...

Source file src/github.com/ugorji/go/codec/helper_unsafe.go

Documentation: github.com/ugorji/go/codec

     1  // Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
     2  // Use of this source code is governed by a MIT license found in the LICENSE file.
     3  
     4  //go:build !safe && !codec.safe && !appengine && go1.9
     5  // +build !safe,!codec.safe,!appengine,go1.9
     6  
     7  // minimum of go 1.9 is needed, as that is the minimum for all features and linked functions we need
     8  // - typedmemclr was introduced in go 1.8
     9  // - mapassign_fastXXX was introduced in go 1.9
    10  // etc
    11  
    12  package codec
    13  
    14  import (
    15  	"reflect"
    16  	_ "runtime" // needed for go linkname(s)
    17  	"sync/atomic"
    18  	"time"
    19  	"unsafe"
    20  )
    21  
    22  // This file has unsafe variants of some helper functions.
    23  // MARKER: See helper_unsafe.go for the usage documentation.
    24  
    25  // There are a number of helper_*unsafe*.go files.
    26  //
    27  // - helper_unsafe
    28  //   unsafe variants of dependent functions
    29  // - helper_unsafe_compiler_gc (gc)
    30  //   unsafe variants of dependent functions which cannot be shared with gollvm or gccgo
    31  // - helper_not_unsafe_not_gc (gccgo/gollvm or safe)
    32  //   safe variants of functions in helper_unsafe_compiler_gc
    33  // - helper_not_unsafe (safe)
    34  //   safe variants of functions in helper_unsafe
    35  // - helper_unsafe_compiler_not_gc (gccgo, gollvm)
    36  //   unsafe variants of functions/variables which non-standard compilers need
    37  //
    38  // This way, we can judiciously use build tags to include the right set of files
    39  // for any compiler, and make it run optimally in unsafe mode.
    40  //
    41  // As of March 2021, we cannot differentiate whether running with gccgo or gollvm
    42  // using a build constraint, as both satisfy 'gccgo' build tag.
    43  // Consequently, we must use the lowest common denominator to support both.
    44  
    45  // For reflect.Value code, we decided to do the following:
    46  //    - if we know the kind, we can elide conditional checks for
    47  //      - SetXXX (Int, Uint, String, Bool, etc)
    48  //      - SetLen
    49  //
    50  // We can also optimize
    51  //      - IsNil
    52  
    53  // MARKER: Some functions here will not be hit during code coverage runs due to optimizations, e.g.
    54  //   - rvCopySlice:      called by decode if rvGrowSlice did not set new slice into pointer to orig slice.
    55  //                       however, helper_unsafe sets it, so no need to call rvCopySlice later
    56  //   - rvSlice:          same as above
    57  
    58  const safeMode = false
    59  
    60  // helperUnsafeDirectAssignMapEntry says that we should not copy the pointer in the map
    61  // to another value during mapRange/iteration and mapGet calls, but directly assign it.
    62  //
    63  // The only callers of mapRange/iteration is encode.
    64  // Here, we just walk through the values and encode them
    65  //
    66  // The only caller of mapGet is decode.
    67  // Here, it does a Get if the underlying value is a pointer, and decodes into that.
    68  //
    69  // For both users, we are very careful NOT to modify or keep the pointers around.
    70  // Consequently, it is ok for take advantage of the performance that the map is not modified
    71  // during an iteration and we can just "peek" at the internal value" in the map and use it.
    72  const helperUnsafeDirectAssignMapEntry = true
    73  
    74  // MARKER: keep in sync with GO_ROOT/src/reflect/value.go
    75  const (
    76  	unsafeFlagStickyRO = 1 << 5
    77  	unsafeFlagEmbedRO  = 1 << 6
    78  	unsafeFlagIndir    = 1 << 7
    79  	unsafeFlagAddr     = 1 << 8
    80  	unsafeFlagRO       = unsafeFlagStickyRO | unsafeFlagEmbedRO
    81  	// unsafeFlagKindMask = (1 << 5) - 1 // 5 bits for 27 kinds (up to 31)
    82  	// unsafeTypeKindDirectIface = 1 << 5
    83  )
    84  
    85  // transientSizeMax below is used in TransientAddr as the backing storage.
