...

Source file src/github.com/twitchyliquid64/golang-asm/obj/s390x/asmz.go

Documentation: github.com/twitchyliquid64/golang-asm/obj/s390x

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"github.com/twitchyliquid64/golang-asm/obj"
    34  	"github.com/twitchyliquid64/golang-asm/objabi"
    35  	"fmt"
    36  	"log"
    37  	"math"
    38  	"sort"
    39  )
    40  
    41  // ctxtz holds state while assembling a single function.
    42  // Each function gets a fresh ctxtz.
    43  // This allows for multiple functions to be safely concurrently assembled.
    44  type ctxtz struct {
    45  	ctxt       *obj.Link
    46  	newprog    obj.ProgAlloc
    47  	cursym     *obj.LSym
    48  	autosize   int32
    49  	instoffset int64
    50  	pc         int64
    51  }
    52  
    53  // instruction layout.
    54  const (
    55  	funcAlign = 16
    56  )
    57  
    58  type Optab struct {
    59  	as obj.As // opcode
    60  	i  uint8  // handler index
    61  	a1 uint8  // From
    62  	a2 uint8  // Reg
    63  	a3 uint8  // RestArgs[0]
    64  	a4 uint8  // RestArgs[1]
    65  	a5 uint8  // RestArgs[2]
    66  	a6 uint8  // To
    67  }
    68  
    69  var optab = []Optab{
    70  	// zero-length instructions
    71  	{i: 0, as: obj.ATEXT, a1: C_ADDR, a6: C_TEXTSIZE},
    72  	{i: 0, as: obj.ATEXT, a1: C_ADDR, a3: C_LCON, a6: C_TEXTSIZE},
    73  	{i: 0, as: obj.APCDATA, a1: C_LCON, a6: C_LCON},
    74  	{i: 0, as: obj.AFUNCDATA, a1: C_SCON, a6: C_ADDR},
    75  	{i: 0, as: obj.ANOP},
    76  	{i: 0, as: obj.ANOP, a1: C_SAUTO},
    77  
    78  	// move register
    79  	{i: 1, as: AMOVD, a1: C_REG, a6: C_REG},
    80  	{i: 1, as: AMOVB, a1: C_REG, a6: C_REG},
    81  	{i: 1, as: AMOVBZ, a1: C_REG, a6: C_REG},
    82  	{i: 1, as: AMOVW, a1: C_REG, a6: C_REG},
    83  	{i: 1, as: AMOVWZ, a1: C_REG, a6: C_REG},
    84  	{i: 1, as: AFMOVD, a1: C_FREG, a6: C_FREG},
    85  	{i: 1, as: AMOVDBR, a1: C_REG, a6: C_REG},
    86  
    87  	// load constant
    88  	{i: 26, as: AMOVD, a1: C_LACON, a6: C_REG},
    89  	{i: 26, as: AMOVW, a1: C_LACON, a6: C_REG},
    90  	{i: 26, as: AMOVWZ, a1: C_LACON, a6: C_REG},
    91  	{i: 3, as: AMOVD, a1: C_DCON, a6: C_REG},
    92  	{i: 3, as: AMOVW, a1: C_DCON, a6: C_REG},
    93  	{i: 3, as: AMOVWZ, a1: C_DCON, a6: C_REG},
    94  	{i: 3, as: AMOVB, a1: C_DCON, a6: C_REG},
    95  	{i: 3, as: AMOVBZ, a1: C_DCON, a6: C_REG},
    96  
    97  	// store constant
    98  	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LAUTO},
    99  	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LAUTO},
   100  	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LAUTO},
   101  	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LAUTO},
   102  	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LAUTO},
   103  	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LAUTO},
   104  	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LAUTO},
   105  	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LAUTO},
   106  	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LAUTO},
   107  	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LAUTO},
   108  	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LOREG},
   109  	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LOREG},
   110  	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LOREG},
   111  	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LOREG},
   112  	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LOREG},
   113  	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LOREG},
   114  	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LOREG},
   115  	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LOREG},
   116  	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LOREG},
   117  	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LOREG},
   118  
   119  	// store
   120  	{i: 35, as: AMOVD, a1: C_REG, a6: C_LAUTO},
   121  	{i: 35, as: AMOVW, a1: C_REG, a6: C_LAUTO},
   122  	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LAUTO},
   123  	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LAUTO},
   124  	{i: 35, as: AMOVB, a1: C_REG, a6: C_LAUTO},
   125  	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LAUTO},
   126  	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LAUTO},
   127  	{i: 35, as: AMOVD, a1: C_REG, a6: C_LOREG},
   128  	{i: 35, as: AMOVW, a1: C_REG, a6: C_LOREG},
   129  	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LOREG},
   130  	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LOREG},
   131  	{i: 35, as: AMOVB, a1: C_REG, a6: C_LOREG},
   132  	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LOREG},
   133  	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LOREG},
   134  	{i: 74, as: AMOVD, a1: C_REG, a6: C_ADDR},
   135  	{i: 74, as: AMOVW, a1: C_REG, a6: C_ADDR},
   136  	{i: 74, as: AMOVWZ, a1: C_REG, a6: C_ADDR},
   137  	{i: 74, as: AMOVBZ, a1: C_REG, a6: C_ADDR},
   138  	{i: 74, as: AMOVB, a1: C_REG, a6: C_ADDR},
   139  
   140  	// load
   141  	{i: 36, as: AMOVD, a1: C_LAUTO, a6: C_REG},
   142  	{i: 36, as: AMOVW, a1: C_LAUTO, a6: C_REG},
   143  	{i: 36, as: AMOVWZ, a1: C_LAUTO, a6: C_REG},
   144  	{i: 36, as: AMOVBZ, a1: C_LAUTO, a6: C_REG},
   145  	{i: 36, as: AMOVB, a1: C_LAUTO, a6: C_REG},
   146  	{i: 36, as: AMOVDBR, a1: C_LAUTO, a6: C_REG},
   147  	{i: 36, as: AMOVHBR, a1: C_LAUTO, a6: C_REG},
   148  	{i: 36, as: AMOVD, a1: C_LOREG, a6: C_REG},
   149  	{i: 36, as: AMOVW, a1: C_LOREG, a6: C_REG},
   150  	{i: 36, as: AMOVWZ, a1: C_LOREG, a6: C_REG},
   151  	{i: 36, as: AMOVBZ, a1: C_LOREG, a6: C_REG},
   152  	{i: 36, as: AMOVB, a1: C_LOREG, a6: C_REG},
   153  	{i: 36, as: AMOVDBR, a1: C_LOREG, a6: C_REG},
   154  	{i: 36, as: AMOVHBR, a1: C_LOREG, a6: C_REG},
   155  	{i: 75, as: AMOVD, a1: C_ADDR, a6: C_REG},
   156  	{i: 75, as: AMOVW, a1: C_ADDR, a6: C_REG},
   157  	{i: 75, as: AMOVWZ, a1: C_ADDR, a6: C_REG},
   158  	{i: 75, as: AMOVBZ, a1: C_ADDR, a6: C_REG},
   159  	{i: 75, as: AMOVB, a1: C_ADDR, a6: C_REG},
   160  
   161  	// interlocked load and op
   162  	{i: 99, as: ALAAG, a1: C_REG, a2: C_REG, a6: C_LOREG},
   163  
   164  	// integer arithmetic
   165  	{i: 2, as: AADD, a1: C_REG, a2: C_REG, a6: C_REG},
   166  	{i: 2, as: AADD, a1: C_REG, a6: C_REG},
   167  	{i: 22, as: AADD, a1: C_LCON, a2: C_REG, a6: C_REG},
   168  	{i: 22, as: AADD, a1: C_LCON, a6: C_REG},
   169  	{i: 12, as: AADD, a1: C_LOREG, a6: C_REG},
   170  	{i: 12, as: AADD, a1: C_LAUTO, a6: C_REG},
   171  	{i: 21, as: ASUB, a1: C_LCON, a2: C_REG, a6: C_REG},
   172  	{i: 21, as: ASUB, a1: C_LCON, a6: C_REG},
   173  	{i: 12, as: ASUB, a1: C_LOREG, a6: C_REG},
   174  	{i: 12, as: ASUB, a1: C_LAUTO, a6: C_REG},
   175  	{i: 4, as: AMULHD, a1: C_REG, a6: C_REG},
   176  	{i: 4, as: AMULHD, a1: C_REG, a2: C_REG, a6: C_REG},
   177  	{i: 62, as: AMLGR, a1: C_REG, a6: C_REG},
   178  	{i: 2, as: ADIVW, a1: C_REG, a2: C_REG, a6: C_REG},
   179  	{i: 2, as: ADIVW, a1: C_REG, a6: C_REG},
   180  	{i: 10, as: ASUB, a1: C_REG, a2: C_REG, a6: C_REG},
   181  	{i: 10, as: ASUB, a1: C_REG, a6: C_REG},
   182  	{i: 47, as: ANEG, a1: C_REG, a6: C_REG},
   183  	{i: 47, as: ANEG, a6: C_REG},
   184  
   185  	// integer logical
   186  	{i: 6, as: AAND, a1: C_REG, a2: C_REG, a6: C_REG},
   187  	{i: 6, as: AAND, a1: C_REG, a6: C_REG},
   188  	{i: 23, as: AAND, a1: C_LCON, a6: C_REG},
   189  	{i: 12, as: AAND, a1: C_LOREG, a6: C_REG},
   190  	{i: 12, as: AAND, a1: C_LAUTO, a6: C_REG},
   191  	{i: 6, as: AANDW, a1: C_REG, a2: C_REG, a6: C_REG},
   192  	{i: 6, as: AANDW, a1: C_REG, a6: C_REG},
   193  	{i: 24, as: AANDW, a1: C_LCON, a6: C_REG},
   194  	{i: 12, as: AANDW, a1: C_LOREG, a6: C_REG},
   195  	{i: 12, as: AANDW, a1: C_LAUTO, a6: C_REG},
   196  	{i: 7, as: ASLD, a1: C_REG, a6: C_REG},
   197  	{i: 7, as: ASLD, a1: C_REG, a2: C_REG, a6: C_REG},
   198  	{i: 7, as: ASLD, a1: C_SCON, a2: C_REG, a6: C_REG},
   199  	{i: 7, as: ASLD, a1: C_SCON, a6: C_REG},
   200  	{i: 13, as: ARNSBG, a1: C_SCON, a3: C_SCON, a4: C_SCON, a5: C_REG, a6: C_REG},
   201  
   202  	// compare and swap
   203  	{i: 79, as: ACSG, a1: C_REG, a2: C_REG, a6: C_SOREG},
   204  
   205  	// floating point
   206  	{i: 32, as: AFADD, a1: C_FREG, a6: C_FREG},
   207  	{i: 33, as: AFABS, a1: C_FREG, a6: C_FREG},
   208  	{i: 33, as: AFABS, a6: C_FREG},
   209  	{i: 34, as: AFMADD, a1: C_FREG, a2: C_FREG, a6: C_FREG},
   210  	{i: 32, as: AFMUL, a1: C_FREG, a6: C_FREG},
   211  	{i: 36, as: AFMOVD, a1: C_LAUTO, a6: C_FREG},
   212  	{i: 36, as: AFMOVD, a1: C_LOREG, a6: C_FREG},
   213  	{i: 75, as: AFMOVD, a1: C_ADDR, a6: C_FREG},
   214  	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LAUTO},
   215  	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LOREG},
   216  	{i: 74, as: AFMOVD, a1: C_FREG, a6: C_ADDR},
   217  	{i: 67, as: AFMOVD, a1: C_ZCON, a6: C_FREG},
   218  	{i: 81, as: ALDGR, a1: C_REG, a6: C_FREG},
   219  	{i: 81, as: ALGDR, a1: C_FREG, a6: C_REG},
   220  	{i: 82, as: ACEFBRA, a1: C_REG, a6: C_FREG},
   221  	{i: 83, as: ACFEBRA, a1: C_FREG, a6: C_REG},
   222  	{i: 48, as: AFIEBR, a1: C_SCON, a2: C_FREG, a6: C_FREG},
   223  	{i: 49, as: ACPSDR, a1: C_FREG, a2: C_FREG, a6: C_FREG},
   224  	{i: 50, as: ALTDBR, a1: C_FREG, a6: C_FREG},
   225  	{i: 51, as: ATCDB, a1: C_FREG, a6: C_SCON},
   226  
   227  	// load symbol address (plus offset)
   228  	{i: 19, as: AMOVD, a1: C_SYMADDR, a6: C_REG},
   229  	{i: 93, as: AMOVD, a1: C_GOTADDR, a6: C_REG},
   230  	{i: 94, as: AMOVD, a1: C_TLS_LE, a6: C_REG},
   231  	{i: 95, as: AMOVD, a1: C_TLS_IE, a6: C_REG},
   232  
   233  	// system call
   234  	{i: 5, as: ASYSCALL},
   235  	{i: 77, as: ASYSCALL, a1: C_SCON},
   236  
   237  	// branch
   238  	{i: 16, as: ABEQ, a6: C_SBRA},
   239  	{i: 16, as: ABRC, a1: C_SCON, a6: C_SBRA},
   240  	{i: 11, as: ABR, a6: C_LBRA},
   241  	{i: 16, as: ABC, a1: C_SCON, a2: C_REG, a6: C_LBRA},
   242  	{i: 18, as: ABR, a6: C_REG},
   243  	{i: 18, as: ABR, a1: C_REG, a6: C_REG},
   244  	{i: 15, as: ABR, a6: C_ZOREG},
   245  	{i: 15, as: ABC, a6: C_ZOREG},
   246  
   247  	// compare and branch
   248  	{i: 89, as: ACGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
   249  	{i: 89, as: ACMPBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
   250  	{i: 89, as: ACLGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
   251  	{i: 89, as: ACMPUBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
   252  	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
   253  	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_SCON, a6: C_SBRA},
   254  	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_ADDCON, a6: C_SBRA},
   255  	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_SCON, a6: C_SBRA},
   256  	{i: 90, as: ACLGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
   257  	{i: 90, as: ACMPUBEQ, a1: C_REG, a3: C_ANDCON, a6: C_SBRA},
   258  
   259  	// branch on count
   260  	{i: 41, as: ABRCT, a1: C_REG, a6: C_SBRA},
   261  	{i: 41, as: ABRCTG, a1: C_REG, a6: C_SBRA},
   262  
   263  	// move on condition
   264  	{i: 17, as: AMOVDEQ, a1: C_REG, a6: C_REG},
   265  
   266  	// load on condition
   267  	{i: 25, as: ALOCGR, a1: C_SCON, a2: C_REG, a6: C_REG},
   268  
   269  	// find leftmost one
   270  	{i: 8, as: AFLOGR, a1: C_REG, a6: C_REG},
   271  
   272  	// population count
   273  	{i: 9, as: APOPCNT, a1: C_REG, a6: C_REG},
   274  
   275  	// compare
   276  	{i: 70, as: ACMP, a1: C_REG, a6: C_REG},
   277  	{i: 71, as: ACMP, a1: C_REG, a6: C_LCON},
   278  	{i: 70, as: ACMPU, a1: C_REG, a6: C_REG},
   279  	{i: 71, as: ACMPU, a1: C_REG, a6: C_LCON},
   280  	{i: 70, as: AFCMPO, a1: C_FREG, a6: C_FREG},
   281  	{i: 70, as: AFCMPO, a1: C_FREG, a2: C_REG, a6: C_FREG},
   282  
   283  	// test under mask
   284  	{i: 91, as: ATMHH, a1: C_REG, a6: C_ANDCON},
   285  
   286  	// insert program mask
   287  	{i: 92, as: AIPM, a1: C_REG},
   288  
   289  	// set program mask
   290  	{i: 76, as: ASPM, a1: C_REG},
   291  
   292  	// 32-bit access registers
   293  	{i: 68, as: AMOVW, a1: C_AREG, a6: C_REG},
   294  	{i: 68, as: AMOVWZ, a1: C_AREG, a6: C_REG},
   295  	{i: 69, as: AMOVW, a1: C_REG, a6: C_AREG},
   296  	{i: 69, as: AMOVWZ, a1: C_REG, a6: C_AREG},
   297  
   298  	// macros
   299  	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LOREG},
   300  	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LAUTO},
   301  
   302  	// load/store multiple
   303  	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LOREG},
   304  	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LAUTO},
   305  	{i: 98, as: ALMG, a1: C_LOREG, a2: C_REG, a6: C_REG},
   306  	{i: 98, as: ALMG, a1: C_LAUTO, a2: C_REG, a6: C_REG},
   307  
   308  	// bytes
   309  	{i: 40, as: ABYTE, a1: C_SCON},
   310  	{i: 40, as: AWORD, a1: C_LCON},
   311  	{i: 31, as: ADWORD, a1: C_LCON},
   312  	{i: 31, as: ADWORD, a1: C_DCON},
   313  
   314  	// fast synchronization
   315  	{i: 80, as: ASYNC},
   316  
   317  	// store clock
   318  	{i: 88, as: ASTCK, a6: C_SAUTO},
   319  	{i: 88, as: ASTCK, a6: C_SOREG},
   320  
   321  	// storage and storage
   322  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LOREG},
   323  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LAUTO},
   324  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LAUTO, a6: C_LAUTO},
   325  
   326  	// address
   327  	{i: 85, as: ALARL, a1: C_LCON, a6: C_REG},
   328  	{i: 85, as: ALARL, a1: C_SYMADDR, a6: C_REG},
   329  	{i: 86, as: ALA, a1: C_SOREG, a6: C_REG},
   330  	{i: 86, as: ALA, a1: C_SAUTO, a6: C_REG},
   331  	{i: 87, as: AEXRL, a1: C_SYMADDR, a6: C_REG},
   332  
   333  	// undefined (deliberate illegal instruction)
   334  	{i: 78, as: obj.AUNDEF},
   335  
   336  	// 2 byte no-operation
   337  	{i: 66, as: ANOPH},
   338  
   339  	// vector instructions
   340  
   341  	// VRX store
   342  	{i: 100, as: AVST, a1: C_VREG, a6: C_SOREG},
   343  	{i: 100, as: AVST, a1: C_VREG, a6: C_SAUTO},
   344  	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
   345  	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
   346  
   347  	// VRX load
   348  	{i: 101, as: AVL, a1: C_SOREG, a6: C_VREG},
   349  	{i: 101, as: AVL, a1: C_SAUTO, a6: C_VREG},
   350  	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
   351  	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
   352  
   353  	// VRV scatter
   354  	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
   355  	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
   356  
   357  	// VRV gather
   358  	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
   359  	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
   360  
   361  	// VRS element shift/rotate and load gr to/from vr element
   362  	{i: 104, as: AVESLG, a1: C_SCON, a2: C_VREG, a6: C_VREG},
   363  	{i: 104, as: AVESLG, a1: C_REG, a2: C_VREG, a6: C_VREG},
   364  	{i: 104, as: AVESLG, a1: C_SCON, a6: C_VREG},
   365  	{i: 104, as: AVESLG, a1: C_REG, a6: C_VREG},
   366  	{i: 104, as: AVLGVG, a1: C_SCON, a2: C_VREG, a6: C_REG},
   367  	{i: 104, as: AVLGVG, a1: C_REG, a2: C_VREG, a6: C_REG},
   368  	{i: 104, as: AVLVGG, a1: C_SCON, a2: C_REG, a6: C_VREG},
   369  	{i: 104, as: AVLVGG, a1: C_REG, a2: C_REG, a6: C_VREG},
   370  
   371  	// VRS store multiple
   372  	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SOREG},
   373  	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SAUTO},
   374  
   375  	// VRS load multiple
   376  	{i: 106, as: AVLM, a1: C_SOREG, a2: C_VREG, a6: C_VREG},
   377  	{i: 106, as: AVLM, a1: C_SAUTO, a2: C_VREG, a6: C_VREG},
   378  
   379  	// VRS store with length
   380  	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SOREG},
   381  	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SAUTO},
   382  
   383  	// VRS load with length
   384  	{i: 108, as: AVLL, a1: C_REG, a3: C_SOREG, a6: C_VREG},
   385  	{i: 108, as: AVLL, a1: C_REG, a3: C_SAUTO, a6: C_VREG},
   386  
   387  	// VRI-a
   388  	{i: 109, as: AVGBM, a1: C_ANDCON, a6: C_VREG},
   389  	{i: 109, as: AVZERO, a6: C_VREG},
   390  	{i: 109, as: AVREPIG, a1: C_ADDCON, a6: C_VREG},
   391  	{i: 109, as: AVREPIG, a1: C_SCON, a6: C_VREG},
   392  	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_ADDCON, a6: C_VREG},
   393  	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
   394  
   395  	// VRI-b generate mask
   396  	{i: 110, as: AVGMG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
   397  
   398  	// VRI-c replicate
   399  	{i: 111, as: AVREPG, a1: C_UCON, a2: C_VREG, a6: C_VREG},
   400  
   401  	// VRI-d element rotate and insert under mask and
   402  	// shift left double by byte
   403  	{i: 112, as: AVERIMG, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   404  	{i: 112, as: AVSLDB, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   405  
   406  	// VRI-d fp test data class immediate
   407  	{i: 113, as: AVFTCIDB, a1: C_SCON, a2: C_VREG, a6: C_VREG},
   408  
   409  	// VRR-a load reg
   410  	{i: 114, as: AVLR, a1: C_VREG, a6: C_VREG},
   411  
   412  	// VRR-a compare
   413  	{i: 115, as: AVECG, a1: C_VREG, a6: C_VREG},
   414  
   415  	// VRR-b
   416  	{i: 117, as: AVCEQG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   417  	{i: 117, as: AVFAEF, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   418  	{i: 117, as: AVPKSG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   419  
   420  	// VRR-c
   421  	{i: 118, as: AVAQ, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   422  	{i: 118, as: AVAQ, a1: C_VREG, a6: C_VREG},
   423  	{i: 118, as: AVNOT, a1: C_VREG, a6: C_VREG},
   424  	{i: 123, as: AVPDI, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   425  
   426  	// VRR-c shifts
   427  	{i: 119, as: AVERLLVG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   428  	{i: 119, as: AVERLLVG, a1: C_VREG, a6: C_VREG},
   429  
   430  	// VRR-d
   431  	{i: 120, as: AVACQ, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   432  
   433  	// VRR-e
   434  	{i: 121, as: AVSEL, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   435  
   436  	// VRR-f
   437  	{i: 122, as: AVLVGP, a1: C_REG, a2: C_REG, a6: C_VREG},
   438  }
   439  
   440  var oprange [ALAST & obj.AMask][]Optab
   441  
   442  var xcmp [C_NCLASS][C_NCLASS]bool
   443  
   444  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   445  	if ctxt.Retpoline {
   446  		ctxt.Diag("-spectre=ret not supported on s390x")
   447  		ctxt.Retpoline = false // don't keep printing
   448  	}
   449  
   450  	p := cursym.Func.Text
   451  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   452  		return
   453  	}
   454  
   455  	if oprange[AORW&obj.AMask] == nil {
   456  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   457  	}
   458  
   459  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   460  
   461  	buffer := make([]byte, 0)
   462  	changed := true
   463  	loop := 0
   464  	for changed {
   465  		if loop > 100 {
   466  			c.ctxt.Diag("stuck in spanz loop")
   467  			break
   468  		}
   469  		changed = false
   470  		buffer = buffer[:0]
   471  		c.cursym.R = make([]obj.Reloc, 0)
   472  		for p := c.cursym.Func.Text; p != nil; p = p.Link {
   473  			pc := int64(len(buffer))
   474  			if pc != p.Pc {
   475  				changed = true
   476  			}
   477  			p.Pc = pc
   478  			c.pc = p.Pc
   479  			c.asmout(p, &buffer)
   480  			if pc == int64(len(buffer)) {
   481  				switch p.As {
   482  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   483  					// ok
   484  				default:
   485  					c.ctxt.Diag("zero-width instruction\n%v", p)
   486  				}
   487  			}
   488  		}
   489  		loop++
   490  	}
   491  
   492  	c.cursym.Size = int64(len(buffer))
   493  	if c.cursym.Size%funcAlign != 0 {
   494  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   495  	}
   496  	c.cursym.Grow(c.cursym.Size)
   497  	copy(c.cursym.P, buffer)
   498  
   499  	// Mark nonpreemptible instruction sequences.
