1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package heap provides heap operations for any type that implements 6 // heap.Interface. A heap is a tree with the property that each node is the 7 // minimum-valued node in its subtree. 8 // 9 // The minimum element in the tree is the root, at index 0. 10 // 11 // A heap is a common way to implement a priority queue. To build a priority 12 // queue, implement the Heap interface with the (negative) priority as the 13 // ordering for the Less method, so Push adds items while Pop removes the 14 // highest-priority item from the queue. The Examples include such an 15 // implementation; the file example_pq_test.go has the complete source. 16 package heap 17 18 import "sort" 19 20 // The Interface type describes the requirements 21 // for a type using the routines in this package. 22 // Any type that implements it may be used as a 23 // min-heap with the following invariants (established after 24 // [Init] has been called or if the data is empty or sorted): 25 // 26 // !h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len() 27 // 28 // Note that [Push] and [Pop] in this interface are for package heap's 29 // implementation to call. To add and remove things from the heap, 30 // use [heap.Push] and [heap.Pop]. 31 type Interface interface { 32 sort.Interface 33 Push(x any) // add x as element Len() 34 Pop() any // remove and return element Len() - 1. 35 } 36 37 // Init establishes the heap invariants required by the other routines in this package. 38 // Init is idempotent with respect to the heap invariants 39 // and may be called whenever the heap invariants may have been invalidated. 40 // The complexity is O(n) where n = h.Len(). 41 func Init(h Interface) { 42 // heapify 43 n := h.Len() 44 for i := n/2 - 1; i >= 0; i-- { 45 down(h, i, n) 46 } 47 } 48 49 // Push pushes the element x onto the heap. 50 // The complexity is O(log n) where n = h.Len(). 51 func Push(h Interface, x any) { 52 h.Push(x) 53 up(h, h.Len()-1) 54 } 55 56 // Pop removes and returns the minimum element (according to Less) from the heap. 57 // The complexity is O(log n) where n = h.Len(). 58 // Pop is equivalent to [Remove](h, 0). 59 func Pop(h Interface) any { 60 n := h.Len() - 1 61 h.Swap(0, n) 62 down(h, 0, n) 63 return h.Pop() 64 } 65 66 // Remove removes and returns the element at index i from the heap. 67 // The complexity is O(log n) where n = h.Len(). 68 func Remove(h Interface, i int) any { 69 n := h.Len() - 1 70 if n != i { 71 h.Swap(i, n) 72 if !down(h, i, n) { 73 up(h, i) 74 } 75 } 76 return h.Pop() 77 } 78 79 // Fix re-establishes the heap ordering after the element at index i has changed its value. 80 // Changing the value of the element at index i and then calling Fix is equivalent to, 81 // but less expensive than, calling [Remove](h, i) followed by a Push of the new value. 82 // The complexity is O(log n) where n = h.Len(). 83 func Fix(h Interface, i int) { 84 if !down(h, i, h.Len()) { 85 up(h, i) 86 } 87 } 88 89 func up(h Interface, j int) { 90 for { 91 i := (j - 1) / 2 // parent 92 if i == j || !h.Less(j, i) { 93 break 94 } 95 h.Swap(i, j) 96 j = i 97 } 98 } 99 100 func down(h Interface, i0, n int) bool { 101 i := i0 102 for { 103 j1 := 2*i + 1 104 if j1 >= n || j1 < 0 { // j1 < 0 after int overflow 105 break 106 } 107 j := j1 // left child 108 if j2 := j1 + 1; j2 < n && h.Less(j2, j1) { 109 j = j2 // = 2*i + 2 // right child 110 } 111 if !h.Less(j, i) { 112 break 113 } 114 h.Swap(i, j) 115 i = j 116 } 117 return i > i0 118 } 119