    86  //
    87  // Must be >= 16 as the maximum size is a complex128 (or string on 64-bit machines).
    88  const transientSizeMax = 64
    89  
    90  // should struct/array support internal strings and slices?
    91  const transientValueHasStringSlice = false
    92  
    93  type unsafeString struct {
    94  	Data unsafe.Pointer
    95  	Len  int
    96  }
    97  
    98  type unsafeSlice struct {
    99  	Data unsafe.Pointer
   100  	Len  int
   101  	Cap  int
   102  }
   103  
   104  type unsafeIntf struct {
   105  	typ unsafe.Pointer
   106  	ptr unsafe.Pointer
   107  }
   108  
   109  type unsafeReflectValue struct {
   110  	unsafeIntf
   111  	flag uintptr
   112  }
   113  
   114  // keep in sync with stdlib runtime/type.go
   115  type unsafeRuntimeType struct {
   116  	size uintptr
   117  	// ... many other fields here
   118  }
   119  
   120  // unsafeZeroAddr and unsafeZeroSlice points to a read-only block of memory
   121  // used for setting a zero value for most types or creating a read-only
   122  // zero value for a given type.
   123  var (
   124  	unsafeZeroAddr  = unsafe.Pointer(&unsafeZeroArr[0])
   125  	unsafeZeroSlice = unsafeSlice{unsafeZeroAddr, 0, 0}
   126  )
   127  
   128  // We use a scratch memory and an unsafeSlice for transient values:
   129  //
   130  // unsafeSlice is used for standalone strings and slices (outside an array or struct).
   131  // scratch memory is used for other kinds, based on contract below:
   132  // - numbers, bool are always transient
   133  // - structs and arrays are transient iff they have no pointers i.e.
   134  //   no string, slice, chan, func, interface, map, etc only numbers and bools.
   135  // - slices and strings are transient (using the unsafeSlice)
   136  
   137  type unsafePerTypeElem struct {
   138  	arr   [transientSizeMax]byte // for bool, number, struct, array kinds
   139  	slice unsafeSlice            // for string and slice kinds
   140  }
   141  
   142  func (x *unsafePerTypeElem) addrFor(k reflect.Kind) unsafe.Pointer {
   143  	if k == reflect.String || k == reflect.Slice {
   144  		x.slice = unsafeSlice{} // memclr
   145  		return unsafe.Pointer(&x.slice)
   146  	}
   147  	x.arr = [transientSizeMax]byte{} // memclr
   148  	return unsafe.Pointer(&x.arr)
   149  }
   150  
   151  type perType struct {
   152  	elems [2]unsafePerTypeElem
   153  }
   154  
   155  type decPerType struct {
   156  	perType
   157  }
   158  
   159  type encPerType struct{}
   160  
   161  // TransientAddrK is used for getting a *transient* value to be decoded into,
   162  // which will right away be used for something else.
   163  //
   164  // See notes in helper.go about "Transient values during decoding"
   165  
   166  func (x *perType) TransientAddrK(t reflect.Type, k reflect.Kind) reflect.Value {
   167  	return rvZeroAddrTransientAnyK(t, k, x.elems[0].addrFor(k))
   168  }
   169  
   170  func (x *perType) TransientAddr2K(t reflect.Type, k reflect.Kind) reflect.Value {
   171  	return rvZeroAddrTransientAnyK(t, k, x.elems[1].addrFor(k))
   172  }
   173  
   174  func (encPerType) AddressableRO(v reflect.Value) reflect.Value {
   175  	return rvAddressableReadonly(v)
   176  }
   177  
   178  // byteAt returns the byte given an index which is guaranteed
   179  // to be within the bounds of the slice i.e. we defensively
   180  // already verified that the index is less than the length of the slice.