   500  	// We use REGTMP as a scratch register during call injection,
   501  	// so instruction sequences that use REGTMP are unsafe to
   502  	// preempt asynchronously.
   503  	obj.MarkUnsafePoints(c.ctxt, c.cursym.Func.Text, c.newprog, c.isUnsafePoint, nil)
   504  }
   505  
   506  // Return whether p is an unsafe point.
   507  func (c *ctxtz) isUnsafePoint(p *obj.Prog) bool {
   508  	if p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP {
   509  		return true
   510  	}
   511  	for _, a := range p.RestArgs {
   512  		if a.Reg == REGTMP {
   513  			return true
   514  		}
   515  	}
   516  	return p.Mark&USETMP != 0
   517  }
   518  
   519  func isint32(v int64) bool {
   520  	return int64(int32(v)) == v
   521  }
   522  
   523  func isuint32(v uint64) bool {
   524  	return uint64(uint32(v)) == v
   525  }
   526  
   527  func (c *ctxtz) aclass(a *obj.Addr) int {
   528  	switch a.Type {
   529  	case obj.TYPE_NONE:
   530  		return C_NONE
   531  
   532  	case obj.TYPE_REG:
   533  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   534  			return C_REG
   535  		}
   536  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   537  			return C_FREG
   538  		}
   539  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   540  			return C_AREG
   541  		}
   542  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   543  			return C_VREG
   544  		}
   545  		return C_GOK
   546  
   547  	case obj.TYPE_MEM:
   548  		switch a.Name {
   549  		case obj.NAME_EXTERN,
   550  			obj.NAME_STATIC:
   551  			if a.Sym == nil {
   552  				// must have a symbol
   553  				break
   554  			}
   555  			c.instoffset = a.Offset
   556  			if a.Sym.Type == objabi.STLSBSS {
   557  				if c.ctxt.Flag_shared {
   558  					return C_TLS_IE // initial exec model
   559  				}
   560  				return C_TLS_LE // local exec model
   561  			}
   562  			return C_ADDR
   563  
   564  		case obj.NAME_GOTREF:
   565  			return C_GOTADDR
   566  
   567  		case obj.NAME_AUTO:
   568  			if a.Reg == REGSP {
   569  				// unset base register for better printing, since
   570  				// a.Offset is still relative to pseudo-SP.
   571  				a.Reg = obj.REG_NONE
   572  			}
   573  			c.instoffset = int64(c.autosize) + a.Offset
   574  			if c.instoffset >= -BIG && c.instoffset < BIG {
   575  				return C_SAUTO
   576  			}
   577  			return C_LAUTO
   578  
   579  		case obj.NAME_PARAM:
   580  			if a.Reg == REGSP {
   581  				// unset base register for better printing, since
   582  				// a.Offset is still relative to pseudo-FP.
   583  				a.Reg = obj.REG_NONE
   584  			}
   585  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   586  			if c.instoffset >= -BIG && c.instoffset < BIG {
   587  				return C_SAUTO
   588  			}
   589  			return C_LAUTO
   590  
   591  		case obj.NAME_NONE:
   592  			c.instoffset = a.Offset
   593  			if c.instoffset == 0 {
   594  				return C_ZOREG
   595  			}
   596  			if c.instoffset >= -BIG && c.instoffset < BIG {
   597  				return C_SOREG
   598  			}
   599  			return C_LOREG
   600  		}
   601  
   602  		return C_GOK
   603  
   604  	case obj.TYPE_TEXTSIZE:
   605  		return C_TEXTSIZE
   606  
   607  	case obj.TYPE_FCONST:
   608  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   609  			return C_ZCON
   610  		}
   611  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   612  
   613  	case obj.TYPE_CONST,
   614  		obj.TYPE_ADDR:
   615  		switch a.Name {
   616  		case obj.NAME_NONE:
   617  			c.instoffset = a.Offset
   618  			if a.Reg != 0 {
   619  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   620  					return C_SACON
   621  				}
   622  				if isint32(c.instoffset) {
   623  					return C_LACON
   624  				}
   625  				return C_DACON
   626  			}
   627  
   628  		case obj.NAME_EXTERN,
   629  			obj.NAME_STATIC:
   630  			s := a.Sym
   631  			if s == nil {
   632  				return C_GOK
   633  			}
   634  			c.instoffset = a.Offset
   635  
   636  			return C_SYMADDR
   637  
   638  		case obj.NAME_AUTO:
   639  			if a.Reg == REGSP {
   640  				// unset base register for better printing, since
   641  				// a.Offset is still relative to pseudo-SP.
   642  				a.Reg = obj.REG_NONE
   643  			}
   644  			c.instoffset = int64(c.autosize) + a.Offset
   645  			if c.instoffset >= -BIG && c.instoffset < BIG {
   646  				return C_SACON
   647  			}
   648  			return C_LACON
   649  
   650  		case obj.NAME_PARAM:
   651  			if a.Reg == REGSP {
   652  				// unset base register for better printing, since
   653  				// a.Offset is still relative to pseudo-FP.
   654  				a.Reg = obj.REG_NONE
   655  			}
   656  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   657  			if c.instoffset >= -BIG && c.instoffset < BIG {
   658  				return C_SACON
   659  			}
   660  			return C_LACON
   661  
   662  		default:
   663  			return C_GOK
   664  		}
   665  
   666  		if c.instoffset == 0 {
   667  			return C_ZCON
   668  		}
   669  		if c.instoffset >= 0 {
   670  			if c.instoffset <= 0x7fff {
   671  				return C_SCON
   672  			}
   673  			if c.instoffset <= 0xffff {
   674  				return C_ANDCON
   675  			}
   676  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   677  				return C_UCON
   678  			}
   679  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   680  				return C_LCON
   681  			}
   682  			return C_DCON
   683  		}
   684  
   685  		if c.instoffset >= -0x8000 {
   686  			return C_ADDCON
   687  		}
   688  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   689  			return C_UCON
   690  		}
   691  		if isint32(c.instoffset) {
   692  			return C_LCON
   693  		}
   694  		return C_DCON
   695  
   696  	case obj.TYPE_BRANCH:
   697  		return C_SBRA
   698  	}
   699  
   700  	return C_GOK
   701  }
   702  
   703  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   704  	// Return cached optab entry if available.
   705  	if p.Optab != 0 {
   706  		return &optab[p.Optab-1]
   707  	}
   708  	if len(p.RestArgs) > 3 {
   709  		c.ctxt.Diag("too many RestArgs: got %v, maximum is 3\n", len(p.RestArgs))
   710  		return nil
   711  	}
   712  
   713  	// Initialize classes for all arguments.
   714  	p.From.Class = int8(c.aclass(&p.From) + 1)
   715  	p.To.Class = int8(c.aclass(&p.To) + 1)
   716  	for i := range p.RestArgs {
   717  		p.RestArgs[i].Class = int8(c.aclass(&p.RestArgs[i]) + 1)
   718  	}
   719  
   720  	// Mirrors the argument list in Optab.
   721  	args := [...]int8{
   722  		p.From.Class - 1,
   723  		C_NONE, // p.Reg
   724  		C_NONE, // p.RestArgs[0]
   725  		C_NONE, // p.RestArgs[1]
   726  		C_NONE, // p.RestArgs[2]
   727  		p.To.Class - 1,
   728  	}
   729  	// Fill in argument class for p.Reg.
   730  	switch {
   731  	case REG_R0 <= p.Reg && p.Reg <= REG_R15:
   732  		args[1] = C_REG
   733  	case REG_V0 <= p.Reg && p.Reg <= REG_V31:
   734  		args[1] = C_VREG
   735  	case REG_F0 <= p.Reg && p.Reg <= REG_F15:
   736  		args[1] = C_FREG
   737  	case REG_AR0 <= p.Reg && p.Reg <= REG_AR15:
   738  		args[1] = C_AREG
   739  	}
   740  	// Fill in argument classes for p.RestArgs.
   741  	for i, a := range p.RestArgs {
   742  		args[2+i] = a.Class - 1
   743  	}
   744  
   745  	// Lookup op in optab.
   746  	ops := oprange[p.As&obj.AMask]
   747  	cmp := [len(args)]*[C_NCLASS]bool{}
   748  	for i := range cmp {
   749  		cmp[i] = &xcmp[args[i]]
   750  	}
   751  	for i := range ops {
   752  		op := &ops[i]
   753  		if cmp[0][op.a1] && cmp[1][op.a2] &&
   754  			cmp[2][op.a3] && cmp[3][op.a4] &&
   755  			cmp[4][op.a5] && cmp[5][op.a6] {
   756  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   757  			return op
   758  		}
   759  	}
   760  
   761  	// Cannot find a case; abort.
   762  	s := ""
   763  	for _, a := range args {
   764  		s += fmt.Sprintf(" %v", DRconv(int(a)))
   765  	}
   766  	c.ctxt.Diag("illegal combination %v%v\n", p.As, s)
   767  	c.ctxt.Diag("prog: %v\n", p)
   768  	return nil
   769  }
   770  
   771  func cmp(a int, b int) bool {
   772  	if a == b {
   773  		return true
   774  	}
   775  	switch a {
   776  	case C_DCON:
   777  		if b == C_LCON {
   778  			return true
   779  		}
   780  		fallthrough
   781  	case C_LCON:
   782  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   783  			return true
   784  		}
   785  
   786  	case C_ADDCON:
   787  		if b == C_ZCON || b == C_SCON {
   788  			return true
   789  		}
   790  
   791  	case C_ANDCON:
   792  		if b == C_ZCON || b == C_SCON {
   793  			return true
   794  		}
   795  
   796  	case C_UCON:
   797  		if b == C_ZCON || b == C_SCON {
   798  			return true
   799  		}
   800  
   801  	case C_SCON:
   802  		if b == C_ZCON {
   803  			return true
   804  		}
   805  
   806  	case C_LACON:
   807  		if b == C_SACON {
   808  			return true
   809  		}
   810  
   811  	case C_LBRA:
   812  		if b == C_SBRA {
   813  			return true
   814  		}
   815  
   816  	case C_LAUTO:
   817  		if b == C_SAUTO {
   818  			return true
   819  		}
   820  
   821  	case C_LOREG:
   822  		if b == C_ZOREG || b == C_SOREG {
   823  			return true
   824  		}
   825  
   826  	case C_SOREG:
   827  		if b == C_ZOREG {
   828  			return true
   829  		}
   830  
   831  	case C_ANY:
   832  		return true
   833  	}
   834  
   835  	return false
   836  }
   837  
   838  type ocmp []Optab
   839  
   840  func (x ocmp) Len() int {
   841  	return len(x)
   842  }
   843  
   844  func (x ocmp) Swap(i, j int) {
   845  	x[i], x[j] = x[j], x[i]
   846  }
   847  
   848  func (x ocmp) Less(i, j int) bool {
   849  	p1 := &x[i]
   850  	p2 := &x[j]
   851  	n := int(p1.as) - int(p2.as)
   852  	if n != 0 {
   853  		return n < 0
   854  	}
   855  	n = int(p1.a1) - int(p2.a1)
   856  	if n != 0 {
   857  		return n < 0
   858  	}
   859  	n = int(p1.a2) - int(p2.a2)
   860  	if n != 0 {
   861  		return n < 0
   862  	}
   863  	n = int(p1.a3) - int(p2.a3)
   864  	if n != 0 {
   865  		return n < 0
   866  	}
   867  	n = int(p1.a4) - int(p2.a4)
   868  	if n != 0 {
   869  		return n < 0
   870  	}
   871  	return false
   872  }
   873  func opset(a, b obj.As) {
   874  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   875  }
   876  
   877  func buildop(ctxt *obj.Link) {
   878  	if oprange[AORW&obj.AMask] != nil {
   879  		// Already initialized; stop now.
   880  		// This happens in the cmd/asm tests,
   881  		// each of which re-initializes the arch.
