There was a match at the previous step, and the current match is
   444  			// not better. Output the previous match.
   445  			if d.fastSkipHashing != skipNever {
   446  				d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset)))
   447  			} else {
   448  				d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset)))
   449  			}
   450  			// Insert in the hash table all strings up to the end of the match.
   451  			// index and index-1 are already inserted. If there is not enough
   452  			// lookahead, the last two strings are not inserted into the hash
   453  			// table.
   454  			if d.length <= d.fastSkipHashing {
   455  				var newIndex int
   456  				if d.fastSkipHashing != skipNever {
   457  					newIndex = d.index + d.length
   458  				} else {
   459  					newIndex = d.index + prevLength - 1
   460  				}
   461  				index := d.index
   462  				for index++; index < newIndex; index++ {
   463  					if index < d.maxInsertIndex {
   464  						hash := hash4(d.window[index : index+minMatchLength])
   465  						// Get previous value with the same hash.
   466  						// Our chain should point to the previous value.
   467  						hh := &d.hashHead[hash&hashMask]
   468  						d.hashPrev[index&windowMask] = *hh
   469  						// Set the head of the hash chain to us.
   470  						*hh = uint32(index + d.hashOffset)
   471  					}
   472  				}
   473  				d.index = index
   474  
   475  				if d.fastSkipHashing == skipNever {
   476  					d.byteAvailable = false
   477  					d.length = minMatchLength - 1
   478  				}
   479  			} else {
   480  				// For matches this long, we don't bother inserting each individual
   481  				// item into the table.
   482  				d.index += d.length
   483  			}
   484  			if len(d.tokens) == maxFlateBlockTokens {
   485  				// The block includes the current character
   486  				if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
   487  					return
   488  				}
   489  				d.tokens = d.tokens[:0]
   490  			}
   491  		} else {
   492  			if d.fastSkipHashing != skipNever || d.byteAvailable {
   493  				i := d.index - 1
   494  				if d.fastSkipHashing != skipNever {
   495  					i = d.index
   496  				}
   497  				d.tokens = append(d.tokens, literalToken(uint32(d.window[i])))
   498  				if len(d.tokens) == maxFlateBlockTokens {
   499  					if d.err = d.writeBlock(d.tokens, i+1); d.err != nil {
   500  						return
   501  					}
   502  					d.tokens = d.tokens[:0]
   503  				}
   504  			}
   505  			d.index++
   506  			if d.fastSkipHashing == skipNever {
   507  				d.byteAvailable = true
   508  			}
   509  		}
   510  	}
   511  }
   512  
   513  func (d *compressor) fillStore(b []byte) int {
   514  	n := copy(d.window[d.windowEnd:], b)
   515  	d.windowEnd += n
   516  	return n
   517  }
   518  
   519  func (d *compressor) store() {
   520  	if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
   521  		d.err = d.writeStoredBlock(d.window[:d.windowEnd])
   522  		d.windowEnd = 0
   523  	}
   524  }
   525  
   526  // storeHuff compresses and stores the currently added data
   527  // when the d.window is full or we are at the end of the stream.
   528  // Any error that occurred will be in d.err
   529  func (d *compressor) storeHuff() {
   530  	if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
   531  		return
   532  	}
   533  	d.w.writeBlockHuff(false, d.window[:d.windowEnd])
   534  	d.err = d.w.err
   535  	d.windowEnd = 0
   536  }
   537  
   538  func (d *compressor) write(b []byte) (n int, err error) {
   539  	if d.err != nil {
   540  		return 0, d.err
   541  	}
   542  	n = len(b)
   543  	for len(b) > 0 {
   544  		d.step(d)
   545  		b = b[d.fill(d, b):]
   546  		if d.err != nil {
   547  			return 0, d.err
   548  		}
   549  	}
   550  	return n, nil
   551  }
   552  
   553  func (d *compressor) syncFlush() error {
   554  	if d.err != nil {
   555  		return d.err
   556  	}
   557  	d.sync = true
   558  	d.step(d)
   559  	if d.err == nil {
   560  		d.w.writeStoredHeader(0, false)
   561  		d.w.flush()
   562  		d.err = d.w.err
   563  	}
   564  	d.sync = false
   565  	return d.err
   566  }
   567  
   568  func (d *compressor) init(w io.Writer, level int) (err error) {
   569  	d.w = newHuffmanBitWriter(w)
   570  
   571  	switch {
   572  	case level == NoCompression:
   573  		d.window = make([]byte, maxStoreBlockSize)
   574  		d.fill = (*compressor).fillStore
   575  		d.step = (*compressor).store
   576  	case level == HuffmanOnly:
   577  		d.window = make([]byte, maxStoreBlockSize)
   578  		d.fill = (*compressor).fillStore
   579  		d.step = (*compressor).storeHuff
   580  	case level == BestSpeed:
   581  		d.compressionLevel = levels[level]
   582  		d.window = make([]byte, maxStoreBlockSize)
   583  		d.fill = (*compressor).fillStore
   584  		d.step = (*compressor).encSpeed
   585  		d.bestSpeed = newDeflateFast()
   586  		d.tokens = make([]token, maxStoreBlockSize)
   587  	case level == DefaultCompression:
   588  		level = 6
   589  		fallthrough
   590  	case 2 <= level && level <= 9:
   591  		d.compressionLevel = levels[level]
   592  		d.initDeflate()
   593  		d.fill = (*compressor).fillDeflate
   594  		d.step = (*compressor).deflate
   595  	default:
   596  		return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