   181  func byteAt(b []byte, index uint) byte {
   182  	// return b[index]
   183  	return *(*byte)(unsafe.Pointer(uintptr((*unsafeSlice)(unsafe.Pointer(&b)).Data) + uintptr(index)))
   184  }
   185  
   186  func byteSliceOf(b []byte, start, end uint) []byte {
   187  	s := (*unsafeSlice)(unsafe.Pointer(&b))
   188  	s.Data = unsafe.Pointer(uintptr(s.Data) + uintptr(start))
   189  	s.Len = int(end - start)
   190  	s.Cap -= int(start)
   191  	return b
   192  }
   193  
   194  // func byteSliceWithLen(b []byte, length uint) []byte {
   195  // 	(*unsafeSlice)(unsafe.Pointer(&b)).Len = int(length)
   196  // 	return b
   197  // }
   198  
   199  func setByteAt(b []byte, index uint, val byte) {
   200  	// b[index] = val
   201  	*(*byte)(unsafe.Pointer(uintptr((*unsafeSlice)(unsafe.Pointer(&b)).Data) + uintptr(index))) = val
   202  }
   203  
   204  // stringView returns a view of the []byte as a string.
   205  // In unsafe mode, it doesn't incur allocation and copying caused by conversion.
   206  // In regular safe mode, it is an allocation and copy.
   207  func stringView(v []byte) string {
   208  	return *(*string)(unsafe.Pointer(&v))
   209  }
   210  
   211  // bytesView returns a view of the string as a []byte.
   212  // In unsafe mode, it doesn't incur allocation and copying caused by conversion.
   213  // In regular safe mode, it is an allocation and copy.
   214  func bytesView(v string) (b []byte) {
   215  	sx := (*unsafeString)(unsafe.Pointer(&v))
   216  	bx := (*unsafeSlice)(unsafe.Pointer(&b))
   217  	bx.Data, bx.Len, bx.Cap = sx.Data, sx.Len, sx.Len
   218  	return
   219  }
   220  
   221  func byteSliceSameData(v1 []byte, v2 []byte) bool {
   222  	return (*unsafeSlice)(unsafe.Pointer(&v1)).Data == (*unsafeSlice)(unsafe.Pointer(&v2)).Data
   223  }
   224  
   225  // MARKER: okBytesN functions will copy N bytes into the top slots of the return array.
   226  // These functions expect that the bound check already occured and are are valid.
   227  // copy(...) does a number of checks which are unnecessary in this situation when in bounds.
   228  
   229  func okBytes2(b []byte) [2]byte {
   230  	return *((*[2]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data))
   231  }
   232  
   233  func okBytes3(b []byte) [3]byte {
   234  	return *((*[3]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data))
   235  }
   236  
   237  func okBytes4(b []byte) [4]byte {
   238  	return *((*[4]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data))
   239  }
   240  
   241  func okBytes8(b []byte) [8]byte {
   242  	return *((*[8]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data))
   243  }
   244  
   245  // isNil says whether the value v is nil.
   246  // This applies to references like map/ptr/unsafepointer/chan/func,
   247  // and non-reference values like interface/slice.
   248  func isNil(v interface{}) (rv reflect.Value, isnil bool) {
   249  	var ui = (*unsafeIntf)(unsafe.Pointer(&v))
   250  	isnil = ui.ptr == nil
   251  	if !isnil {
   252  		rv, isnil = unsafeIsNilIntfOrSlice(ui, v)
   253  	}
   254  	return
   255  }
   256  
   257  func unsafeIsNilIntfOrSlice(ui *unsafeIntf, v interface{}) (rv reflect.Value, isnil bool) {
   258  	rv = reflect.ValueOf(v) // reflect.ValueOf is currently not inline'able - so call it directly
   259  	tk := rv.Kind()
   260  	isnil = (tk == reflect.Interface || tk == reflect.Slice) && *(*unsafe.Pointer)(ui.ptr) == nil
   261  	return
   262  }
   263  
   264  // return the pointer for a reference (map/chan/func/pointer/unsafe.Pointer).