   882  		return
   883  	}
   884  
   885  	for i := 0; i < C_NCLASS; i++ {
   886  		for n := 0; n < C_NCLASS; n++ {
   887  			if cmp(n, i) {
   888  				xcmp[i][n] = true
   889  			}
   890  		}
   891  	}
   892  	sort.Sort(ocmp(optab))
   893  	for i := 0; i < len(optab); i++ {
   894  		r := optab[i].as
   895  		start := i
   896  		for ; i+1 < len(optab); i++ {
   897  			if optab[i+1].as != r {
   898  				break
   899  			}
   900  		}
   901  		oprange[r&obj.AMask] = optab[start : i+1]
   902  
   903  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   904  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   905  		switch r {
   906  		case AADD:
   907  			opset(AADDC, r)
   908  			opset(AADDW, r)
   909  			opset(AADDE, r)
   910  			opset(AMULLD, r)
   911  			opset(AMULLW, r)
   912  		case ADIVW:
   913  			opset(ADIVD, r)
   914  			opset(ADIVDU, r)
   915  			opset(ADIVWU, r)
   916  			opset(AMODD, r)
   917  			opset(AMODDU, r)
   918  			opset(AMODW, r)
   919  			opset(AMODWU, r)
   920  		case AMULHD:
   921  			opset(AMULHDU, r)
   922  		case AMOVBZ:
   923  			opset(AMOVH, r)
   924  			opset(AMOVHZ, r)
   925  		case ALA:
   926  			opset(ALAY, r)
   927  		case AMVC:
   928  			opset(AMVCIN, r)
   929  			opset(ACLC, r)
   930  			opset(AXC, r)
   931  			opset(AOC, r)
   932  			opset(ANC, r)
   933  		case ASTCK:
   934  			opset(ASTCKC, r)
   935  			opset(ASTCKE, r)
   936  			opset(ASTCKF, r)
   937  		case ALAAG:
   938  			opset(ALAA, r)
   939  			opset(ALAAL, r)
   940  			opset(ALAALG, r)
   941  			opset(ALAN, r)
   942  			opset(ALANG, r)
   943  			opset(ALAX, r)
   944  			opset(ALAXG, r)
   945  			opset(ALAO, r)
   946  			opset(ALAOG, r)
   947  		case ASTMG:
   948  			opset(ASTMY, r)
   949  		case ALMG:
   950  			opset(ALMY, r)
   951  		case ABEQ:
   952  			opset(ABGE, r)
   953  			opset(ABGT, r)
   954  			opset(ABLE, r)
   955  			opset(ABLT, r)
   956  			opset(ABNE, r)
   957  			opset(ABVC, r)
   958  			opset(ABVS, r)
   959  			opset(ABLEU, r)
   960  			opset(ABLTU, r)
   961  		case ABR:
   962  			opset(ABL, r)
   963  		case ABC:
   964  			opset(ABCL, r)
   965  		case AFABS:
   966  			opset(AFNABS, r)
   967  			opset(ALPDFR, r)
   968  			opset(ALNDFR, r)
   969  			opset(AFNEG, r)
   970  			opset(AFNEGS, r)
   971  			opset(ALEDBR, r)
   972  			opset(ALDEBR, r)
   973  			opset(AFSQRT, r)
   974  			opset(AFSQRTS, r)
   975  		case AFADD:
   976  			opset(AFADDS, r)
   977  			opset(AFDIV, r)
   978  			opset(AFDIVS, r)
   979  			opset(AFSUB, r)
   980  			opset(AFSUBS, r)
   981  		case AFMADD:
   982  			opset(AFMADDS, r)
   983  			opset(AFMSUB, r)
   984  			opset(AFMSUBS, r)
   985  		case AFMUL:
   986  			opset(AFMULS, r)
   987  		case AFCMPO:
   988  			opset(AFCMPU, r)
   989  			opset(ACEBR, r)
   990  		case AAND:
   991  			opset(AOR, r)
   992  			opset(AXOR, r)
   993  		case AANDW:
   994  			opset(AORW, r)
   995  			opset(AXORW, r)
   996  		case ASLD:
   997  			opset(ASRD, r)
   998  			opset(ASLW, r)
   999  			opset(ASRW, r)
  1000  			opset(ASRAD, r)
  1001  			opset(ASRAW, r)
  1002  			opset(ARLL, r)
  1003  			opset(ARLLG, r)
  1004  		case ARNSBG:
  1005  			opset(ARXSBG, r)
  1006  			opset(AROSBG, r)
  1007  			opset(ARNSBGT, r)
  1008  			opset(ARXSBGT, r)
  1009  			opset(AROSBGT, r)
  1010  			opset(ARISBG, r)
  1011  			opset(ARISBGN, r)
  1012  			opset(ARISBGZ, r)
  1013  			opset(ARISBGNZ, r)
  1014  			opset(ARISBHG, r)
  1015  			opset(ARISBLG, r)
  1016  			opset(ARISBHGZ, r)
  1017  			opset(ARISBLGZ, r)
  1018  		case ACSG:
  1019  			opset(ACS, r)
  1020  		case ASUB:
  1021  			opset(ASUBC, r)
  1022  			opset(ASUBE, r)
  1023  			opset(ASUBW, r)
  1024  		case ANEG:
  1025  			opset(ANEGW, r)
  1026  		case AFMOVD:
  1027  			opset(AFMOVS, r)
  1028  		case AMOVDBR:
  1029  			opset(AMOVWBR, r)
  1030  		case ACMP:
  1031  			opset(ACMPW, r)
  1032  		case ACMPU:
  1033  			opset(ACMPWU, r)
  1034  		case ATMHH:
  1035  			opset(ATMHL, r)
  1036  			opset(ATMLH, r)
  1037  			opset(ATMLL, r)
  1038  		case ACEFBRA:
  1039  			opset(ACDFBRA, r)
  1040  			opset(ACEGBRA, r)
  1041  			opset(ACDGBRA, r)
  1042  			opset(ACELFBR, r)
  1043  			opset(ACDLFBR, r)
  1044  			opset(ACELGBR, r)
  1045  			opset(ACDLGBR, r)
  1046  		case ACFEBRA:
  1047  			opset(ACFDBRA, r)
  1048  			opset(ACGEBRA, r)
  1049  			opset(ACGDBRA, r)
  1050  			opset(ACLFEBR, r)
  1051  			opset(ACLFDBR, r)
  1052  			opset(ACLGEBR, r)
  1053  			opset(ACLGDBR, r)
  1054  		case AFIEBR:
  1055  			opset(AFIDBR, r)
  1056  		case ACMPBEQ:
  1057  			opset(ACMPBGE, r)
  1058  			opset(ACMPBGT, r)
  1059  			opset(ACMPBLE, r)
  1060  			opset(ACMPBLT, r)
  1061  			opset(ACMPBNE, r)
  1062  		case ACMPUBEQ:
  1063  			opset(ACMPUBGE, r)
  1064  			opset(ACMPUBGT, r)
  1065  			opset(ACMPUBLE, r)
  1066  			opset(ACMPUBLT, r)
  1067  			opset(ACMPUBNE, r)
  1068  		case ACGRJ:
  1069  			opset(ACRJ, r)
  1070  		case ACLGRJ:
  1071  			opset(ACLRJ, r)
  1072  		case ACGIJ:
  1073  			opset(ACIJ, r)
  1074  		case ACLGIJ:
  1075  			opset(ACLIJ, r)
  1076  		case AMOVDEQ:
  1077  			opset(AMOVDGE, r)
  1078  			opset(AMOVDGT, r)
  1079  			opset(AMOVDLE, r)
  1080  			opset(AMOVDLT, r)
  1081  			opset(AMOVDNE, r)
  1082  		case ALOCGR:
  1083  			opset(ALOCR, r)
  1084  		case ALTDBR:
  1085  			opset(ALTEBR, r)
  1086  		case ATCDB:
  1087  			opset(ATCEB, r)
  1088  		case AVL:
  1089  			opset(AVLLEZB, r)
  1090  			opset(AVLLEZH, r)
  1091  			opset(AVLLEZF, r)
  1092  			opset(AVLLEZG, r)
  1093  			opset(AVLREPB, r)
  1094  			opset(AVLREPH, r)
  1095  			opset(AVLREPF, r)
  1096  			opset(AVLREPG, r)
  1097  		case AVLEG:
  1098  			opset(AVLBB, r)
  1099  			opset(AVLEB, r)
  1100  			opset(AVLEH, r)
  1101  			opset(AVLEF, r)
  1102  			opset(AVLEG, r)
  1103  			opset(AVLREP, r)
  1104  		case AVSTEG:
  1105  			opset(AVSTEB, r)
  1106  			opset(AVSTEH, r)
  1107  			opset(AVSTEF, r)
  1108  		case AVSCEG:
  1109  			opset(AVSCEF, r)
  1110  		case AVGEG:
  1111  			opset(AVGEF, r)
  1112  		case AVESLG:
  1113  			opset(AVESLB, r)
  1114  			opset(AVESLH, r)
  1115  			opset(AVESLF, r)
  1116  			opset(AVERLLB, r)
  1117  			opset(AVERLLH, r)
  1118  			opset(AVERLLF, r)
  1119  			opset(AVERLLG, r)
  1120  			opset(AVESRAB, r)
  1121  			opset(AVESRAH, r)
  1122  			opset(AVESRAF, r)
  1123  			opset(AVESRAG, r)
  1124  			opset(AVESRLB, r)
  1125  			opset(AVESRLH, r)
  1126  			opset(AVESRLF, r)
  1127  			opset(AVESRLG, r)
  1128  		case AVLGVG:
  1129  			opset(AVLGVB, r)
  1130  			opset(AVLGVH, r)
  1131  			opset(AVLGVF, r)
  1132  		case AVLVGG:
  1133  			opset(AVLVGB, r)
  1134  			opset(AVLVGH, r)
  1135  			opset(AVLVGF, r)
  1136  		case AVZERO:
  1137  			opset(AVONE, r)
  1138  		case AVREPIG:
  1139  			opset(AVREPIB, r)
  1140  			opset(AVREPIH, r)
  1141  			opset(AVREPIF, r)
  1142  		case AVLEIG:
  1143  			opset(AVLEIB, r)
  1144  			opset(AVLEIH, r)
  1145  			opset(AVLEIF, r)
  1146  		case AVGMG:
  1147  			opset(AVGMB, r)
  1148  			opset(AVGMH, r)
  1149  			opset(AVGMF, r)
  1150  		case AVREPG:
  1151  			opset(AVREPB, r)
  1152  			opset(AVREPH, r)
  1153  			opset(AVREPF, r)
  1154  		case AVERIMG:
  1155  			opset(AVERIMB, r)
  1156  			opset(AVERIMH, r)
  1157  			opset(AVERIMF, r)
  1158  		case AVFTCIDB:
  1159  			opset(AWFTCIDB, r)
  1160  		case AVLR:
  1161  			opset(AVUPHB, r)
  1162  			opset(AVUPHH, r)
  1163  			opset(AVUPHF, r)
  1164  			opset(AVUPLHB, r)
  1165  			opset(AVUPLHH, r)
  1166  			opset(AVUPLHF, r)
  1167  			opset(AVUPLB, r)
  1168  			opset(AVUPLHW, r)
  1169  			opset(AVUPLF, r)
  1170  			opset(AVUPLLB, r)
  1171  			opset(AVUPLLH, r)
  1172  			opset(AVUPLLF, r)
  1173  			opset(AVCLZB, r)
  1174  			opset(AVCLZH, r)
  1175  			opset(AVCLZF, r)
  1176  			opset(AVCLZG, r)
  1177  			opset(AVCTZB, r)
  1178  			opset(AVCTZH, r)
  1179  			opset(AVCTZF, r)
  1180  			opset(AVCTZG, r)
  1181  			opset(AVLDEB, r)
  1182  			opset(AWLDEB, r)
  1183  			opset(AVFLCDB, r)
  1184  			opset(AWFLCDB, r)
  1185  			opset(AVFLNDB, r)
  1186  			opset(AWFLNDB, r)
  1187  			opset(AVFLPDB, r)
  1188  			opset(AWFLPDB, r)
  1189  			opset(AVFSQDB, r)
  1190  			opset(AWFSQDB, r)
  1191  			opset(AVISTRB, r)
  1192  			opset(AVISTRH, r)
  1193  			opset(AVISTRF, r)
  1194  			opset(AVISTRBS, r)
  1195  			opset(AVISTRHS, r)
  1196  			opset(AVISTRFS, r)
  1197  			opset(AVLCB, r)
  1198  			opset(AVLCH, r)
  1199  			opset(AVLCF, r)
  1200  			opset(AVLCG, r)
  1201  			opset(AVLPB, r)
  1202  			opset(AVLPH, r)
  1203  			opset(AVLPF, r)
  1204  			opset(AVLPG, r)
  1205  			opset(AVPOPCT, r)
  1206  			opset(AVSEGB, r)
  1207  			opset(AVSEGH, r)
  1208  			opset(AVSEGF, r)
  1209  		case AVECG:
  1210  			opset(AVECB, r)
  1211  			opset(AVECH, r)
  1212  			opset(AVECF, r)
  1213  			opset(AVECLB, r)
  1214  			opset(AVECLH, r)
  1215  			opset(AVECLF, r)
  1216  			opset(AVECLG, r)
  1217  			opset(AWFCDB, r)
  1218  			opset(AWFKDB, r)
  1219  		case AVCEQG:
  1220  			opset(AVCEQB, r)
  1221  			opset(AVCEQH, r)
  1222  			opset(AVCEQF, r)
  1223  			opset(AVCEQBS, r)
  1224  			opset(AVCEQHS, r)
  1225  			opset(AVCEQFS, r)
  1226  			opset(AVCEQGS, r)
  1227  			opset(AVCHB, r)
  1228  			opset(AVCHH, r)
  1229  			opset(AVCHF, r)
  1230  			opset(AVCHG, r)
  1231  			opset(AVCHBS, r)
  1232  			opset(AVCHHS, r)
  1233  			opset(AVCHFS, r)
  1234  			opset(AVCHGS, r)
  1235  			opset(AVCHLB, r)
  1236  			opset(AVCHLH, r)
  1237  			opset(AVCHLF, r)
  1238  			opset(AVCHLG, r)
  1239  			opset(AVCHLBS, r)
  1240  			opset(AVCHLHS, r)
  1241  			opset(AVCHLFS, r)
  1242  			opset(AVCHLGS, r)
  1243  		case AVFAEF:
  1244  			opset(AVFAEB, r)
  1245  			opset(AVFAEH, r)
  1246  			opset(AVFAEBS, r)
  1247  			opset(AVFAEHS, r)
  1248  			opset(AVFAEFS, r)
  1249  			opset(AVFAEZB, r)
  1250  			opset(AVFAEZH, r)
  1251  			opset(AVFAEZF, r)
  1252  			opset(AVFAEZBS, r)
  1253  			opset(AVFAEZHS, r)
  1254  			opset(AVFAEZFS, r)
  1255  			opset(AVFEEB, r)
  1256  			opset(AVFEEH, r)
  1257  			opset(AVFEEF, r)
  1258  			opset(AVFEEBS, r)
  1259  			opset(AVFEEHS, r)
  1260  			opset(AVFEEFS, r)
  1261  			opset(AVFEEZB, r)
  1262  			opset(AVFEEZH, r)
  1263  			opset(AVFEEZF, r)
  1264  			opset(AVFEEZBS, r)
  1265  			opset(AVFEEZHS, r)
  1266  			opset(AVFEEZFS, r)
  1267  			opset(AVFENEB, r)
  1268  			opset(AVFENEH, r)
  1269  			opset(AVFENEF, r)
  1270  			opset(AVFENEBS, r)
  1271  			opset(AVFENEHS, r)
  1272  			opset(AVFENEFS, r)
  1273  			opset(AVFENEZB, r)
  1274  			opset(AVFENEZH, r)
  1275  			opset(AVFENEZF, r)
  1276  			opset(AVFENEZBS, r)
  1277  			opset(AVFENEZHS, r)
  1278  			opset(AVFENEZFS, r)
  1279  		case AVPKSG:
  1280  			opset(AVPKSH, r)
  1281  			opset(AVPKSF, r)
  1282  			opset(AVPKSHS, r)
  1283  			opset(AVPKSFS, r)
  1284  			opset(AVPKSGS, r)
  1285  			opset(AVPKLSH, r)
  1286  			opset(AVPKLSF, r)
  1287  			opset(AVPKLSG, r)
  1288  			opset(AVPKLSHS, r)
  1289  			opset(AVPKLSFS, r)
  1290  			opset(AVPKLSGS, r)
  1291  		case AVAQ:
  1292  			opset(AVAB, r)
  1293  			opset(AVAH, r)
  1294  			opset(AVAF, r)
  1295  			opset(AVAG, r)
  1296  			opset(AVACCB, r)
  1297  			opset(AVACCH, r)
  1298  			opset(AVACCF, r)
  1299  			opset(AVACCG, r)
  1300  			opset(AVACCQ, r)
  1301  			opset(AVN, r)
  1302  			opset(AVNC, r)
  1303  			opset(AVAVGB, r)
  1304  			opset(AVAVGH, r)
  1305  			opset(AVAVGF, r)
  1306  			opset(AVAVGG, r)
  1307  			opset(AVAVGLB, r)
  1308  			opset(AVAVGLH, r)
  1309  			opset(AVAVGLF, r)
  1310  			opset(AVAVGLG, r)
  1311  			opset(AVCKSM, r)
  1312  			opset(AVX, r)
  1313  			opset(AVFADB, r)
  1314  			opset(AWFADB, r)
  1315  			opset(AVFCEDB, r)
  1316  			opset(AVFCEDBS, r)
  1317  			opset(AWFCEDB, r)
  1318  			opset(AWFCEDBS, r)
  1319  			opset(AVFCHDB, r)
  1320  			opset(AVFCHDBS, r)
  1321  			opset(AWFCHDB, r)
  1322  			opset(AWFCHDBS, r)
  1323  			opset(AVFCHEDB, r)
  1324  			opset(AVFCHEDBS, r)
  1325  			opset(AWFCHEDB, r)
  1326  			opset(AWFCHEDBS, r)
  1327  			opset(AVFMDB, r)
  1328  			opset(AWFMDB, r)
  1329  			opset(AVGFMB, r)
  1330  			opset(AVGFMH, r)
  1331  			opset(AVGFMF, r)
  1332  			opset(AVGFMG, r)
  1333  			opset(AVMXB, r)
  1334  			opset(AVMXH, r)
  1335  			opset(AVMXF, r)
  1336  			opset(AVMXG, r)
  1337  			opset(AVMXLB, r)
  1338  			opset(AVMXLH, r)
  1339  			opset(AVMXLF, r)
  1340  			opset(AVMXLG, r)
  1341  			opset(AVMNB, r)
  1342  			opset(AVMNH, r)
  1343  			opset(AVMNF, r)
  1344  			opset(AVMNG, r)
  1345  			opset(AVMNLB, r)
  1346  			opset(AVMNLH, r)
  1347  			opset(AVMNLF, r)
  1348  			opset(AVMNLG, r)
  1349  			opset(AVMRHB, r)
  1350  			opset(AVMRHH, r)
  1351  			opset(AVMRHF, r)
  1352  			opset(AVMRHG, r)
  1353  			opset(AVMRLB, r)
  1354  			opset(AVMRLH, r)
  1355  			opset(AVMRLF, r)
  1356  			opset(AVMRLG, r)
  1357  			opset(AVMEB, r)
  1358  			opset(AVMEH, r)
  1359  			opset(AVMEF, r)
  1360  			opset(AVMLEB, r)
  1361  			opset(AVMLEH, r)
  1362  			opset(AVMLEF, r)
  1363  			opset(AVMOB, r)
  1364  			opset(AVMOH, r)
  1365  			opset(AVMOF, r)
  1366  			opset(AVMLOB, r)
  1367  			opset(AVMLOH, r)
  1368  			opset(AVMLOF, r)
  1369  			opset(AVMHB, r)
  1370  			opset(AVMHH, r)
  1371  			opset(AVMHF, r)
  1372  			opset(AVMLHB, r)
  1373  			opset(AVMLHH, r)
  1374  			opset(AVMLHF, r)
  1375  			opset(AVMLH, r)
  1376  			opset(AVMLHW, r)
  1377  			opset(AVMLF, r)
  1378  			opset(AVNO, r)
  1379  			opset(AVO, r)
  1380  			opset(AVPKH, r)
  1381  			opset(AVPKF, r)
  1382  			opset(AVPKG, r)
  1383  			opset(AVSUMGH, r)
  1384  			opset(AVSUMGF, r)
  1385  			opset(AVSUMQF, r)
  1386  			opset(AVSUMQG, r)
  1387  			opset(AVSUMB, r)
  1388  			opset(AVSUMH, r)
  1389  		case AVERLLVG:
  1390  			opset(AVERLLVB, r)
  1391  			opset(AVERLLVH, r)
  1392  			opset(AVERLLVF, r)
  1393  			opset(AVESLVB, r)
  1394  			opset(AVESLVH, r)
  1395  			opset(AVESLVF, r)
  1396  			opset(AVESLVG, r)
  1397  			opset(AVESRAVB, r)
  1398  			opset(AVESRAVH, r)
  1399  			opset(AVESRAVF, r)
  1400  			opset(AVESRAVG, r)
  1401  			opset(AVESRLVB, r)
  1402  			opset(AVESRLVH, r)
  1403  			opset(AVESRLVF, r)
  1404  			opset(AVESRLVG, r)
  1405  			opset(AVFDDB, r)
  1406  			opset(AWFDDB, r)
  1407  			opset(AVFSDB, r)
  1408  			opset(AWFSDB, r)
  1409  			opset(AVSL, r)
  1410  			opset(AVSLB, r)
  1411  			opset(AVSRA, r)
  1412  			opset(AVSRAB, r)
  1413  			opset(AVSRL, r)
  1414  			opset(AVSRLB, r)
  1415  			opset(AVSB, r)
  1416  			opset(AVSH, r)
  1417  			opset(AVSF, r)
  1418  			opset(AVSG, r)
  1419  			opset(AVSQ, r)
  1420  			opset(AVSCBIB, r)
  1421  			opset(AVSCBIH, r)
  1422  			opset(AVSCBIF, r)
  1423  			opset(AVSCBIG, r)
  1424  			opset(AVSCBIQ, r)
  1425  		case AVACQ:
  1426  			opset(AVACCCQ, r)
  1427  			opset(AVGFMAB, r)
  1428  			opset(AVGFMAH, r)
  1429  			opset(AVGFMAF, r)
  1430  			opset(AVGFMAG, r)
  1431  			opset(AVMALB, r)
  1432  			opset(AVMALHW, r)
  1433  			opset(AVMALF, r)
  1434  			opset(AVMAHB, r)
  1435  			opset(AVMAHH, r)
  1436  			opset(AVMAHF, r)
  1437  			opset(AVMALHB, r)
  1438  			opset(AVMALHH, r)
  1439  			opset(AVMALHF, r)
  1440  			opset(AVMAEB, r)
  1441  			opset(AVMAEH, r)
  1442  			opset(AVMAEF, r)
  1443  			opset(AVMALEB, r)
  1444  			opset(AVMALEH, r)
  1445  			opset(AVMALEF, r)
  1446  			opset(AVMAOB, r)
  1447  			opset(AVMAOH, r)
  1448  			opset(AVMAOF, r)
  1449  			opset(AVMALOB, r)
  1450  			opset(AVMALOH, r)
  1451  			opset(AVMALOF, r)
  1452  			opset(AVSTRCB, r)
  1453  			opset(AVSTRCH, r)
  1454  			opset(AVSTRCF, r)
  1455  			opset(AVSTRCBS, r)
  1456  			opset(AVSTRCHS, r)
  1457  			opset(AVSTRCFS, r)
  1458  			opset(AVSTRCZB, r)
  1459  			opset(AVSTRCZH, r)
  1460  			opset(AVSTRCZF, r)
  1461  			opset(AVSTRCZBS, r)
  1462  			opset(AVSTRCZHS, r)
  1463  			opset(AVSTRCZFS, r)
  1464  			opset(AVSBCBIQ, r)
  1465  			opset(AVSBIQ, r)
  1466  			opset(AVMSLG, r)
  1467  			opset(AVMSLEG, r)
  1468  			opset(AVMSLOG, r)
  1469  			opset(AVMSLEOG, r)
  1470  		case AVSEL:
  1471  			opset(AVFMADB, r)
  1472  			opset(AWFMADB, r)
  1473  			opset(AVFMSDB, r)
  1474  			opset(AWFMSDB, r)
  1475  			opset(AVPERM, r)
  1476  		}
  1477  	}
  1478  }
  1479  
  1480  const (
  1481  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1482  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1483  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1484  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1485  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1486  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1487  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1488  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1489  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1490  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1491  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1492  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1493  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1494  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1495  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1496  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1497  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1498  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1499  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1500  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1501  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1502  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1503  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1504  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1505  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1506  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1507  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1508  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1509  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1510  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1511  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1512  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1513  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1514  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1515  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1516  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1517  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1518  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1519  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1520  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1521  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1522  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1523  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1524  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1525  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1526  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1527  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1528  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1529  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1530  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1531  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1532  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1533  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1534  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1535  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1536  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1537  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1538  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1539  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1540  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1541  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1542  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1543  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1544  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1545  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1546  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1547  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1548  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1549  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1550  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1551  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1552  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1553  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1554  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1555  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1556  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1557  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1558  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1559  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1560  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1561  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1562  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1563  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1564  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1565  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1566  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1567  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1568  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1569  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1570  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1571  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1572  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1573  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1574  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1575  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1576  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1577  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1578  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1579  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1580  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1581  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1582  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1583  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1584  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1585  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1586  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1587  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1588  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1589  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1590  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1591  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1592  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1593  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1594  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1595  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1596  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1597  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1598  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1599  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1600  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1601  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1602  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1603  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1604  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1605  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1606  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1607  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1608  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1609  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1610  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1611  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1612  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1613  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1614  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1615  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1616  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1617  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1618  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1619  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1620  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1621  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1622  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1623  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1624  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1625  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1626  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1627  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1628  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1629  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1630  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1631  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1632  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1633  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1634  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1635  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1636  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1637  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1638  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1639  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1640  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1641  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1642  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1643  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1644  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1645  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1646  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1647  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1648  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1649  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1650  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1651  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1652  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1653  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1654  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1655  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1656  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1657  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1658  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1659  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1660  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1661  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1662  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1663  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1664  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1665  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1666  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1667  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1668  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1669  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1670  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1671  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1672  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1673  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1674  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1675  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1676  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1677  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1678  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1679  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1680  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1681  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1682  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1683  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1684  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1685  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1686  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1687  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1688  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1689  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1690  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1691  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1692  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1693  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1694  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1695  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1696  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1697  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1698  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1699  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1700  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1701  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1702  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1703  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1704  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1705  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1706  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1707  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1708  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1709  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1710  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1711  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1712  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1713  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1714  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1715  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1716  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1717  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1718  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1719  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1720  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1721  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1722  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1723  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1724  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1725  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1726  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1727  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1728  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1729  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1730  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1731  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1732  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1733  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1734  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1735  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1736  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1737  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1738  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1739  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1740  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1741  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1742  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1743  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1744  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1745  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1746  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1747  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1748  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1749  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1750  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1751  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1752  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1753  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1754  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1755  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1756  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1757  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1758  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1759  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1760  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1761  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1762  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1763  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1764  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1765  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1766  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1767  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1768  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1769  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1770  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1771  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1772  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1773  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1774  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1775  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1776  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1777  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1778  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1779  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1780  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1781  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1782  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1783  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1784  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1785  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1786  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1787  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1788  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1789  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1790  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1791  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1792  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1793  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1794  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1795  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1796  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1797  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1798  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1799  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1800  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1801  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1802  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1803  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1804  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1805  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1806  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1807  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1808  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1809  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1810  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1811  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1812  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1813  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1814  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1815  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1816  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1817  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1818  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1819  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1820  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1821  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1822  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1823  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1824  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1825  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1826  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1827  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1828  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1829  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1830  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1831  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1832  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1833  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1834  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1835  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1836  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1837  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1838  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1839  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1840  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1841  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1842  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1843  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1844  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1845  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1846  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1847  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1848  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1849  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1850  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1851  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1852  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1853  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1854  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1855  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1856  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1857  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1858  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1859  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1860  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1861  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1862  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1863  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1864  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1865  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1866  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1867  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1868  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1869  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1870  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1871  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1872  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1873  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1874  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1875  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1876  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1877  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1878  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1879  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1880  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1881  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1882  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1883  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1884  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1885  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1886  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1887  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1888  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1889  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1890  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1891  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1892  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1893  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1894  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1895  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1896  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1897  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1898  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1899  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1900  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1901  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1902  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1903  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1904  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1905  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1906  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1907  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1908  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1909  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1910  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1911  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1912  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1913  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1914  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1915  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1916  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1917  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1918  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1919  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1920  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1921  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1922  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1923  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1924  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1925  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1926  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1927  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1928  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1929  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1930  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1931  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1932  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1933  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1934  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1935  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1936  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1937  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1938  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1939  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1940  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1941  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1942  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1943  