   597  	}
   598  	return nil
   599  }
   600  
   601  func (d *compressor) reset(w io.Writer) {
   602  	d.w.reset(w)
   603  	d.sync = false
   604  	d.err = nil
   605  	switch d.compressionLevel.level {
   606  	case NoCompression:
   607  		d.windowEnd = 0
   608  	case BestSpeed:
   609  		d.windowEnd = 0
   610  		d.tokens = d.tokens[:0]
   611  		d.bestSpeed.reset()
   612  	default:
   613  		d.chainHead = -1
   614  		for i := range d.hashHead {
   615  			d.hashHead[i] = 0
   616  		}
   617  		for i := range d.hashPrev {
   618  			d.hashPrev[i] = 0
   619  		}
   620  		d.hashOffset = 1
   621  		d.index, d.windowEnd = 0, 0
   622  		d.blockStart, d.byteAvailable = 0, false
   623  		d.tokens = d.tokens[:0]
   624  		d.length = minMatchLength - 1
   625  		d.offset = 0
   626  		d.maxInsertIndex = 0
   627  	}
   628  }
   629  
   630  func (d *compressor) close() error {
   631  	if d.err == errWriterClosed {
   632  		return nil
   633  	}
   634  	if d.err != nil {
   635  		return d.err
   636  	}
   637  	d.sync = true
   638  	d.step(d)
   639  	if d.err != nil {
   640  		return d.err
   641  	}
   642  	if d.w.writeStoredHeader(0, true); d.w.err != nil {
   643  		return d.w.err
   644  	}
   645  	d.w.flush()
   646  	if d.w.err != nil {
   647  		return d.w.err
   648  	}
   649  	d.err = errWriterClosed
   650  	return nil
   651  }
   652  
   653  // NewWriter returns a new [Writer] compressing data at the given level.
   654  // Following zlib, levels range from 1 ([BestSpeed]) to 9 ([BestCompression]);
   655  // higher levels typically run slower but compress more. Level 0
   656  // ([NoCompression]) does not attempt any compression; it only adds the
   657  // necessary DEFLATE framing.
   658  // Level -1 ([DefaultCompression]) uses the default compression level.
   659  // Level -2 ([HuffmanOnly]) will use Huffman compression only, giving
   660  // a very fast compression for all types of input, but sacrificing considerable
   661  // compression efficiency.
   662  //
   663  // If level is in the range [-2, 9] then the error returned will be nil.
   664  // Otherwise the error returned will be non-nil.
   665  func NewWriter(w io.Writer, level int) (*Writer, error) {
   666  	var dw Writer
   667  	if err := dw.d.init(w, level); err != nil {
   668  		return nil, err
   669  	}
   670  	return &dw, nil
   671  }
   672  
   673  // NewWriterDict is like [NewWriter] but initializes the new
   674  // [Writer] with a preset dictionary. The returned [Writer] behaves
   675  // as if the dictionary had been written to it without producing
   676  // any compressed output. The compressed data written to w
   677  // can only be decompressed by a [Reader] initialized with the
   678  // same dictionary.
   679  func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
   680  	dw := &dictWriter{w}
   681  	zw, err := NewWriter(dw, level)
   682  	if err != nil {
   683  		return nil, err
   684  	}
   685  	zw.d.fillWindow(dict)
   686  	zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
   687  	return zw, err
   688  }
   689  
   690  type dictWriter struct {
   691  	w io.Writer
   692  }
   693  
   694  func (w *dictWriter) Write(b []byte) (n int, err error) {
   695  	return w.w.Write(b)
   696  }
   697  
   698  var errWriterClosed = errors.New("flate: closed writer")
   699  
   700  // A Writer takes data written to it and writes the compressed
   701  // form of that data to an underlying writer (see [NewWriter]).
   702  type Writer struct {
   703  	d    compressor
   704  	dict []byte
   705  }
   706  
   707  // Write writes data to w, which will eventually write the
   708  // compressed form of data to its underlying writer.
   709  func (w *Writer) Write(data []byte) (n int, err error) {
   710  	return w.d.write(data)
   711  }
   712  
   713  // Flush flushes any pending data to the underlying writer.
   714  // It is useful mainly in compressed network protocols, to ensure that
   715  // a remote reader has enough data to reconstruct a packet.
   716  // Flush does not return until the data has been written.
   717  // Calling Flush when there is no pending data still causes the [Writer]
   718  // to emit a sync marker of at least 4 bytes.
   719  // If the underlying writer returns an error, Flush returns that error.
   720  //
   721  // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
   722  func (w *Writer) Flush() error {
   723  	// For more about flushing:
   724  	// https://www.bolet.org/~pornin/deflate-flush.html
   725  	return w.d.syncFlush()
   726  }
   727  
   728  // Close flushes and closes the writer.
   729  func (w *Writer) Close() error {
   730  	return w.d.close()
   731  }
   732  
   733  // Reset discards the writer's state and makes it equivalent to
   734  // the result of [NewWriter] or [NewWriterDict] called with dst
   735  // and w's level and dictionary.
   736  func (w *Writer) Reset(dst io.Writer) {
   737  	if dw, ok := w.d.w.writer.(*dictWriter); ok {
   738  		// w was created with NewWriterDict
   739  		dw.w = dst
   740  		w.d.reset(dw)
   741  		w.d.fillWindow(w.dict)
   742  	} else {
   743  		// w was created with NewWriter
   744  		w.d.reset(dst)
   745  	}
   746  }
   747  

View as plain text