   265  // true references (map, func, chan, ptr - NOT slice) may be double-referenced? as flagIndir
   266  //
   267  // Assumes that v is a reference (map/func/chan/ptr/func)
   268  func rvRefPtr(v *unsafeReflectValue) unsafe.Pointer {
   269  	if v.flag&unsafeFlagIndir != 0 {
   270  		return *(*unsafe.Pointer)(v.ptr)
   271  	}
   272  	return v.ptr
   273  }
   274  
   275  func eq4i(i0, i1 interface{}) bool {
   276  	v0 := (*unsafeIntf)(unsafe.Pointer(&i0))
   277  	v1 := (*unsafeIntf)(unsafe.Pointer(&i1))
   278  	return v0.typ == v1.typ && v0.ptr == v1.ptr
   279  }
   280  
   281  func rv4iptr(i interface{}) (v reflect.Value) {
   282  	// Main advantage here is that it is inlined, nothing escapes to heap, i is never nil
   283  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   284  	uv.unsafeIntf = *(*unsafeIntf)(unsafe.Pointer(&i))
   285  	uv.flag = uintptr(rkindPtr)
   286  	return
   287  }
   288  
   289  func rv4istr(i interface{}) (v reflect.Value) {
   290  	// Main advantage here is that it is inlined, nothing escapes to heap, i is never nil
   291  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   292  	uv.unsafeIntf = *(*unsafeIntf)(unsafe.Pointer(&i))
   293  	uv.flag = uintptr(rkindString) | unsafeFlagIndir
   294  	return
   295  }
   296  
   297  func rv2i(rv reflect.Value) (i interface{}) {
   298  	// We tap into implememtation details from
   299  	// the source go stdlib reflect/value.go, and trims the implementation.
   300  	//
   301  	// e.g.
   302  	// - a map/ptr is a reference,        thus flagIndir is not set on it
   303  	// - an int/slice is not a reference, thus flagIndir is set on it
   304  
   305  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   306  	if refBitset.isset(byte(rv.Kind())) && urv.flag&unsafeFlagIndir != 0 {
   307  		urv.ptr = *(*unsafe.Pointer)(urv.ptr)
   308  	}
   309  	return *(*interface{})(unsafe.Pointer(&urv.unsafeIntf))
   310  }
   311  
   312  func rvAddr(rv reflect.Value, ptrType reflect.Type) reflect.Value {
   313  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   314  	urv.flag = (urv.flag & unsafeFlagRO) | uintptr(reflect.Ptr)
   315  	urv.typ = ((*unsafeIntf)(unsafe.Pointer(&ptrType))).ptr
   316  	return rv
   317  }
   318  
   319  func rvIsNil(rv reflect.Value) bool {
   320  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   321  	if urv.flag&unsafeFlagIndir != 0 {
   322  		return *(*unsafe.Pointer)(urv.ptr) == nil
   323  	}
   324  	return urv.ptr == nil
   325  }
   326  
   327  func rvSetSliceLen(rv reflect.Value, length int) {
   328  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   329  	(*unsafeString)(urv.ptr).Len = length
   330  }
   331  
   332  func rvZeroAddrK(t reflect.Type, k reflect.Kind) (rv reflect.Value) {
   333  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   334  	urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
   335  	urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr
   336  	urv.ptr = unsafeNew(urv.typ)
   337  	return
   338  }
   339  
   340  func rvZeroAddrTransientAnyK(t reflect.Type, k reflect.Kind, addr unsafe.Pointer) (rv reflect.Value) {
   341  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   342  	urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
   343  	urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr
   344  	urv.ptr = addr
   345  	return
   346  }
   347  
   348  func rvZeroK(t reflect.Type, k reflect.Kind) (rv reflect.Value) {
   349  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   350  	urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
   351  	if refBitset.isset(byte(k)) {
   352  		urv.flag = uintptr(k)
   353  	} else if rtsize2(urv.typ) <= uintptr(len(unsafeZeroArr)) {
   354  		urv.flag = uintptr(k) | unsafeFlagIndir
   355  		urv.ptr = unsafeZeroAddr
   356  	} else { // meaning struct or array
   357  		urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr
   358  		urv.ptr = unsafeNew(urv.typ)
   359  	}
   360  	return
   361  }
   362  
   363  // rvConvert will convert a value to a different type directly,
   364  // ensuring that they still point to the same underlying value.
   365  func rvConvert(v reflect.Value, t reflect.Type) reflect.Value {
   366  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   367  	uv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
   368  	return v
   369  }
   370  
   371  // rvAddressableReadonly returns an addressable reflect.Value.
   372  //
   373  // Use it within encode calls, when you just want to "read" the underlying ptr
   374  // without modifying the value.
   375  //
   376  // Note that it cannot be used for r/w use, as those non-addressable values
   377  // may have been stored in read-only memory, and trying to write the pointer
   378  // may cause a segfault.