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1944  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1945  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1946  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1947  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1948  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1949  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1950  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1951  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1952  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1953  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1954  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1955  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1956  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1957  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1958  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1959  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1960  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1961  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1962  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1963  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1964  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1965  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1966  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1967  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1968  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1969  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1970  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1971  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1972  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1973  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1974  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1975  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1976  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1977  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1978  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1979  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1980  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1981  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1982  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1983  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1984  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1985  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1986  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1987  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1988  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1989  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1990  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1991  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1992  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1993  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1994  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1995  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1996  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1997  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1998  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1999  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  2000  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  2001  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  2002  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  2003  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  2004  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  2005  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  2006  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  2007  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  2008  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  2009  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  2010  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  2011  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  2012  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  2013  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  2014  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  2015  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  2016  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  2017  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  2018  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  2019  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  2020  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  2021  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  2022  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  2023  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  2024  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  2025  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  2026  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  2027  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  2028  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  2029  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  2030  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  2031  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  2032  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  2033  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  2034  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  2035  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  2036  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  2037  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  2038  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  2039  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  2040  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  2041  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  2042  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  2043  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  2044  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  2045  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  2046  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  2047  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  2048  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  2049  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  2050  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  2051  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  2052  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  2053  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  2054  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  2055  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  2056  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  2057  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  2058  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  2059  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  2060  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  2061  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  2062  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  2063  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  2064  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  2065  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  2066  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  2067  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  2068  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  2069  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  2070  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  2071  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  2072  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  2073  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  2074  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  2075  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  2076  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  2077  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  2078  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  2079  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  2080  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  2081  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  2082  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  2083  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  2084  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  2085  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  2086  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  2087  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  2088  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  2089  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2090  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  2091  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  2092  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2093  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  2094  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  2095  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  2096  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2097  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  2098  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  2099  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  2100  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  2101  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2102  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  2103  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  2104  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  2105  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  2106  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  2107  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  2108  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  2109  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  2110  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  2111  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  2112  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  2113  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  2114  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  2115  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  2116  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  2117  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  2118  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  2119  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  2120  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  2121  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  2122  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  2123  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  2124  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  2125  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  2126  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  2127  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  2128  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  2129  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  2130  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  2131  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2132  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2133  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2134  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2135  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2136  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2137  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2138  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2139  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2140  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2141  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2142  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2143  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2144  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2145  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2146  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2147  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2148  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2149  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2150  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2151  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2152  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2153  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2154  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2155  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2156  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2157  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2158  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2159  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2160  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2161  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2162  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2163  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2164  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2165  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2166  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2167  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2168  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2169  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2170  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2171  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2172  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2173  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2174  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2175  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2176  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2177  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2178  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2179  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2180  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2181  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2182  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2183  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2184  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2185  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2186  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2187  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2188  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2189  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2190  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2191  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2192  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2193  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2194  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2195  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2196  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2197  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2198  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2199  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2200  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2201  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2202  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2203  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2204  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2205  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2206  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2207  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2208  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2209  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2210  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2211  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2212  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2213  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2214  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2215  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2216  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2217  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2218  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2219  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2220  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2221  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2222  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2223  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2224  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2225  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2226  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2227  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2228  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2229  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2230  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2231  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2232  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2233  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2234  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2235  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2236  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2237  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2238  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2239  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2240  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2241  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2242  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2243  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2244  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2245  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2246  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2247  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2248  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2249  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2250  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2251  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2252  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2253  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2254  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2255  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2256  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2257  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2258  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2259  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2260  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2261  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2262  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2263  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2264  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2265  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2266  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2267  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2268  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2269  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2270  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2271  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2272  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2273  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2274  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2275  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2276  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2277  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2278  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2279  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2280  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2281  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2282  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2283  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2284  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2285  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2286  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2287  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2288  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2289  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2290  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2291  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2292  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2293  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2294  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2295  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2296  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2297  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2298  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2299  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2300  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2301  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2302  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2303  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2304  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2305  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2306  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2307  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2308  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2309  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2310  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2311  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2312  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2313  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2314  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2315  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2316  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2317  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2318  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2319  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2320  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2321  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2322  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2323  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2324  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2325  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2326  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2327  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2328  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2329  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2330  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2331  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2332  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2333  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2334  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2335  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2336  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2337  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2338  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2339  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2340  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2341  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2342  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2343  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2344  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2345  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2346  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2347  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2348  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2349  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2350  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2351  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2352  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2353  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2354  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2355  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2356  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2357  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2358  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2359  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2360  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2361  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2362  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2363  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2364  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2365  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2366  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2367  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2368  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2369  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2370  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2371  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2372  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2373  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2374  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2375  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2376  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2377  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2378  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2379  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2380  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2381  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2382  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2383  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2384  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2385  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2386  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2387  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2388  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2389  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2390  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2391  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2392  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2393  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2394  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2395  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2396  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2397  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2398  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2399  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2400  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2401  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2402  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2403  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2404  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2405  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2406  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2407  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2408  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2409  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2410  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2411  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2412  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2413  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2414  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2415  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2416  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2417  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2418  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2419  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2420  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2421  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2422  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2423  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2424  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2425  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2426  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2427  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2428  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2429  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2430  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2431  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2432  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2433  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2434  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2435  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2436  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2437  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2438  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2439  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2440  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2441  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2442  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2443  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2444  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2445  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2446  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2447  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2448  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2449  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2450  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2451  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2452  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2453  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2454  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2455  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2456  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2457  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2458  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2459  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2460  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2461  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2462  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2463  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2464  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2465  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2466  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2467  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2468  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2469  
  2470  	// added in z13
  2471  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2472  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2473  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2474  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2475  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2476  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2477  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2478  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2479  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2480  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2481  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2482  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2483  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2484  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2485  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2486  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2487  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2488  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2489  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2490  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2491  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2492  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2493  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2494  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2495  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2496  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2497  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2498  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2499  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2500  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2501  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2502  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2503  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2504  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2505  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2506  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2507  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2508  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2509  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2510  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2511  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2512  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2513  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2514  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2515  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2516  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2517  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2518  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2519  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2520  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2521  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2522  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2523  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2524  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2525  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2526  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2527  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2528  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2529  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2530  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2531  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2532  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2533  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2534  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2535  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2536  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2537  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2538  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2539  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2540  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2541  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2542  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2543  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2544  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2545  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2546  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2547  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2548  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2549  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2550  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2551  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2552  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2553  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2554  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2555  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2556  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2557  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2558  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2559  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2560  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2561  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2562  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2563  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2564  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2565  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2566  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2567  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2568  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2569  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2570  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2571  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2572  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2573  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2574  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2575  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2576  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2577  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2578  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2579  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2580  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2581  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2582  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2583  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2584  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2585  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2586  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2587  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2588  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2589  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2590  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2591  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2592  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2593  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2594  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2595  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2596  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2597  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2598  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2599  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2600  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2601  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2602  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2603  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2604  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2605  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2606  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2607  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2608  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2609  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2610  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2611  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2612  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2613  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2614  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2615  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2616  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2617  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2618  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2619  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2620  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2621  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2622  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2623  	op_VMSL   uint32 = 0xE7B8 // 	VRR-d	VECTOR MULTIPLY SUM LOGICAL
  2624  )
  2625  
  2626  func oclass(a *obj.Addr) int {
  2627  	return int(a.Class) - 1
  2628  }
  2629  
  2630  // Add a relocation for the immediate in a RIL style instruction.
  2631  // The addend will be adjusted as required.
  2632  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2633  	if sym == nil {
  2634  		c.ctxt.Diag("require symbol to apply relocation")
  2635  	}
  2636  	offset := int64(2) // relocation offset from start of instruction
  2637  	rel := obj.Addrel(c.cursym)
  2638  	rel.Off = int32(c.pc + offset)
  2639  	rel.Siz = 4
  2640  	rel.Sym = sym
  2641  	rel.Add = add + offset + int64(rel.Siz)
  2642  	rel.Type = objabi.R_PCRELDBL
  2643  	return rel
  2644  }
  2645  
  2646  func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
  2647  	if sym == nil {
  2648  		c.ctxt.Diag("require symbol to apply relocation")
  2649  	}
  2650  	offset += int64(2) // relocation offset from start of instruction
  2651  	rel := obj.Addrel(c.cursym)
  2652  	rel.Off = int32(c.pc + offset)
  2653  	rel.Siz = 4
  2654  	rel.Sym = sym
  2655  	rel.Add = add + offset + int64(rel.Siz)
  2656  	rel.Type = objabi.R_PCRELDBL
  2657  	return rel
  2658  }
  2659  
  2660  // Add a CALL relocation for the immediate in a RIL style instruction.
  2661  // The addend will be adjusted as required.
  2662  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2663  	if sym == nil {
  2664  		c.ctxt.Diag("require symbol to apply relocation")
  2665  	}
  2666  	offset := int64(2) // relocation offset from start of instruction
  2667  	rel := obj.Addrel(c.cursym)
  2668  	rel.Off = int32(c.pc + offset)
  2669  	rel.Siz = 4
  2670  	rel.Sym = sym
  2671  	rel.Add = add + offset + int64(rel.Siz)
  2672  	rel.Type = objabi.R_CALL
  2673  	return rel
  2674  }
  2675  
  2676  func (c *ctxtz) branchMask(p *obj.Prog) CCMask {
  2677  	switch p.As {
  2678  	case ABRC, ALOCR, ALOCGR,
  2679  		ACRJ, ACGRJ, ACIJ, ACGIJ,
  2680  		ACLRJ, ACLGRJ, ACLIJ, ACLGIJ:
  2681  		return CCMask(p.From.Offset)
  2682  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2683  		return Equal
  2684  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2685  		return GreaterOrEqual
  2686  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2687  		return Greater
  2688  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2689  		return LessOrEqual
  2690  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2691  		return Less
  2692  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2693  		return NotEqual
  2694  	case ABLEU: // LE or unordered
  2695  		return NotGreater
  2696  	case ABLTU: // LT or unordered
  2697  		return LessOrUnordered
  2698  	case ABVC:
  2699  		return Never // needs extra instruction
  2700  	case ABVS:
  2701  		return Unordered
  2702  	}
  2703  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2704  	return Always
  2705  }
  2706  
  2707  func regtmp(p *obj.Prog) uint32 {
  2708  	p.Mark |= USETMP
  2709  	return REGTMP
  2710  }
  2711  
  2712  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2713  	o := c.oplook(p)
  2714  
  2715  	if o == nil {
  2716  		return
  2717  	}
  2718  
  2719  	// If REGTMP is used in generated code, we need to set USETMP on p.Mark.