   379  func rvAddressableReadonly(v reflect.Value) reflect.Value {
   380  	// hack to make an addressable value out of a non-addressable one.
   381  	// Assume folks calling it are passing a value that can be addressable, but isn't.
   382  	// This assumes that the flagIndir is already set on it.
   383  	// so we just set the flagAddr bit on the flag (and do not set the flagIndir).
   384  
   385  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   386  	uv.flag = uv.flag | unsafeFlagAddr // | unsafeFlagIndir
   387  
   388  	return v
   389  }
   390  
   391  func rtsize2(rt unsafe.Pointer) uintptr {
   392  	return ((*unsafeRuntimeType)(rt)).size
   393  }
   394  
   395  func rt2id(rt reflect.Type) uintptr {
   396  	return uintptr(((*unsafeIntf)(unsafe.Pointer(&rt))).ptr)
   397  }
   398  
   399  func i2rtid(i interface{}) uintptr {
   400  	return uintptr(((*unsafeIntf)(unsafe.Pointer(&i))).typ)
   401  }
   402  
   403  // --------------------------
   404  
   405  func unsafeCmpZero(ptr unsafe.Pointer, size int) bool {
   406  	// verified that size is always within right range, so no chance of OOM
   407  	var s1 = unsafeString{ptr, size}
   408  	var s2 = unsafeString{unsafeZeroAddr, size}
   409  	if size > len(unsafeZeroArr) {
   410  		arr := make([]byte, size)
   411  		s2.Data = unsafe.Pointer(&arr[0])
   412  	}
   413  	return *(*string)(unsafe.Pointer(&s1)) == *(*string)(unsafe.Pointer(&s2)) // memcmp
   414  }
   415  
   416  func isEmptyValue(v reflect.Value, tinfos *TypeInfos, recursive bool) bool {
   417  	urv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   418  	if urv.flag == 0 {
   419  		return true
   420  	}
   421  	if recursive {
   422  		return isEmptyValueFallbackRecur(urv, v, tinfos)
   423  	}
   424  	return unsafeCmpZero(urv.ptr, int(rtsize2(urv.typ)))
   425  }
   426  
   427  func isEmptyValueFallbackRecur(urv *unsafeReflectValue, v reflect.Value, tinfos *TypeInfos) bool {
   428  	const recursive = true
   429  
   430  	switch v.Kind() {
   431  	case reflect.Invalid:
   432  		return true
   433  	case reflect.String:
   434  		return (*unsafeString)(urv.ptr).Len == 0
   435  	case reflect.Slice:
   436  		return (*unsafeSlice)(urv.ptr).Len == 0
   437  	case reflect.Bool:
   438  		return !*(*bool)(urv.ptr)
   439  	case reflect.Int:
   440  		return *(*int)(urv.ptr) == 0
   441  	case reflect.Int8:
   442  		return *(*int8)(urv.ptr) == 0
   443  	case reflect.Int16:
   444  		return *(*int16)(urv.ptr) == 0
   445  	case reflect.Int32:
   446  		return *(*int32)(urv.ptr) == 0
   447  	case reflect.Int64:
   448  		return *(*int64)(urv.ptr) == 0
   449  	case reflect.Uint:
   450  		return *(*uint)(urv.ptr) == 0
   451  	case reflect.Uint8:
   452  		return *(*uint8)(urv.ptr) == 0
   453  	case reflect.Uint16:
   454  		return *(*uint16)(urv.ptr) == 0
   455  	case reflect.Uint32:
   456  		return *(*uint32)(urv.ptr) == 0
   457  	case reflect.Uint64:
   458  		return *(*uint64)(urv.ptr) == 0
   459  	case reflect.Uintptr:
   460  		return *(*uintptr)(urv.ptr) == 0
   461  	case reflect.Float32:
   462  		return *(*float32)(urv.ptr) == 0
   463  	case reflect.Float64:
   464  		return *(*float64)(urv.ptr) == 0
   465  	case reflect.Complex64:
   466  		return unsafeCmpZero(urv.ptr, 8)
   467  	case reflect.Complex128:
   468  		return unsafeCmpZero(urv.ptr, 16)
   469  	case reflect.Struct:
   470  		// return isEmptyStruct(v, tinfos, recursive)
   471  		if tinfos == nil {
   472  			tinfos = defTypeInfos
   473  		}
   474  		ti := tinfos.find(uintptr(urv.typ))
   475  		if ti == nil {
   476  			ti = tinfos.load(v.Type())
   477  		}
   478  		return unsafeCmpZero(urv.ptr, int(ti.size))
   479  	case reflect.Interface, reflect.Ptr:
   480  		// isnil := urv.ptr == nil // (not sufficient, as a pointer value encodes the type)
   481  		isnil := urv.ptr == nil || *(*unsafe.Pointer)(urv.ptr) == nil
   482  		if recursive && !isnil {
   483  			return isEmptyValue(v.Elem(), tinfos, recursive)
   484  		}
   485  		return isnil
   486  	case reflect.UnsafePointer:
   487  		return urv.ptr == nil || *(*unsafe.Pointer)(urv.ptr) == nil
   488  	case reflect.Chan:
   489  		return urv.ptr == nil || len_chan(rvRefPtr(urv)) == 0
   490  	case reflect.Map:
   491  		return urv.ptr == nil || len_map(rvRefPtr(urv)) == 0
   492  	case reflect.Array:
   493  		return v.Len() == 0 ||
   494  			urv.ptr == nil ||
   495  			urv.typ == nil ||
   496  			rtsize2(urv.typ) == 0 ||
   497  			unsafeCmpZero(urv.ptr, int(rtsize2(urv.typ)))
   498  	}
   499  	return false
   500  }
   501  
   502  // --------------------------
   503  
   504  type structFieldInfos struct {
   505  	c      unsafe.Pointer // source
   506  	s      unsafe.Pointer // sorted
   507  	length int
   508  }
   509  
   510  func (x *structFieldInfos) load(source, sorted []*structFieldInfo) {
   511  	s := (*unsafeSlice)(unsafe.Pointer(&sorted))
   512  	x.s = s.Data
   513  	x.length = s.Len
   514  	s = (*unsafeSlice)(unsafe.Pointer(&source))
   515  	x.c = s.Data
   516  }
   517  
   518  func (x *structFieldInfos) sorted() (v []*structFieldInfo) {
   519  	*(*unsafeSlice)(unsafe.Pointer(&v)) = unsafeSlice{x.s, x.length, x.length}
   520  	// s := (*unsafeSlice)(unsafe.Pointer(&v))
   521  	// s.Data = x.sorted0
   522  	// s.Len = x.length
   523  	// s.Cap = s.Len
   524  	return
   525  }
   526  
   527  func (x *structFieldInfos) source() (v []*structFieldInfo) {
   528  	*(*unsafeSlice)(unsafe.Pointer(&v)) = unsafeSlice{x.c, x.length, x.length}
   529  	return
   530  }
   531  
   532  // atomicXXX is expected to be 2 words (for symmetry with atomic.Value)
   533  //
   534  // Note that we do not atomically load/store length and data pointer separately,
   535  // as this could lead to some races. Instead, we atomically load/store cappedSlice.
   536  //
   537  // Note: with atomic.(Load|Store)Pointer, we MUST work with an unsafe.Pointer directly.
   538  
   539  // ----------------------
   540  type atomicTypeInfoSlice struct {
   541  	v unsafe.Pointer // *[]rtid2ti
   542  }
   543  
   544  func (x *atomicTypeInfoSlice) load() (s []rtid2ti) {
   545  	x2 := atomic.LoadPointer(&x.v)
   546  	if x2 != nil {
   547  		s = *(*[]rtid2ti)(x2)
   548  	}
   549  	return
   550  }
   551  
   552  func (x *atomicTypeInfoSlice) store(p []rtid2ti) {
   553  	atomic.StorePointer(&x.v, unsafe.Pointer(&p))
   554  }
   555  
   556  // MARKER: in safe mode, atomicXXX are atomic.Value, which contains an interface{}.
   557  // This is 2 words.
   558  // consider padding atomicXXX here with a uintptr, so they fit into 2 words also.