  2720  	// So we use regtmp(p) for REGTMP.
  2721  
  2722  	switch o.i {
  2723  	default:
  2724  		c.ctxt.Diag("unknown index %d", o.i)
  2725  
  2726  	case 0: // PSEUDO OPS
  2727  		break
  2728  
  2729  	case 1: // mov reg reg
  2730  		switch p.As {
  2731  		default:
  2732  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2733  		case AMOVD:
  2734  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2735  		// sign extend
  2736  		case AMOVW:
  2737  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2738  		case AMOVH:
  2739  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2740  		case AMOVB:
  2741  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2742  		// zero extend
  2743  		case AMOVWZ:
  2744  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2745  		case AMOVHZ:
  2746  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2747  		case AMOVBZ:
  2748  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2749  		// reverse bytes
  2750  		case AMOVDBR:
  2751  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2752  		case AMOVWBR:
  2753  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2754  		// floating point
  2755  		case AFMOVD, AFMOVS:
  2756  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2757  		}
  2758  
  2759  	case 2: // arithmetic op reg [reg] reg
  2760  		r := p.Reg
  2761  		if r == 0 {
  2762  			r = p.To.Reg
  2763  		}
  2764  
  2765  		var opcode uint32
  2766  
  2767  		switch p.As {
  2768  		default:
  2769  			c.ctxt.Diag("invalid opcode")
  2770  		case AADD:
  2771  			opcode = op_AGRK
  2772  		case AADDC:
  2773  			opcode = op_ALGRK
  2774  		case AADDE:
  2775  			opcode = op_ALCGR
  2776  		case AADDW:
  2777  			opcode = op_ARK
  2778  		case AMULLW:
  2779  			opcode = op_MSGFR
  2780  		case AMULLD:
  2781  			opcode = op_MSGR
  2782  		case ADIVW, AMODW:
  2783  			opcode = op_DSGFR
  2784  		case ADIVWU, AMODWU:
  2785  			opcode = op_DLR
  2786  		case ADIVD, AMODD:
  2787  			opcode = op_DSGR
  2788  		case ADIVDU, AMODDU:
  2789  			opcode = op_DLGR
  2790  		}
  2791  
  2792  		switch p.As {
  2793  		default:
  2794  
  2795  		case AADD, AADDC, AADDW:
  2796  			if p.As == AADDW && r == p.To.Reg {
  2797  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2798  			} else {
  2799  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2800  			}
  2801  
  2802  		case AADDE, AMULLW, AMULLD:
  2803  			if r == p.To.Reg {
  2804  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2805  			} else if p.From.Reg == p.To.Reg {
  2806  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2807  			} else {
  2808  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2809  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2810  			}
  2811  
  2812  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2813  			if p.As == ADIVWU || p.As == ADIVDU {
  2814  				zRI(op_LGHI, regtmp(p), 0, asm)
  2815  			}
  2816  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2817  			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
  2818  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2819  
  2820  		case AMODW, AMODWU, AMODD, AMODDU:
  2821  			if p.As == AMODWU || p.As == AMODDU {
  2822  				zRI(op_LGHI, regtmp(p), 0, asm)
  2823  			}
  2824  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2825  			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
  2826  			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
  2827  
  2828  		}
  2829  
  2830  	case 3: // mov $constant reg
  2831  		v := c.vregoff(&p.From)
  2832  		switch p.As {
  2833  		case AMOVBZ:
  2834  			v = int64(uint8(v))
  2835  		case AMOVHZ:
  2836  			v = int64(uint16(v))
  2837  		case AMOVWZ:
  2838  			v = int64(uint32(v))
  2839  		case AMOVB:
  2840  			v = int64(int8(v))
  2841  		case AMOVH:
  2842  			v = int64(int16(v))
  2843  		case AMOVW:
  2844  			v = int64(int32(v))
  2845  		}
  2846  		if int64(int16(v)) == v {
  2847  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2848  		} else if v&0xffff0000 == v {
  2849  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2850  		} else if v&0xffff00000000 == v {
  2851  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2852  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2853  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2854  		} else if int64(int32(v)) == v {
  2855  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2856  		} else if int64(uint32(v)) == v {
  2857  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2858  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2859  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2860  		} else {
  2861  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2862  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2863  		}
  2864  
  2865  	case 4: // multiply high (a*b)>>64
  2866  		r := p.Reg
  2867  		if r == 0 {
  2868  			r = p.To.Reg
  2869  		}
  2870  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2871  		zRRE(op_MLGR, regtmp(p), uint32(p.From.Reg), asm)
  2872  		switch p.As {
  2873  		case AMULHDU:
  2874  			// Unsigned: move result into correct register.
  2875  			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
  2876  		case AMULHD:
  2877  			// Signed: need to convert result.
  2878  			// See Hacker's Delight 8-3.
  2879  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2880  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2881  			zRRE(op_SGR, regtmp(p), REGTMP2, asm)
  2882  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2883  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2884  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), regtmp(p), asm)
  2885  		}
  2886  
  2887  	case 5: // syscall
  2888  		zI(op_SVC, 0, asm)
  2889  
  2890  	case 6: // logical op reg [reg] reg
  2891  		var oprr, oprre, oprrf uint32
  2892  		switch p.As {
  2893  		case AAND:
  2894  			oprre = op_NGR
  2895  			oprrf = op_NGRK
  2896  		case AANDW:
  2897  			oprr = op_NR
  2898  			oprrf = op_NRK
  2899  		case AOR:
  2900  			oprre = op_OGR
  2901  			oprrf = op_OGRK
  2902  		case AORW:
  2903  			oprr = op_OR
  2904  			oprrf = op_ORK
  2905  		case AXOR:
  2906  			oprre = op_XGR
  2907  			oprrf = op_XGRK
  2908  		case AXORW:
  2909  			oprr = op_XR
  2910  			oprrf = op_XRK
  2911  		}
  2912  		if p.Reg == 0 {
  2913  			if oprr != 0 {
  2914  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2915  			} else {
  2916  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2917  			}
  2918  		} else {
  2919  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2920  		}
  2921  
  2922  	case 7: // shift/rotate reg [reg] reg
  2923  		d2 := c.vregoff(&p.From)
  2924  		b2 := p.From.Reg
  2925  		r3 := p.Reg
  2926  		if r3 == 0 {
  2927  			r3 = p.To.Reg
  2928  		}
  2929  		r1 := p.To.Reg
  2930  		var opcode uint32
  2931  		switch p.As {
  2932  		default:
  2933  		case ASLD:
  2934  			opcode = op_SLLG
  2935  		case ASRD:
  2936  			opcode = op_SRLG
  2937  		case ASLW:
  2938  			opcode = op_SLLK
  2939  		case ASRW:
  2940  			opcode = op_SRLK
  2941  		case ARLL:
  2942  			opcode = op_RLL
  2943  		case ARLLG:
  2944  			opcode = op_RLLG
  2945  		case ASRAW:
  2946  			opcode = op_SRAK
  2947  		case ASRAD:
  2948  			opcode = op_SRAG
  2949  		}
  2950  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2951  
  2952  	case 8: // find leftmost one
  2953  		if p.To.Reg&1 != 0 {
  2954  			c.ctxt.Diag("target must be an even-numbered register")
  2955  		}
  2956  		// FLOGR also writes a mask to p.To.Reg+1.
  2957  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2958  
  2959  	case 9: // population count
  2960  		zRRE(op_POPCNT, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2961  
  2962  	case 10: // subtract reg [reg] reg
  2963  		r := int(p.Reg)
  2964  
  2965  		switch p.As {
  2966  		default:
  2967  		case ASUB:
  2968  			if r == 0 {
  2969  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2970  			} else {
  2971  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2972  			}
  2973  		case ASUBC:
  2974  			if r == 0 {
  2975  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2976  			} else {
  2977  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2978  			}
  2979  		case ASUBE:
  2980  			if r == 0 {
  2981  				r = int(p.To.Reg)
  2982  			}
  2983  			if r == int(p.To.Reg) {
  2984  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2985  			} else if p.From.Reg == p.To.Reg {
  2986  				zRRE(op_LGR, regtmp(p), uint32(p.From.Reg), asm)
  2987  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2988  				zRRE(op_SLBGR, uint32(p.To.Reg), regtmp(p), asm)
  2989  			} else {
  2990  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2991  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2992  			}
  2993  		case ASUBW:
  2994  			if r == 0 {
  2995  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2996  			} else {
  2997  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2998  			}
  2999  		}
  3000  
  3001  	case 11: // br/bl
  3002  		v := int32(0)
  3003  
  3004  		if p.To.Target() != nil {
  3005  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3006  		}
  3007  
  3008  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  3009  			zRI(op_BRC, 0xF, uint32(v), asm)
  3010  		} else {
  3011  			if p.As == ABL {
  3012  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  3013  			} else {
  3014  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  3015  			}
  3016  			if p.To.Sym != nil {
  3017  				c.addcallreloc(p.To.Sym, p.To.Offset)
  3018  			}
  3019  		}
  3020  
  3021  	case 12:
  3022  		r1 := p.To.Reg
  3023  		d2 := c.vregoff(&p.From)
  3024  		b2 := p.From.Reg
  3025  		if b2 == 0 {
  3026  			b2 = REGSP
  3027  		}
  3028  		x2 := p.From.Index
  3029  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  3030  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3031  			if x2 != 0 {
  3032  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3033  			}
  3034  			x2 = int16(regtmp(p))
  3035  			d2 = 0
  3036  		}
  3037  		var opx, opxy uint32
  3038  		switch p.As {
  3039  		case AADD:
  3040  			opxy = op_AG
  3041  		case AADDC:
  3042  			opxy = op_ALG
  3043  		case AADDE:
  3044  			opxy = op_ALCG
  3045  		case AADDW:
  3046  			opx = op_A
  3047  			opxy = op_AY
  3048  		case AMULLW:
  3049  			opx = op_MS
  3050  			opxy = op_MSY
  3051  		case AMULLD:
  3052  			opxy = op_MSG
  3053  		case ASUB:
  3054  			opxy = op_SG
  3055  		case ASUBC:
  3056  			opxy = op_SLG
  3057  		case ASUBE:
  3058  			opxy = op_SLBG
  3059  		case ASUBW:
  3060  			opx = op_S
  3061  			opxy = op_SY
  3062  		case AAND:
  3063  			opxy = op_NG
  3064  		case AANDW:
  3065  			opx = op_N
  3066  			opxy = op_NY
  3067  		case AOR:
  3068  			opxy = op_OG
  3069  		case AORW:
  3070  			opx = op_O
  3071  			opxy = op_OY
  3072  		case AXOR:
  3073  			opxy = op_XG
  3074  		case AXORW:
  3075  			opx = op_X
  3076  			opxy = op_XY
  3077  		}
  3078  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  3079  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  3080  		} else {
  3081  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  3082  		}
  3083  
  3084  	case 13: // rotate, followed by operation
  3085  		r1 := p.To.Reg
  3086  		r2 := p.RestArgs[2].Reg
  3087  		i3 := uint8(p.From.Offset)        // start
  3088  		i4 := uint8(p.RestArgs[0].Offset) // end
  3089  		i5 := uint8(p.RestArgs[1].Offset) // rotate amount
  3090  		switch p.As {
  3091  		case ARNSBGT, ARXSBGT, AROSBGT:
  3092  			i3 |= 0x80 // test-results
  3093  		case ARISBGZ, ARISBGNZ, ARISBHGZ, ARISBLGZ:
  3094  			i4 |= 0x80 // zero-remaining-bits
  3095  		}
  3096  		var opcode uint32
  3097  		switch p.As {
  3098  		case ARNSBG, ARNSBGT:
  3099  			opcode = op_RNSBG
  3100  		case ARXSBG, ARXSBGT:
  3101  			opcode = op_RXSBG
  3102  		case AROSBG, AROSBGT:
  3103  			opcode = op_ROSBG
  3104  		case ARISBG, ARISBGZ:
  3105  			opcode = op_RISBG
  3106  		case ARISBGN, ARISBGNZ:
  3107  			opcode = op_RISBGN
  3108  		case ARISBHG, ARISBHGZ:
  3109  			opcode = op_RISBHG
  3110  		case ARISBLG, ARISBLGZ:
  3111  			opcode = op_RISBLG
  3112  		}
  3113  		zRIE(_f, uint32(opcode), uint32(r1), uint32(r2), 0, uint32(i3), uint32(i4), 0, uint32(i5), asm)
  3114  
  3115  	case 15: // br/bl (reg)
  3116  		r := p.To.Reg
  3117  		if p.As == ABCL || p.As == ABL {
  3118  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  3119  		} else {
  3120  			zRR(op_BCR, uint32(Always), uint32(r), asm)
  3121  		}
  3122  
  3123  	case 16: // conditional branch
  3124  		v := int32(0)
  3125  		if p.To.Target() != nil {
  3126  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3127  		}
  3128  		mask := uint32(c.branchMask(p))
  3129  		if p.To.Sym == nil && int32(int16(v)) == v {
  3130  			zRI(op_BRC, mask, uint32(v), asm)
  3131  		} else {
  3132  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  3133  		}
  3134  		if p.To.Sym != nil {
  3135  			c.addrilreloc(p.To.Sym, p.To.Offset)
  3136  		}
  3137  
  3138  	case 17: // move on condition
  3139  		m3 := uint32(c.branchMask(p))
  3140  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3141  
  3142  	case 18: // br/bl reg
  3143  		if p.As == ABL {
  3144  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  3145  		} else {
  3146  			zRR(op_BCR, uint32(Always), uint32(p.To.Reg), asm)
  3147  		}
  3148  
  3149  	case 19: // mov $sym+n(SB) reg
  3150  		d := c.vregoff(&p.From)
  3151  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  3152  		if d&1 != 0 {
  3153  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  3154  			d -= 1
  3155  		}
  3156  		c.addrilreloc(p.From.Sym, d)
  3157  
  3158  	case 21: // subtract $constant [reg] reg
  3159  		v := c.vregoff(&p.From)
  3160  		r := p.Reg
  3161  		if r == 0 {
  3162  			r = p.To.Reg
  3163  		}
  3164  		switch p.As {
  3165  		case ASUB:
  3166  			zRIL(_a, op_LGFI, uint32(regtmp(p)), uint32(v), asm)
  3167  			zRRF(op_SLGRK, uint32(regtmp(p)), 0, uint32(p.To.Reg), uint32(r), asm)
  3168  		case ASUBC:
  3169  			if r != p.To.Reg {
  3170  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3171  			}
  3172  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  3173  		case ASUBW:
  3174  			if r != p.To.Reg {
  3175  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3176  			}
  3177  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  3178  		}
  3179  
  3180  	case 22: // add/multiply $constant [reg] reg
  3181  		v := c.vregoff(&p.From)
  3182  		r := p.Reg
  3183  		if r == 0 {
  3184  			r = p.To.Reg
  3185  		}
  3186  		var opri, opril, oprie uint32
  3187  		switch p.As {
  3188  		case AADD:
  3189  			opri = op_AGHI
  3190  			opril = op_AGFI
  3191  			oprie = op_AGHIK
  3192  		case AADDC:
  3193  			opril = op_ALGFI
  3194  			oprie = op_ALGHSIK
  3195  		case AADDW:
  3196  			opri = op_AHI
  3197  			opril = op_AFI
  3198  			oprie = op_AHIK
  3199  		case AMULLW:
  3200  			opri = op_MHI
  3201  			opril = op_MSFI
  3202  		case AMULLD:
  3203  			opri = op_MGHI
  3204  			opril = op_MSGFI
  3205  		}
  3206  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3207  			switch p.As {
  3208  			case AADD, AADDC, AMULLD:
  3209  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3210  			case AADDW, AMULLW:
  3211  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3212  			}
  3213  			r = p.To.Reg
  3214  		}
  3215  		if opri != 0 && r == p.To.Reg && int64(int16(v)) == v {
  3216  			zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3217  		} else if oprie != 0 && int64(int16(v)) == v {
  3218  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3219  		} else {
  3220  			zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3221  		}
  3222  
  3223  	case 23: // 64-bit logical op $constant reg
  3224  		// TODO(mundaym): merge with case 24.