   559  
   560  // --------------------------
   561  type atomicRtidFnSlice struct {
   562  	v unsafe.Pointer // *[]codecRtidFn
   563  }
   564  
   565  func (x *atomicRtidFnSlice) load() (s []codecRtidFn) {
   566  	x2 := atomic.LoadPointer(&x.v)
   567  	if x2 != nil {
   568  		s = *(*[]codecRtidFn)(x2)
   569  	}
   570  	return
   571  }
   572  
   573  func (x *atomicRtidFnSlice) store(p []codecRtidFn) {
   574  	atomic.StorePointer(&x.v, unsafe.Pointer(&p))
   575  }
   576  
   577  // --------------------------
   578  type atomicClsErr struct {
   579  	v unsafe.Pointer // *clsErr
   580  }
   581  
   582  func (x *atomicClsErr) load() (e clsErr) {
   583  	x2 := (*clsErr)(atomic.LoadPointer(&x.v))
   584  	if x2 != nil {
   585  		e = *x2
   586  	}
   587  	return
   588  }
   589  
   590  func (x *atomicClsErr) store(p clsErr) {
   591  	atomic.StorePointer(&x.v, unsafe.Pointer(&p))
   592  }
   593  
   594  // --------------------------
   595  
   596  // to create a reflect.Value for each member field of fauxUnion,
   597  // we first create a global fauxUnion, and create reflect.Value
   598  // for them all.
   599  // This way, we have the flags and type in the reflect.Value.
   600  // Then, when a reflect.Value is called, we just copy it,
   601  // update the ptr to the fauxUnion's, and return it.
   602  
   603  type unsafeDecNakedWrapper struct {
   604  	fauxUnion
   605  	ru, ri, rf, rl, rs, rb, rt reflect.Value // mapping to the primitives above
   606  }
   607  
   608  func (n *unsafeDecNakedWrapper) init() {
   609  	n.ru = rv4iptr(&n.u).Elem()
   610  	n.ri = rv4iptr(&n.i).Elem()
   611  	n.rf = rv4iptr(&n.f).Elem()
   612  	n.rl = rv4iptr(&n.l).Elem()
   613  	n.rs = rv4iptr(&n.s).Elem()
   614  	n.rt = rv4iptr(&n.t).Elem()
   615  	n.rb = rv4iptr(&n.b).Elem()
   616  	// n.rr[] = reflect.ValueOf(&n.)
   617  }
   618  
   619  var defUnsafeDecNakedWrapper unsafeDecNakedWrapper
   620  
   621  func init() {
   622  	defUnsafeDecNakedWrapper.init()
   623  }
   624  
   625  func (n *fauxUnion) ru() (v reflect.Value) {
   626  	v = defUnsafeDecNakedWrapper.ru
   627  	((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.u)
   628  	return
   629  }
   630  func (n *fauxUnion) ri() (v reflect.Value) {
   631  	v = defUnsafeDecNakedWrapper.ri
   632  	((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.i)
   633  	return
   634  }
   635  func (n *fauxUnion) rf() (v reflect.Value) {
   636  	v = defUnsafeDecNakedWrapper.rf
   637  	((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.f)
   638  	return
   639  }
   640  func (n *fauxUnion) rl() (v reflect.Value) {
   641  	v = defUnsafeDecNakedWrapper.rl
   642  	((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.l)
   643  	return
   644  }
   645  func (n *fauxUnion) rs() (v reflect.Value) {
   646  	v = defUnsafeDecNakedWrapper.rs
   647  	((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.s)
   648  	return
   649  }
   650  func (n *fauxUnion) rt() (v reflect.Value) {
   651  	v = defUnsafeDecNakedWrapper.rt
   652  	((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.t)
   653  	return
   654  }
   655  func (n *fauxUnion) rb() (v reflect.Value) {
   656  	v = defUnsafeDecNakedWrapper.rb
   657  	((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.b)
   658  	return
   659  }
   660  
   661  // --------------------------
   662  func rvSetBytes(rv reflect.Value, v []byte) {
   663  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   664  	*(*[]byte)(urv.ptr) = v
   665  }
   666  
   667  func rvSetString(rv reflect.Value, v string) {
   668  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   669  	*(*string)(urv.ptr) = v
   670  }
   671  
   672  func rvSetBool(rv reflect.Value, v bool) {
   673  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   674  	*(*bool)(urv.ptr) = v
   675  }
   676  
   677  func rvSetTime(rv reflect.Value, v time.Time) {
   678  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   679  	*(*time.Time)(urv.ptr) = v