  3225  		v := c.vregoff(&p.From)
  3226  		switch p.As {
  3227  		default:
  3228  			c.ctxt.Diag("%v is not supported", p)
  3229  		case AAND:
  3230  			if v >= 0 { // needs zero extend
  3231  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3232  				zRRE(op_NGR, uint32(p.To.Reg), regtmp(p), asm)
  3233  			} else if int64(int16(v)) == v {
  3234  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3235  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3236  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3237  			}
  3238  		case AOR:
  3239  			if int64(uint32(v)) != v { // needs sign extend
  3240  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3241  				zRRE(op_OGR, uint32(p.To.Reg), regtmp(p), asm)
  3242  			} else if int64(uint16(v)) == v {
  3243  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3244  			} else {
  3245  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3246  			}
  3247  		case AXOR:
  3248  			if int64(uint32(v)) != v { // needs sign extend
  3249  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3250  				zRRE(op_XGR, uint32(p.To.Reg), regtmp(p), asm)
  3251  			} else {
  3252  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3253  			}
  3254  		}
  3255  
  3256  	case 24: // 32-bit logical op $constant reg
  3257  		v := c.vregoff(&p.From)
  3258  		switch p.As {
  3259  		case AANDW:
  3260  			if uint32(v&0xffff0000) == 0xffff0000 {
  3261  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3262  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3263  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3264  			} else {
  3265  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3266  			}
  3267  		case AORW:
  3268  			if uint32(v&0xffff0000) == 0 {
  3269  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3270  			} else if uint32(v&0x0000ffff) == 0 {
  3271  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3272  			} else {
  3273  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3274  			}
  3275  		case AXORW:
  3276  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3277  		}
  3278  
  3279  	case 25: // load on condition (register)
  3280  		m3 := uint32(c.branchMask(p))
  3281  		var opcode uint32
  3282  		switch p.As {
  3283  		case ALOCR:
  3284  			opcode = op_LOCR
  3285  		case ALOCGR:
  3286  			opcode = op_LOCGR
  3287  		}
  3288  		zRRF(opcode, m3, 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3289  
  3290  	case 26: // MOVD $offset(base)(index), reg
  3291  		v := c.regoff(&p.From)
  3292  		r := p.From.Reg
  3293  		if r == 0 {
  3294  			r = REGSP
  3295  		}
  3296  		i := p.From.Index
  3297  		if v >= 0 && v < DISP12 {
  3298  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3299  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3300  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3301  		} else {
  3302  			zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3303  			zRX(op_LA, uint32(p.To.Reg), uint32(r), regtmp(p), uint32(i), asm)
  3304  		}
  3305  
  3306  	case 31: // dword
  3307  		wd := uint64(c.vregoff(&p.From))
  3308  		*asm = append(*asm,
  3309  			uint8(wd>>56),
  3310  			uint8(wd>>48),
  3311  			uint8(wd>>40),
  3312  			uint8(wd>>32),
  3313  			uint8(wd>>24),
  3314  			uint8(wd>>16),
  3315  			uint8(wd>>8),
  3316  			uint8(wd))
  3317  
  3318  	case 32: // float op freg freg
  3319  		var opcode uint32
  3320  		switch p.As {
  3321  		default:
  3322  			c.ctxt.Diag("invalid opcode")
  3323  		case AFADD:
  3324  			opcode = op_ADBR
  3325  		case AFADDS:
  3326  			opcode = op_AEBR
  3327  		case AFDIV:
  3328  			opcode = op_DDBR
  3329  		case AFDIVS:
  3330  			opcode = op_DEBR
  3331  		case AFMUL:
  3332  			opcode = op_MDBR
  3333  		case AFMULS:
  3334  			opcode = op_MEEBR
  3335  		case AFSUB:
  3336  			opcode = op_SDBR
  3337  		case AFSUBS:
  3338  			opcode = op_SEBR
  3339  		}
  3340  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3341  
  3342  	case 33: // float op [freg] freg
  3343  		r := p.From.Reg
  3344  		if oclass(&p.From) == C_NONE {
  3345  			r = p.To.Reg
  3346  		}
  3347  		var opcode uint32
  3348  		switch p.As {
  3349  		default:
  3350  		case AFABS:
  3351  			opcode = op_LPDBR
  3352  		case AFNABS:
  3353  			opcode = op_LNDBR
  3354  		case ALPDFR:
  3355  			opcode = op_LPDFR
  3356  		case ALNDFR:
  3357  			opcode = op_LNDFR
  3358  		case AFNEG:
  3359  			opcode = op_LCDFR
  3360  		case AFNEGS:
  3361  			opcode = op_LCEBR
  3362  		case ALEDBR:
  3363  			opcode = op_LEDBR
  3364  		case ALDEBR:
  3365  			opcode = op_LDEBR
  3366  		case AFSQRT:
  3367  			opcode = op_SQDBR
  3368  		case AFSQRTS:
  3369  			opcode = op_SQEBR
  3370  		}
  3371  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3372  
  3373  	case 34: // float multiply-add freg freg freg
  3374  		var opcode uint32
  3375  		switch p.As {
  3376  		default:
  3377  			c.ctxt.Diag("invalid opcode")
  3378  		case AFMADD:
  3379  			opcode = op_MADBR
  3380  		case AFMADDS:
  3381  			opcode = op_MAEBR
  3382  		case AFMSUB:
  3383  			opcode = op_MSDBR
  3384  		case AFMSUBS:
  3385  			opcode = op_MSEBR
  3386  		}
  3387  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3388  
  3389  	case 35: // mov reg mem (no relocation)
  3390  		d2 := c.regoff(&p.To)
  3391  		b2 := p.To.Reg
  3392  		if b2 == 0 {
  3393  			b2 = REGSP
  3394  		}
  3395  		x2 := p.To.Index
  3396  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3397  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3398  			if x2 != 0 {
  3399  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3400  			}
  3401  			x2 = int16(regtmp(p))
  3402  			d2 = 0
  3403  		}
  3404  		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
  3405  		if op, ok := c.zopstore12(p.As); ok && isU12(d2) {
  3406  			zRX(op, uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3407  		} else {
  3408  			zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3409  		}
  3410  
  3411  	case 36: // mov mem reg (no relocation)
  3412  		d2 := c.regoff(&p.From)
  3413  		b2 := p.From.Reg
  3414  		if b2 == 0 {
  3415  			b2 = REGSP
  3416  		}
  3417  		x2 := p.From.Index
  3418  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3419  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3420  			if x2 != 0 {
  3421  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3422  			}
  3423  			x2 = int16(regtmp(p))
  3424  			d2 = 0
  3425  		}
  3426  		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
  3427  		if op, ok := c.zopload12(p.As); ok && isU12(d2) {
  3428  			zRX(op, uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3429  		} else {
  3430  			zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3431  		}
  3432  
  3433  	case 40: // word/byte
  3434  		wd := uint32(c.regoff(&p.From))
  3435  		if p.As == AWORD { //WORD
  3436  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3437  		} else { //BYTE
  3438  			*asm = append(*asm, uint8(wd))
  3439  		}
  3440  
  3441  	case 41: // branch on count
  3442  		r1 := p.From.Reg
  3443  		ri2 := (p.To.Target().Pc - p.Pc) >> 1
  3444  		if int64(int16(ri2)) != ri2 {
  3445  			c.ctxt.Diag("branch target too far away")
  3446  		}
  3447  		var opcode uint32
  3448  		switch p.As {
  3449  		case ABRCT:
  3450  			opcode = op_BRCT
  3451  		case ABRCTG:
  3452  			opcode = op_BRCTG
  3453  		}
  3454  		zRI(opcode, uint32(r1), uint32(ri2), asm)
  3455  
  3456  	case 47: // negate [reg] reg
  3457  		r := p.From.Reg
  3458  		if r == 0 {
  3459  			r = p.To.Reg
  3460  		}
  3461  		switch p.As {
  3462  		case ANEG:
  3463  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3464  		case ANEGW:
  3465  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3466  		}
  3467  
  3468  	case 48: // floating-point round to integer
  3469  		m3 := c.vregoff(&p.From)
  3470  		if 0 > m3 || m3 > 7 {
  3471  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3472  		}
  3473  		var opcode uint32
  3474  		switch p.As {
  3475  		case AFIEBR:
  3476  			opcode = op_FIEBR
  3477  		case AFIDBR:
  3478  			opcode = op_FIDBR
  3479  		}
  3480  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3481  
  3482  	case 49: // copysign
  3483  		zRRF(op_CPSDR, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3484  
  3485  	case 50: // load and test
  3486  		var opcode uint32
  3487  		switch p.As {
  3488  		case ALTEBR:
  3489  			opcode = op_LTEBR
  3490  		case ALTDBR:
  3491  			opcode = op_LTDBR
  3492  		}
  3493  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3494  
  3495  	case 51: // test data class (immediate only)
  3496  		var opcode uint32
  3497  		switch p.As {
  3498  		case ATCEB:
  3499  			opcode = op_TCEB
  3500  		case ATCDB:
  3501  			opcode = op_TCDB
  3502  		}
  3503  		d2 := c.regoff(&p.To)
  3504  		zRXE(opcode, uint32(p.From.Reg), 0, 0, uint32(d2), 0, asm)
  3505  
  3506  	case 62: // equivalent of Mul64 in math/bits
  3507  		zRRE(op_MLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3508  
  3509  	case 66:
  3510  		zRR(op_BCR, uint32(Never), 0, asm)
  3511  
  3512  	case 67: // fmov $0 freg
  3513  		var opcode uint32
  3514  		switch p.As {
  3515  		case AFMOVS:
  3516  			opcode = op_LZER
  3517  		case AFMOVD:
  3518  			opcode = op_LZDR
  3519  		}
  3520  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3521  
  3522  	case 68: // movw areg reg
  3523  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3524  
  3525  	case 69: // movw reg areg
  3526  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3527  
  3528  	case 70: // cmp reg reg
  3529  		if p.As == ACMPW || p.As == ACMPWU {
  3530  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3531  		} else {
  3532  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3533  		}
  3534  
  3535  	case 71: // cmp reg $constant
  3536  		v := c.vregoff(&p.To)
  3537  		switch p.As {
  3538  		case ACMP, ACMPW:
  3539  			if int64(int32(v)) != v {
  3540  				c.ctxt.Diag("%v overflows an int32", v)
  3541  			}
  3542  		case ACMPU, ACMPWU:
  3543  			if int64(uint32(v)) != v {
  3544  				c.ctxt.Diag("%v overflows a uint32", v)
  3545  			}
  3546  		}
  3547  		if p.As == ACMP && int64(int16(v)) == v {
  3548  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3549  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3550  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3551  		} else {
  3552  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3553  		}
  3554  
  3555  	case 72: // mov $constant mem
  3556  		v := c.regoff(&p.From)
  3557  		d := c.regoff(&p.To)
  3558  		r := p.To.Reg
  3559  		if p.To.Index != 0 {
  3560  			c.ctxt.Diag("cannot use index register")
  3561  		}
  3562  		if r == 0 {
  3563  			r = REGSP
  3564  		}
  3565  		var opcode uint32
  3566  		switch p.As {
  3567  		case AMOVD:
  3568  			opcode = op_MVGHI
  3569  		case AMOVW, AMOVWZ:
  3570  			opcode = op_MVHI
  3571  		case AMOVH, AMOVHZ:
  3572  			opcode = op_MVHHI
  3573  		case AMOVB, AMOVBZ:
  3574  			opcode = op_MVI
  3575  		}
  3576  		if d < 0 || d >= DISP12 {
  3577  			if r == int16(regtmp(p)) {
  3578  				c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
  3579  			}
  3580  			if d >= -DISP20/2 && d < DISP20/2 {
  3581  				if opcode == op_MVI {
  3582  					opcode = op_MVIY
  3583  				} else {
  3584  					zRXY(op_LAY, uint32(regtmp(p)), 0, uint32(r), uint32(d), asm)
  3585  					r = int16(regtmp(p))
  3586  					d = 0
  3587  				}
  3588  			} else {
  3589  				zRIL(_a, op_LGFI, regtmp(p), uint32(d), asm)
  3590  				zRX(op_LA, regtmp(p), regtmp(p), uint32(r), 0, asm)
  3591  				r = int16(regtmp(p))
  3592  				d = 0
  3593  			}
  3594  		}
  3595  		switch opcode {
  3596  		case op_MVI:
  3597  			zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3598  		case op_MVIY:
  3599  			zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
  3600  		default:
  3601  			zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3602  		}
  3603  
  3604  	case 74: // mov reg addr (including relocation)
  3605  		i2 := c.regoff(&p.To)
  3606  		switch p.As {
  3607  		case AMOVD:
  3608  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3609  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3610  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3611  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3612  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3613  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3614  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3615  			adj := uint32(0) // adjustment needed for odd addresses
  3616  			if i2&1 != 0 {
  3617  				i2 -= 1
  3618  				adj = 1
  3619  			}
  3620  			zRX(op_STC, uint32(p.From.Reg), 0, regtmp(p), adj, asm)
  3621  		case AFMOVD:
  3622  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3623  			zRX(op_STD, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
  3624  		case AFMOVS:
  3625  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3626  			zRX(op_STE, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
  3627  		}
  3628  		c.addrilreloc(p.To.Sym, int64(i2))
  3629  
  3630  	case 75: // mov addr reg (including relocation)
  3631  		i2 := c.regoff(&p.From)
  3632  		switch p.As {
  3633  		case AMOVD:
  3634  			if i2&1 != 0 {
  3635  				zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3636  				zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 1, asm)
  3637  				i2 -= 1
  3638  			} else {
  3639  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3640  			}
  3641  		case AMOVW:
  3642  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3643  		case AMOVWZ:
  3644  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3645  		case AMOVH:
  3646  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3647  		case AMOVHZ:
  3648  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3649  		case AMOVB, AMOVBZ:
  3650  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3651  			adj := uint32(0) // adjustment needed for odd addresses
  3652  			if i2&1 != 0 {
  3653  				i2 -= 1
  3654  				adj = 1
  3655  			}
  3656  			switch p.As {
  3657  			case AMOVB:
  3658  				zRXY(op_LGB, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
  3659  			case AMOVBZ:
  3660  				zRXY(op_LLGC, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
  3661  			}
  3662  		case AFMOVD:
  3663  			zRIL(_a, op_LARL, regtmp(p), 0, asm)
  3664  			zRX(op_LD, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
  3665  		case AFMOVS:
  3666  			zRIL(_a, op_LARL, regtmp(p), 0, asm)
  3667  			zRX(op_LE, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
  3668  		}
  3669  		c.addrilreloc(p.From.Sym, int64(i2))
  3670  
  3671  	case 76: // set program mask
  3672  		zRR(op_SPM, uint32(p.From.Reg), 0, asm)
  3673  
  3674  	case 77: // syscall $constant
  3675  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3676  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3677  			zE(op_TRAP2, asm) // trap always
  3678  		} else {
  3679  			zI(op_SVC, uint32(p.From.Offset), asm)
  3680  		}
  3681  
  3682  	case 78: // undef
  3683  		// "An instruction consisting entirely of binary 0s is guaranteed
  3684  		// always to be an illegal instruction."
  3685  		*asm = append(*asm, 0, 0, 0, 0)
  3686  
  3687  	case 79: // compare and swap reg reg reg
  3688  		v := c.regoff(&p.To)
  3689  		if v < 0 {
  3690  			v = 0
  3691  		}
  3692  		if p.As == ACS {
  3693  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3694  		} else if p.As == ACSG {
  3695  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3696  		}
  3697  
  3698  	case 80: // sync
  3699  		zRR(op_BCR, uint32(NotEqual), 0, asm)
  3700  
  3701  	case 81: // float to fixed and fixed to float moves (no conversion)
  3702  		switch p.As {
  3703  		case ALDGR:
  3704  			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3705  		case ALGDR:
  3706  			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3707  		}
  3708  
  3709  	case 82: // fixed to float conversion
  3710  		var opcode uint32
  3711  		switch p.As {
  3712  		default:
  3713  			log.Fatalf("unexpected opcode %v", p.As)
  3714  		case ACEFBRA:
  3715  			opcode = op_CEFBRA
  3716  		case ACDFBRA:
  3717  			opcode = op_CDFBRA
  3718  		case ACEGBRA:
  3719  			opcode = op_CEGBRA
  3720  		case ACDGBRA:
  3721  			opcode = op_CDGBRA
  3722  		case ACELFBR:
  3723  			opcode = op_CELFBR
  3724  		case ACDLFBR:
  3725  			opcode = op_CDLFBR
  3726  		case ACELGBR:
  3727  			opcode = op_CELGBR
  3728  		case ACDLGBR:
  3729  			opcode = op_CDLGBR
  3730  		}
  3731  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3732  		// (usually round to nearest, ties to even)
  3733  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3734  		// M4 is reserved and must be 0
  3735  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3736  
  3737  	case 83: // float to fixed conversion
  3738  		var opcode uint32
  3739  		switch p.As {
  3740  		default:
  3741  			log.Fatalf("unexpected opcode %v", p.As)
  3742  		case ACFEBRA:
  3743  			opcode = op_CFEBRA
  3744  		case ACFDBRA:
  3745  			opcode = op_CFDBRA
  3746  		case ACGEBRA:
  3747  			opcode = op_CGEBRA
  3748  		case ACGDBRA:
  3749  			opcode = op_CGDBRA
  3750  		case ACLFEBR:
  3751  			opcode = op_CLFEBR
  3752  		case ACLFDBR:
  3753  			opcode = op_CLFDBR
  3754  		case ACLGEBR:
  3755  			opcode = op_CLGEBR
  3756  		case ACLGDBR:
  3757  			opcode = op_CLGDBR
  3758  		}
  3759  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3760  		// M4 is reserved and must be 0
  3761  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3762  
  3763  	case 84: // storage-and-storage operations $length mem mem
  3764  		l := c.regoff(&p.From)
  3765  		if l < 1 || l > 256 {
  3766  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3767  		}
  3768  		if p.GetFrom3().Index != 0 || p.To.Index != 0 {
  3769  			c.ctxt.Diag("cannot use index reg")
  3770  		}
  3771  		b1 := p.To.Reg
  3772  		b2 := p.GetFrom3().Reg
  3773  		if b1 == 0 {
  3774  			b1 = REGSP
  3775  		}
  3776  		if b2 == 0 {
  3777  			b2 = REGSP
  3778  		}
  3779  		d1 := c.regoff(&p.To)
  3780  		d2 := c.regoff(p.GetFrom3())
  3781  		if d1 < 0 || d1 >= DISP12 {
  3782  			if b2 == int16(regtmp(p)) {
  3783  				c.ctxt.Diag("regtmp(p) conflict")
  3784  			}
  3785  			if b1 != int16(regtmp(p)) {
  3786  				zRRE(op_LGR, regtmp(p), uint32(b1), asm)
  3787  			}
  3788  			zRIL(_a, op_AGFI, regtmp(p), uint32(d1), asm)
  3789  			if d1 == d2 && b1 == b2 {
  3790  				d2 = 0
  3791  				b2 = int16(regtmp(p))
  3792  			}
  3793  			d1 = 0
  3794  			b1 = int16(regtmp(p))
  3795  		}
  3796  		if d2 < 0 || d2 >= DISP12 {
  3797  			if b1 == REGTMP2 {
  3798  				c.ctxt.Diag("REGTMP2 conflict")
  3799  			}
  3800  			if b2 != REGTMP2 {
  3801  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3802  			}
  3803  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3804  			d2 = 0
  3805  			b2 = REGTMP2
  3806  		}
  3807  		var opcode uint32
  3808  		switch p.As {
  3809  		default:
  3810  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3811  		case AMVC:
  3812  			opcode = op_MVC
  3813  		case AMVCIN:
  3814  			opcode = op_MVCIN
  3815  		case ACLC:
  3816  			opcode = op_CLC
  3817  			// swap operand order for CLC so that it matches CMP
  3818  			b1, b2 = b2, b1
  3819  			d1, d2 = d2, d1
  3820  		case AXC:
  3821  			opcode = op_XC
  3822  		case AOC:
  3823  			opcode = op_OC
  3824  		case ANC:
  3825  			opcode = op_NC
  3826  		}
  3827  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3828  
  3829  	case 85: // load address relative long
  3830  		v := c.regoff(&p.From)
  3831  		if p.From.Sym == nil {
  3832  			if (v & 1) != 0 {
  3833  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3834  			}
  3835  		} else {
  3836  			c.addrilreloc(p.From.Sym, int64(v))
  3837  			v = 0
  3838  		}
  3839  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3840  
  3841  	case 86: // load address
  3842  		d := c.vregoff(&p.From)
  3843  		x := p.From.Index
  3844  		b := p.From.Reg
  3845  		if b == 0 {
  3846  			b = REGSP
  3847  		}
  3848  		switch p.As {
  3849  		case ALA:
  3850  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3851  		case ALAY:
  3852  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3853  		}
  3854  
  3855  	case 87: // execute relative long
  3856  		v := c.vregoff(&p.From)
  3857  		if p.From.Sym == nil {
  3858  			if v&1 != 0 {
  3859  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3860  			}
  3861  		} else {
  3862  			c.addrilreloc(p.From.Sym, v)
  3863  			v = 0
  3864  		}
  3865  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3866  
  3867  	case 88: // store clock
  3868  		var opcode uint32
  3869  		switch p.As {
  3870  		case ASTCK:
  3871  			opcode = op_STCK
  3872  		case ASTCKC:
  3873  			opcode = op_STCKC
  3874  		case ASTCKE:
  3875  			opcode = op_STCKE
  3876  		case ASTCKF:
  3877  			opcode = op_STCKF
  3878  		}
  3879  		v := c.vregoff(&p.To)
  3880  		r := p.To.Reg
  3881  		if r == 0 {
  3882  			r = REGSP
  3883  		}
  3884  		zS(opcode, uint32(r), uint32(v), asm)
  3885  
  3886  	case 89: // compare and branch reg reg
  3887  		var v int32
  3888  		if p.To.Target() != nil {
  3889  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3890  		}
  3891  
  3892  		// Some instructions take a mask as the first argument.
  3893  		r1, r2 := p.From.Reg, p.Reg
  3894  		if p.From.Type == obj.TYPE_CONST {
  3895  			r1, r2 = p.Reg, p.RestArgs[0].Reg
  3896  		}
  3897  		m3 := uint32(c.branchMask(p))
  3898  
  3899  		var opcode uint32
  3900  		switch p.As {
  3901  		case ACRJ:
  3902  			// COMPARE AND BRANCH RELATIVE (32)
  3903  			opcode = op_CRJ
  3904  		case ACGRJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3905  			// COMPARE AND BRANCH RELATIVE (64)
  3906  			opcode = op_CGRJ
  3907  		case ACLRJ:
  3908  			// COMPARE LOGICAL AND BRANCH RELATIVE (32)
  3909  			opcode = op_CLRJ
  3910  		case ACLGRJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3911  			// COMPARE LOGICAL AND BRANCH RELATIVE (64)
  3912  			opcode = op_CLGRJ
  3913  		}
  3914  
  3915  		if int32(int16(v)) != v {
  3916  			// The branch is too far for one instruction so crack
  3917  			// `CMPBEQ x, y, target` into:
  3918  			//
  3919  			//     CMPBNE x, y, 2(PC)
  3920  			//     BR     target
  3921  			//
  3922  			// Note that the instruction sequence MUST NOT clobber
  3923  			// the condition code.
  3924  			m3 ^= 0xe // invert 3-bit mask
  3925  			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(sizeRIE+sizeRIL)/2, 0, 0, m3, 0, asm)
  3926  			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
  3927  		} else {
  3928  			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(v), 0, 0, m3, 0, asm)
  3929  		}
  3930  
  3931  	case 90: // compare and branch reg $constant
  3932  		var v int32
  3933  		if p.To.Target() != nil {
  3934  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3935  		}
  3936  
  3937  		// Some instructions take a mask as the first argument.
  3938  		r1, i2 := p.From.Reg, p.RestArgs[0].Offset
  3939  		if p.From.Type == obj.TYPE_CONST {
  3940  			r1 = p.Reg
  3941  		}
  3942  		m3 := uint32(c.branchMask(p))
  3943  
  3944  		var opcode uint32
  3945  		switch p.As {
  3946  		case ACIJ:
  3947  			opcode = op_CIJ
  3948  		case ACGIJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3949  			opcode = op_CGIJ
  3950  		case ACLIJ:
  3951  			opcode = op_CLIJ
  3952  		case ACLGIJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3953  			opcode = op_CLGIJ
  3954  		}
  3955  		if int32(int16(v)) != v {
  3956  			// The branch is too far for one instruction so crack
  3957  			// `CMPBEQ x, $0, target` into:
  3958  			//
  3959  			//     CMPBNE x, $0, 2(PC)
  3960  			//     BR     target
  3961  			//
  3962  			// Note that the instruction sequence MUST NOT clobber
  3963  			// the condition code.
  3964  			m3 ^= 0xe // invert 3-bit mask
  3965  			zRIE(_c, opcode, uint32(r1), m3, uint32(sizeRIE+sizeRIL)/2, 0, 0, 0, uint32(i2), asm)
  3966  			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
  3967  		} else {
  3968  			zRIE(_c, opcode, uint32(r1), m3, uint32(v), 0, 0, 0, uint32(i2), asm)
  3969  		}
  3970  
  3971  	case 91: // test under mask (immediate)
  3972  		var opcode uint32
  3973  		switch p.As {
  3974  		case ATMHH:
  3975  			opcode = op_TMHH
  3976  		case ATMHL:
  3977  			opcode = op_TMHL
  3978  		case ATMLH:
  3979  			opcode = op_TMLH
  3980  		case ATMLL:
  3981  			opcode = op_TMLL
  3982  		}
  3983  		zRI(opcode, uint32(p.From.Reg), uint32(c.vregoff(&p.To)), asm)
  3984  
  3985  	case 92: // insert program mask
  3986  		zRRE(op_IPM, uint32(p.From.Reg), 0, asm)
  3987  
  3988  	case 93: // GOT lookup
  3989  		v := c.vregoff(&p.To)
  3990  		if v != 0 {
  3991  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  3992  		}
  3993  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3994  		rel := obj.Addrel(c.cursym)
  3995  		rel.Off = int32(c.pc + 2)
  3996  		rel.Siz = 4
  3997  		rel.Sym = p.From.Sym
  3998  		rel.Type = objabi.R_GOTPCREL
  3999  		rel.Add = 2 + int64(rel.Siz)
  4000  
  4001  	case 94: // TLS local exec model
  4002  		zRIL(_b, op_LARL, regtmp(p), (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  4003  		zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
  4004  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  4005  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  4006  		rel := obj.Addrel(c.cursym)
  4007  		rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
  4008  		rel.Siz = 8
  4009  		rel.Sym = p.From.Sym
  4010  		rel.Type = objabi.R_TLS_LE
  4011  		rel.Add = 0
  4012  
  4013  	case 95: // TLS initial exec model
  4014  		// Assembly                   | Relocation symbol    | Done Here?
  4015  		// --------------------------------------------------------------
  4016  		// ear  %r11, %a0             |                      |
  4017  		// sllg %r11, %r11, 32        |                      |
  4018  		// ear  %r11, %a1             |                      |
  4019  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  4020  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  4021  		// la   %r10, 0(%r10, %r11)   |                      |
  4022  		// --------------------------------------------------------------
  4023  
  4024  		// R_390_TLS_IEENT
  4025  		zRIL(_b, op_LARL, regtmp(p), 0, asm)
  4026  		ieent := obj.Addrel(c.cursym)
  4027  		ieent.Off = int32(c.pc + 2)
  4028  		ieent.Siz = 4
  4029  		ieent.Sym = p.From.Sym
  4030  		ieent.Type = objabi.R_TLS_IE
  4031  		ieent.Add = 2 + int64(ieent.Siz)
  4032  
  4033  		// R_390_TLS_LOAD
  4034  		zRXY(op_LGF, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
  4035  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  4036  		// not strictly required but might allow the linker to optimize
  4037  
  4038  	case 96: // clear macro
  4039  		length := c.vregoff(&p.From)
  4040  		offset := c.vregoff(&p.To)
  4041  		reg := p.To.Reg
  4042  		if reg == 0 {
  4043  			reg = REGSP
  4044  		}
  4045  		if length <= 0 {
  4046  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  4047  		}
  4048  		for length > 0 {
  4049  			if offset < 0 || offset >= DISP12 {
  4050  				if offset >= -DISP20/2 && offset < DISP20/2 {
  4051  					zRXY(op_LAY, regtmp(p), uint32(reg), 0, uint32(offset), asm)
  4052  				} else {
  4053  					if reg != int16(regtmp(p)) {
  4054  						zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4055  					}
  4056  					zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4057  				}
  4058  				reg = int16(regtmp(p))
  4059  				offset = 0
  4060  			}
  4061  			size := length
  4062  			if size > 256 {
  4063  				size = 256
  4064  			}
  4065  
  4066  			switch size {
  4067  			case 1:
  4068  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  4069  			case 2:
  4070  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  4071  			case 4:
  4072  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  4073  			case 8:
  4074  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  4075  			default:
  4076  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  4077  			}
  4078  
  4079  			length -= size
  4080  			offset += size
  4081  		}
  4082  
  4083  	case 97: // store multiple
  4084  		rstart := p.From.Reg
  4085  		rend := p.Reg
  4086  		offset := c.regoff(&p.To)
  4087  		reg := p.To.Reg
  4088  		if reg == 0 {
  4089  			reg = REGSP
  4090  		}
  4091  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4092  			if reg != int16(regtmp(p)) {
  4093  				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4094  			}
  4095  			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4096  			reg = int16(regtmp(p))
  4097  			offset = 0
  4098  		}
  4099  		switch p.As {
  4100  		case ASTMY:
  4101  			if offset >= 0 && offset < DISP12 {
  4102  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4103  			} else {
  4104  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4105  			}
  4106  		case ASTMG:
  4107  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4108  		}
  4109  
  4110  	case 98: // load multiple
  4111  		rstart := p.Reg
  4112  		rend := p.To.Reg
  4113  		offset := c.regoff(&p.From)
  4114  		reg := p.From.Reg
  4115  		if reg == 0 {
  4116  			reg = REGSP
  4117  		}
  4118  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4119  			if reg != int16(regtmp(p)) {
  4120  				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4121  			}
  4122  			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4123  			reg = int16(regtmp(p))
  4124  			offset = 0
  4125  		}
  4126  		switch p.As {
  4127  		case ALMY:
  4128  			if offset >= 0 && offset < DISP12 {
  4129  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4130  			} else {
  4131  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4132  			}
  4133  		case ALMG:
  4134  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4135  		}
  4136  
  4137  	case 99: // interlocked load and op
  4138  		if p.To.Index != 0 {
  4139  			c.ctxt.Diag("cannot use indexed address")
  4140  		}
  4141  		offset := c.regoff(&p.To)
  4142  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4143  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  4144  		}
  4145  		var opcode uint32
  4146  		switch p.As {
  4147  		case ALAA:
  4148  			opcode = op_LAA
  4149  		case ALAAG:
  4150  			opcode = op_LAAG
  4151  		case ALAAL:
  4152  			opcode = op_LAAL
  4153  		case ALAALG:
  4154  			opcode = op_LAALG
  4155  		case ALAN:
  4156  			opcode = op_LAN
  4157  		case ALANG:
  4158  			opcode = op_LANG
  4159  		case ALAX:
  4160  			opcode = op_LAX
  4161  		case ALAXG:
  4162  			opcode = op_LAXG
  4163  		case ALAO:
  4164  			opcode = op_LAO
  4165  		case ALAOG:
  4166  			opcode = op_LAOG
  4167  		}
  4168  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  4169  
  4170  	case 100: // VRX STORE
  4171  		op, m3, _ := vop(p.As)
  4172  		v1 := p.From.Reg
  4173  		if p.Reg != 0 {
  4174  			m3 = uint32(c.vregoff(&p.From))
  4175  			v1 = p.Reg
  4176  		}
  4177  		b2 := p.To.Reg
  4178  		if b2 == 0 {
  4179  			b2 = REGSP
  4180  		}
  4181  		d2 := uint32(c.vregoff(&p.To))
  4182  		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  4183  
  4184  	case 101: // VRX LOAD
  4185  		op, m3, _ := vop(p.As)
  4186  		src := &p.From
  4187  		if p.GetFrom3() != nil {
  4188  			m3 = uint32(c.vregoff(&p.From))
  4189  			src = p.GetFrom3()
  4190  		}
  4191  		b2 := src.Reg
  4192  		if b2 == 0 {
  4193  			b2 = REGSP
  4194  		}
  4195  		d2 := uint32(c.vregoff(src))
  4196  		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
  4197  
  4198  	case 102: // VRV SCATTER
  4199  		op, _, _ := vop(p.As)
  4200  		m3 := uint32(c.vregoff(&p.From))
  4201  		b2 := p.To.Reg
  4202  		if b2 == 0 {
  4203  			b2 = REGSP
  4204  		}
  4205  		d2 := uint32(c.vregoff(&p.To))
  4206  		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  4207  
  4208  	case 103: // VRV GATHER
  4209  		op, _, _ := vop(p.As)
  4210  		m3 := uint32(c.vregoff(&p.From))
  4211  		b2 := p.GetFrom3().Reg
  4212  		if b2 == 0 {
  4213  			b2 = REGSP
  4214  		}
  4215  		d2 := uint32(c.vregoff(p.GetFrom3()))
  4216  		zVRV(op, uint32(p.To.Reg), uint32(p.GetFrom3().Index), uint32(b2), d2, m3, asm)
  4217  
  4218  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  4219  		op, m4, _ := vop(p.As)
  4220  		fr := p.Reg
  4221  		if fr == 0 {
  4222  			fr = p.To.Reg
  4223  		}
  4224  		bits := uint32(c.vregoff(&p.From))
  4225  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  4226  
  4227  	case 105: // VRS STORE MULTIPLE
  4228  		op, _, _ := vop(p.As)
  4229  		offset := uint32(c.vregoff(&p.To))
  4230  		reg := p.To.Reg
  4231  		if reg == 0 {
  4232  			reg = REGSP
  4233  		}
  4234  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  4235  
  4236  	case 106: // VRS LOAD MULTIPLE
  4237  		op, _, _ := vop(p.As)
  4238  		offset := uint32(c.vregoff(&p.From))
  4239  		reg := p.From.Reg
  4240  		if reg == 0 {
  4241  			reg = REGSP
  4242  		}
  4243  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  4244  
  4245  	case 107: // VRS STORE WITH LENGTH
  4246  		op, _, _ := vop(p.As)
  4247  		offset := uint32(c.vregoff(&p.To))
  4248  		reg := p.To.Reg
  4249  		if reg == 0 {
  4250  			reg = REGSP
  4251  		}
  4252  		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4253  
  4254  	case 108: // VRS LOAD WITH LENGTH
  4255  		op, _, _ := vop(p.As)
  4256  		offset := uint32(c.vregoff(p.GetFrom3()))
  4257  		reg := p.GetFrom3().Reg
  4258  		if reg == 0 {
  4259  			reg = REGSP
  4260  		}
  4261  		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4262  
  4263  	case 109: // VRI-a
  4264  		op, m3, _ := vop(p.As)
  4265  		i2 := uint32(c.vregoff(&p.From))
  4266  		if p.GetFrom3() != nil {
  4267  			m3 = uint32(c.vregoff(&p.From))
  4268  			i2 = uint32(c.vregoff(p.GetFrom3()))
  4269  		}
  4270  		switch p.As {
  4271  		case AVZERO:
  4272  			i2 = 0
  4273  		case AVONE:
  4274  			i2 = 0xffff
  4275  		}
  4276  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  4277  
  4278  	case 110:
  4279  		op, m4, _ := vop(p.As)
  4280  		i2 := uint32(c.vregoff(&p.From))
  4281  		i3 := uint32(c.vregoff(p.GetFrom3()))
  4282  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  4283  
  4284  	case 111:
  4285  		op, m4, _ := vop(p.As)
  4286  		i2 := uint32(c.vregoff(&p.From))
  4287  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  4288  
  4289  	case 112:
  4290  		op, m5, _ := vop(p.As)
  4291  		i4 := uint32(c.vregoff(&p.From))
  4292  		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), i4, m5, asm)
  4293  
  4294  	case 113:
  4295  		op, m4, _ := vop(p.As)
  4296  		m5 := singleElementMask(p.As)
  4297  		i3 := uint32(c.vregoff(&p.From))
  4298  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4299  
  4300  	case 114: // VRR-a
  4301  		op, m3, m5 := vop(p.As)
  4302  		m4 := singleElementMask(p.As)
  4303  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4304  
  4305  	case 115: // VRR-a COMPARE
  4306  		op, m3, m5 := vop(p.As)
  4307  		m4 := singleElementMask(p.As)
  4308  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4309  
  4310  	case 117: // VRR-b
  4311  		op, m4, m5 := vop(p.As)
  4312  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4313  
  4314  	case 118: // VRR-c
  4315  		op, m4, m6 := vop(p.As)
  4316  		m5 := singleElementMask(p.As)
  4317  		v3 := p.Reg
  4318  		if v3 == 0 {
  4319  			v3 = p.To.Reg
  4320  		}
  4321  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4322  
  4323  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4324  		op, m4, m6 := vop(p.As)
  4325  		m5 := singleElementMask(p.As)
  4326  		v2 := p.Reg
  4327  		if v2 == 0 {
  4328  			v2 = p.To.Reg
  4329  		}
  4330  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4331  
  4332  	case 120: // VRR-d
  4333  		op, m6, _ := vop(p.As)
  4334  		m5 := singleElementMask(p.As)
  4335  		v1 := uint32(p.To.Reg)
  4336  		v2 := uint32(p.From.Reg)
  4337  		v3 := uint32(p.Reg)
  4338  		v4 := uint32(p.GetFrom3().Reg)
  4339  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4340  
  4341  	case 121: // VRR-e
  4342  		op, m6, _ := vop(p.As)
  4343  		m5 := singleElementMask(p.As)
  4344  		v1 := uint32(p.To.Reg)
  4345  		v2 := uint32(p.From.Reg)
  4346  		v3 := uint32(p.Reg)
  4347  		v4 := uint32(p.GetFrom3().Reg)
  4348  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4349  
  4350  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4351  		op, _, _ := vop(p.As)
  4352  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4353  
  4354  	case 123: // VPDI $m4, V2, V3, V1
  4355  		op, _, _ := vop(p.As)
  4356  		m4 := c.regoff(&p.From)
  4357  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), 0, 0, uint32(m4), asm)
  4358  	}
  4359  }
  4360  
  4361  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4362  	c.instoffset = 0
  4363  	if a != nil {
  4364  		c.aclass(a)
  4365  	}
  4366  	return c.instoffset
  4367  }
  4368  
  4369  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4370  	return int32(c.vregoff(a))
  4371  }
  4372  
  4373  // find if the displacement is within 12 bit
  4374  func isU12(displacement int32) bool {
  4375  	return displacement >= 0 && displacement < DISP12
  4376  }
  4377  
  4378  // zopload12 returns the RX op with 12 bit displacement for the given load
  4379  func (c *ctxtz) zopload12(a obj.As) (uint32, bool) {
  4380  	switch a {
  4381  	case AFMOVD:
  4382  		return op_LD, true
  4383  	case AFMOVS:
  4384  		return op_LE, true
  4385  	}
  4386  	return 0, false
  4387  }
  4388  
  4389  // zopload returns the RXY op for the given load
  4390  func (c *ctxtz) zopload(a obj.As) uint32 {
  4391  	switch a {
  4392  	// fixed point load
  4393  	case AMOVD:
  4394  		return op_LG
  4395  	case AMOVW:
  4396  		return op_LGF
  4397  	case AMOVWZ:
  4398  		return op_LLGF
  4399  	case AMOVH:
  4400  		return op_LGH
  4401  	case AMOVHZ:
  4402  		return op_LLGH
  4403  	case AMOVB:
  4404  		return op_LGB
  4405  	case AMOVBZ:
  4406  		return op_LLGC
  4407  
  4408  	// floating point load
  4409  	case AFMOVD:
  4410  		return op_LDY
  4411  	case AFMOVS:
  4412  		return op_LEY
  4413  
  4414  	// byte reversed load
  4415  	case AMOVDBR:
  4416  		return op_LRVG
  4417  	case AMOVWBR:
  4418  		return op_LRV
  4419  	case AMOVHBR:
  4420  		return op_LRVH
  4421  	}
  4422  
  4423  	c.ctxt.Diag("unknown store opcode %v", a)
  4424  	return 0
  4425  }
  4426  
  4427  // zopstore12 returns the RX op with 12 bit displacement for the given store
  4428  func (c *ctxtz) zopstore12(a obj.As) (uint32, bool) {
  4429  	switch a {
  4430  	case AFMOVD:
  4431  		return op_STD, true
  4432  	case AFMOVS:
  4433  		return op_STE, true
  4434  	case AMOVW, AMOVWZ:
  4435  		return op_ST, true
  4436  	case AMOVH, AMOVHZ:
  4437  		return op_STH, true
  4438  	case AMOVB, AMOVBZ:
  4439  		return op_STC, true
  4440  	}
  4441  	return 0, false
  4442  }
  4443  
  4444  // zopstore returns the RXY op for the given store
  4445  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4446  	switch a {
  4447  	// fixed point store
  4448  	case AMOVD:
  4449  		return op_STG
  4450  	case AMOVW, AMOVWZ:
  4451  		return op_STY
  4452  	case AMOVH, AMOVHZ:
  4453  		return op_STHY
  4454  	case AMOVB, AMOVBZ:
  4455  		return op_STCY
  4456  
  4457  	// floating point store
  4458  	case AFMOVD:
  4459  		return op_STDY
  4460  	case AFMOVS:
  4461  		return op_STEY
  4462  
  4463  	// byte reversed store
  4464  	case AMOVDBR:
  4465  		return op_STRVG
  4466  	case AMOVWBR:
  4467  		return op_STRV
  4468  	case AMOVHBR:
  4469  		return op_STRVH
  4470  	}
  4471  
  4472  	c.ctxt.Diag("unknown store opcode %v", a)
  4473  	return 0
  4474  }
  4475  
  4476  // zoprre returns the RRE op for the given a
  4477  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4478  	switch a {
  4479  	case ACMP:
  4480  		return op_CGR
  4481  	case ACMPU:
  4482  		return op_CLGR
  4483  	case AFCMPO: //ordered
  4484  		return op_KDBR
  4485  	case AFCMPU: //unordered
  4486  		return op_CDBR
  4487  	case ACEBR:
  4488  		return op_CEBR
  4489  	}
  4490  	c.ctxt.Diag("unknown rre opcode %v", a)
  4491  	return 0
  4492  }
  4493  
  4494  // zoprr returns the RR op for the given a
  4495  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4496  	switch a {
  4497  	case ACMPW:
  4498  		return op_CR
  4499  	case ACMPWU:
  4500  		return op_CLR
  4501  	}
  4502  	c.ctxt.Diag("unknown rr opcode %v", a)
  4503  	return 0
  4504  }
  4505  
  4506  // zopril returns the RIL op for the given a
  4507  func (c *ctxtz) zopril(a obj.As) uint32 {
  4508  	switch a {
  4509  	case ACMP:
  4510  		return op_CGFI
  4511  	case ACMPU:
  4512  		return op_CLGFI
  4513  	case ACMPW:
  4514  		return op_CFI
  4515  	case ACMPWU:
  4516  		return op_CLFI
  4517  	}
  4518  	c.ctxt.Diag("unknown ril opcode %v", a)
  4519  	return 0
  4520  }
  4521  
  4522  // z instructions sizes
  4523  const (
  4524  	sizeE    = 2
  4525  	sizeI    = 2
  4526  	sizeIE   = 4
  4527  	sizeMII  = 6
  4528  	sizeRI   = 4
  4529  	sizeRI1  = 4
  4530  	sizeRI2  = 4
  4531  	sizeRI3  = 4
  4532  	sizeRIE  = 6
  4533  	sizeRIE1 = 6
  4534  	sizeRIE2 = 6
  4535  	sizeRIE3 = 6
  4536  	sizeRIE4 = 6
  4537  	sizeRIE5 = 6
  4538  	sizeRIE6 = 6
  4539  	sizeRIL  = 6
  4540  	sizeRIL1 = 6
  4541  	sizeRIL2 = 6
  4542  	sizeRIL3 = 6
  4543  	sizeRIS  = 6
  4544  	sizeRR   = 2
  4545  	sizeRRD  = 4
  4546  	sizeRRE  = 4
  4547  	sizeRRF  = 4
  4548  	sizeRRF1 = 4
  4549  	sizeRRF2 = 4
  4550  	sizeRRF3 = 4
  4551  	sizeRRF4 = 4
  4552  	sizeRRF5 = 4
  4553  	sizeRRR  = 2
  4554  	sizeRRS  = 6
  4555  	sizeRS   = 4
  4556  	sizeRS1  = 4
  4557  	sizeRS2  = 4
  4558  	sizeRSI  = 4
  4559  	sizeRSL  = 6
  4560  	sizeRSY  = 6
  4561  	sizeRSY1 = 6
  4562  	sizeRSY2 = 6
  4563  	sizeRX   = 4
  4564  	sizeRX1  = 4
  4565  	sizeRX2  = 4
  4566  	sizeRXE  = 6
  4567  	sizeRXF  = 6
  4568  	sizeRXY  = 6
  4569  	sizeRXY1 = 6
  4570  	sizeRXY2 = 6
  4571  	sizeS    = 4
  4572  	sizeSI   = 4
  4573  	sizeSIL  = 6
  4574  	sizeSIY  = 6
  4575  	sizeSMI  = 6
  4576  	sizeSS   = 6
  4577  	sizeSS1  = 6
  4578  	sizeSS2  = 6
  4579  	sizeSS3  = 6
  4580  	sizeSS4  = 6
  4581  	sizeSS5  = 6
  4582  	sizeSS6  = 6
  4583  	sizeSSE  = 6
  4584  	sizeSSF  = 6
  4585  )
  4586  
  4587  // instruction format variations
  4588  type form int
  4589  
  4590  const (
  4591  	_a form = iota
  4592  	_b
  4593  	_c
  4594  	_d
  4595  	_e
  4596  	_f
  4597  )
  4598  
  4599  func zE(op uint32, asm *[]byte) {
  4600  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4601  }
  4602  
  4603  func zI(op, i1 uint32, asm *[]byte) {
  4604  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4605  }
  4606  
  4607  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4608  	*asm = append(*asm,
  4609  		uint8(op>>8),
  4610  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4611  		uint8(ri2),
  4612  		uint8(ri3>>16),
  4613  		uint8(ri3>>8),
  4614  		uint8(ri3))
  4615  }
  4616  
  4617  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4618  	*asm = append(*asm,
  4619  		uint8(op>>8),
  4620  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4621  		uint8(i2_ri2>>8),
  4622  		uint8(i2_ri2))
  4623  }
  4624  
  4625  // Expected argument values for the instruction formats.
  4626  //
  4627  // Format    a1  a2   a3  a4  a5  a6  a7
  4628  // ------------------------------------
  4629  // a         r1,  0,  i2,  0,  0, m3,  0
  4630  // b         r1, r2, ri4,  0,  0, m3,  0
  4631  // c         r1, m3, ri4,  0,  0,  0, i2
  4632  // d         r1, r3,  i2,  0,  0,  0,  0
  4633  // e         r1, r3, ri2,  0,  0,  0,  0
  4634  // f         r1, r2,   0, i3, i4,  0, i5
  4635  // g         r1, m3,  i2,  0,  0,  0,  0
  4636  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4637  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4638  
  4639  	switch f {
  4640  	default:
  4641  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4642  	case _f:
  4643  		*asm = append(*asm, uint8(i3), uint8(i4))
  4644  	}
  4645  
  4646  	switch f {
  4647  	case _a, _b:
  4648  		*asm = append(*asm, uint8(m3)<<4)
  4649  	default:
  4650  		*asm = append(*asm, uint8(i2_i5))
  4651  	}
  4652  
  4653  	*asm = append(*asm, uint8(op))
  4654  }
  4655  
  4656  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4657  	if f == _a || f == _b {
  4658  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4659  	}
  4660  	*asm = append(*asm,
  4661  		uint8(op>>8),
  4662  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4663  		uint8(i2_ri2>>24),
  4664  		uint8(i2_ri2>>16),
  4665  		uint8(i2_ri2>>8),
  4666  		uint8(i2_ri2))
  4667  }
  4668  
  4669  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4670  	*asm = append(*asm,
  4671  		uint8(op>>8),
  4672  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4673  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4674  		uint8(d4),
  4675  		uint8(i2),
  4676  		uint8(op))
  4677  }
  4678  
  4679  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4680  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4681  }
  4682  
  4683  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4684  	*asm = append(*asm,
  4685  		uint8(op>>8),
  4686  		uint8(op),
  4687  		uint8(r1)<<4,
  4688  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4689  }
  4690  
  4691  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4692  	*asm = append(*asm,
  4693  		uint8(op>>8),
  4694  		uint8(op),
  4695  		0,
  4696  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4697  }
  4698  
  4699  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4700  	*asm = append(*asm,
  4701  		uint8(op>>8),
  4702  		uint8(op),
  4703  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4704  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4705  }
  4706  
  4707  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4708  	*asm = append(*asm,
  4709  		uint8(op>>8),
  4710  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4711  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4712  		uint8(d4),
  4713  		uint8(m3)<<4,
  4714  		uint8(op))
  4715  }
  4716  
  4717  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4718  	*asm = append(*asm,
  4719  		uint8(op>>8),
  4720  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4721  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4722  		uint8(d2))
  4723  }
  4724  
  4725  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4726  	*asm = append(*asm,
  4727  		uint8(op>>8),
  4728  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4729  		uint8(ri2>>8),
  4730  		uint8(ri2))
  4731  }
  4732  
  4733  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4734  	*asm = append(*asm,
  4735  		uint8(op>>8),
  4736  		uint8(l1),
  4737  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4738  		uint8(d2),
  4739  		uint8(op))
  4740  }
  4741  
  4742  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4743  	dl2 := uint16(d2) & 0x0FFF
  4744  	*asm = append(*asm,
  4745  		uint8(op>>8),
  4746  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4747  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4748  		uint8(dl2),
  4749  		uint8(d2>>12),
  4750  		uint8(op))
  4751  }
  4752  
  4753  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4754  	*asm = append(*asm,
  4755  		uint8(op>>8),
  4756  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4757  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4758  		uint8(d2))
  4759  }
  4760  
  4761  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4762  	*asm = append(*asm,
  4763  		uint8(op>>8),
  4764  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4765  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4766  		uint8(d2),
  4767  		uint8(m3)<<4,
  4768  		uint8(op))
  4769  }
  4770  
  4771  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4772  	*asm = append(*asm,
  4773  		uint8(op>>8),
  4774  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4775  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4776  		uint8(d2),
  4777  		uint8(m1)<<4,
  4778  		uint8(op))
  4779  }
  4780  
  4781  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4782  	dl2 := uint16(d2) & 0x0FFF
  4783  	*asm = append(*asm,
  4784  		uint8(op>>8),
  4785  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4786  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4787  		uint8(dl2),
  4788  		uint8(d2>>12),
  4789  		uint8(op))
  4790  }
  4791  
  4792  func zS(op, b2, d2 uint32, asm *[]byte) {
  4793  	*asm = append(*asm,
  4794  		uint8(op>>8),
  4795  		uint8(op),
  4796  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4797  		uint8(d2))
  4798  }
  4799  
  4800  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4801  	*asm = append(*asm,
  4802  		uint8(op>>8),
  4803  		uint8(i2),
  4804  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4805  		uint8(d1))
  4806  }
  4807  
  4808  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4809  	*asm = append(*asm,
  4810  		uint8(op>>8),
  4811  		uint8(op),
  4812  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4813  		uint8(d1),
  4814  		uint8(i2>>8),
  4815  		uint8(i2))
  4816  }
  4817  
  4818  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4819  	dl1 := uint16(d1) & 0x0FFF
  4820  	*asm = append(*asm,
  4821  		uint8(op>>8),
  4822  		uint8(i2),
  4823  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4824  		uint8(dl1),
  4825  		uint8(d1>>12),
  4826  		uint8(op))
  4827  }
  4828  
  4829  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4830  	*asm = append(*asm,
  4831  		uint8(op>>8),
  4832  		uint8(m1)<<4,
  4833  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4834  		uint8(d3),
  4835  		uint8(ri2>>8),
  4836  		uint8(ri2))
  4837  }
  4838  
  4839  // Expected argument values for the instruction formats.
  4840  //
  4841  // Format    a1  a2  a3  a4  a5  a6
  4842  // -------------------------------
  4843  // a         l1,  0, b1, d1, b2, d2
  4844  // b         l1, l2, b1, d1, b2, d2
  4845  // c         l1, i3, b1, d1, b2, d2
  4846  // d         r1, r3, b1, d1, b2, d2
  4847  // e         r1, r3, b2, d2, b4, d4
  4848  // f          0, l2, b1, d1, b2, d2
  4849  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4850  	*asm = append(*asm, uint8(op>>8))
  4851  
  4852  	switch f {
  4853  	case _a:
  4854  		*asm = append(*asm, uint8(l1_r1))
  4855  	case _b, _c, _d, _e:
  4856  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4857  	case _f:
  4858  		*asm = append(*asm, uint8(l2_i3_r3))
  4859  	}
  4860  
  4861  	*asm = append(*asm,
  4862  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4863  		uint8(d1_d2),
  4864  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4865  		uint8(d2_d4))
  4866  }
  4867  
  4868  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4869  	*asm = append(*asm,
  4870  		uint8(op>>8),
  4871  		uint8(op),
  4872  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4873  		uint8(d1),
  4874  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4875  		uint8(d2))
  4876  }
  4877  
  4878  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4879  	*asm = append(*asm,
  4880  		uint8(op>>8),
  4881  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4882  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4883  		uint8(d1),
  4884  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4885  		uint8(d2))
  4886  }
  4887  
  4888  func rxb(va, vb, vc, vd uint32) uint8 {
  4889  	mask := uint8(0)
  4890  	if va >= REG_V16 && va <= REG_V31 {
  4891  		mask |= 0x8
  4892  	}
  4893  	if vb >= REG_V16 && vb <= REG_V31 {
  4894  		mask |= 0x4
  4895  	}
  4896  	if vc >= REG_V16 && vc <= REG_V31 {
  4897  		mask |= 0x2
  4898  	}
  4899  	if vd >= REG_V16 && vd <= REG_V31 {
  4900  		mask |= 0x1
  4901  	}
  4902  	return mask
  4903  }
  4904  
  4905  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4906  	*asm = append(*asm,
  4907  		uint8(op>>8),
  4908  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4909  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4910  		uint8(d2),
  4911  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4912  		uint8(op))
  4913  }
  4914  
  4915  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4916  	*asm = append(*asm,
  4917  		uint8(op>>8),
  4918  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4919  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4920  		uint8(d2),
  4921  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4922  		uint8(op))
  4923  }
  4924  
  4925  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4926  	*asm = append(*asm,
  4927  		uint8(op>>8),
  4928  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4929  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4930  		uint8(d2),
  4931  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4932  		uint8(op))
  4933  }
  4934  
  4935  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4936  	*asm = append(*asm,
  4937  		uint8(op>>8),
  4938  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4939  		0,
  4940  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4941  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4942  		uint8(op))
  4943  }
  4944  
  4945  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4946  	*asm = append(*asm,
  4947  		uint8(op>>8),
  4948  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4949  		uint8(v3)<<4,
  4950  		uint8(m5)<<4,
  4951  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4952  		uint8(op))
  4953  }
  4954  
  4955  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4956  	*asm = append(*asm,
  4957  		uint8(op>>8),
  4958  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4959  		uint8(v3)<<4,
  4960  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4961  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4962  		uint8(op))
  4963  }
  4964  
  4965  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4966  	*asm = append(*asm,
  4967  		uint8(op>>8),
  4968  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4969  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4970  		uint8(m6)<<4,
  4971  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4972  		uint8(op))
  4973  }
  4974  
  4975  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4976  	*asm = append(*asm,
  4977  		uint8(op>>8),
  4978  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4979  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4980  		uint8(m5),
  4981  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4982  		uint8(op))
  4983  }
  4984  
  4985  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4986  	*asm = append(*asm,
  4987  		uint8(op>>8),
  4988  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4989  		uint8(r3)<<4,
  4990  		0,
  4991  		rxb(v1, 0, 0, 0),
  4992  		uint8(op))
  4993  }
  4994  
  4995  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4996  	*asm = append(*asm,
  4997  		uint8(op>>8),
  4998  		uint8(v1)<<4,
  4999  		uint8(i2>>8),
  5000  		uint8(i2),
  5001  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  5002  		uint8(op))
  5003  }
  5004  
  5005  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  5006  	*asm = append(*asm,
  5007  		uint8(op>>8),
  5008  		uint8(v1)<<4,
  5009  		uint8(i2),
  5010  		uint8(i3),
  5011  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  5012  		uint8(op))
  5013  }
  5014  
  5015  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  5016  	*asm = append(*asm,
  5017  		uint8(op>>8),
  5018  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  5019  		uint8(i2>>8),
  5020  		uint8(i2),
  5021  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  5022  		uint8(op))
  5023  }
  5024  
  5025  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  5026  	*asm = append(*asm,
  5027  		uint8(op>>8),
  5028  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5029  		uint8(v3)<<4,
  5030  		uint8(i4),
  5031  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  5032  		uint8(op))
  5033  }
  5034  
  5035  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  5036  	*asm = append(*asm,
  5037  		uint8(op>>8),
  5038  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5039  		uint8(i3>>4),
  5040  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  5041  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  5042  		uint8(op))
  5043  }
  5044  

View as plain text