   680  }
   681  
   682  func rvSetFloat32(rv reflect.Value, v float32) {
   683  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   684  	*(*float32)(urv.ptr) = v
   685  }
   686  
   687  func rvSetFloat64(rv reflect.Value, v float64) {
   688  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   689  	*(*float64)(urv.ptr) = v
   690  }
   691  
   692  func rvSetComplex64(rv reflect.Value, v complex64) {
   693  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   694  	*(*complex64)(urv.ptr) = v
   695  }
   696  
   697  func rvSetComplex128(rv reflect.Value, v complex128) {
   698  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   699  	*(*complex128)(urv.ptr) = v
   700  }
   701  
   702  func rvSetInt(rv reflect.Value, v int) {
   703  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   704  	*(*int)(urv.ptr) = v
   705  }
   706  
   707  func rvSetInt8(rv reflect.Value, v int8) {
   708  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   709  	*(*int8)(urv.ptr) = v
   710  }
   711  
   712  func rvSetInt16(rv reflect.Value, v int16) {
   713  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   714  	*(*int16)(urv.ptr) = v
   715  }
   716  
   717  func rvSetInt32(rv reflect.Value, v int32) {
   718  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   719  	*(*int32)(urv.ptr) = v
   720  }
   721  
   722  func rvSetInt64(rv reflect.Value, v int64) {
   723  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   724  	*(*int64)(urv.ptr) = v
   725  }
   726  
   727  func rvSetUint(rv reflect.Value, v uint) {
   728  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   729  	*(*uint)(urv.ptr) = v
   730  }
   731  
   732  func rvSetUintptr(rv reflect.Value, v uintptr) {
   733  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   734  	*(*uintptr)(urv.ptr) = v
   735  }
   736  
   737  func rvSetUint8(rv reflect.Value, v uint8) {
   738  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   739  	*(*uint8)(urv.ptr) = v
   740  }
   741  
   742  func rvSetUint16(rv reflect.Value, v uint16) {
   743  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   744  	*(*uint16)(urv.ptr) = v
   745  }
   746  
   747  func rvSetUint32(rv reflect.Value, v uint32) {
   748  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   749  	*(*uint32)(urv.ptr) = v
   750  }
   751  
   752  func rvSetUint64(rv reflect.Value, v uint64) {
   753  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   754  	*(*uint64)(urv.ptr) = v
   755  }
   756  
   757  // ----------------
   758  
   759  // rvSetZero is rv.Set(reflect.Zero(rv.Type()) for all kinds (including reflect.Interface).
   760  func rvSetZero(rv reflect.Value) {
   761  	rvSetDirectZero(rv)
   762  }
   763  
   764  func rvSetIntf(rv reflect.Value, v reflect.Value) {
   765  	rv.Set(v)
   766  }
   767  
   768  // rvSetDirect is rv.Set for all kinds except reflect.Interface.
   769  //
   770  // Callers MUST not pass a value of kind reflect.Interface, as it may cause unexpected segfaults.
   771  func rvSetDirect(rv reflect.Value, v reflect.Value) {
   772  	// MARKER: rv.Set for kind reflect.Interface may do a separate allocation if a scalar value.
   773  	// The book-keeping is onerous, so we just do the simple ones where a memmove is sufficient.
   774  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   775  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   776  	if uv.flag&unsafeFlagIndir == 0 {
   777  		*(*unsafe.Pointer)(urv.ptr) = uv.ptr
   778  	} else if uv.ptr == unsafeZeroAddr {
   779  		if urv.ptr != unsafeZeroAddr {
   780  			typedmemclr(urv.typ, urv.ptr)
   781  		}
   782  	} else {
   783  		typedmemmove(urv.typ, urv.ptr, uv.ptr)
   784  	}
   785  }
   786  
   787  // rvSetDirectZero is rv.Set(reflect.Zero(rv.Type()) for all kinds except reflect.Interface.
   788  func rvSetDirectZero(rv reflect.Value) {
   789  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   790  	if urv.ptr != unsafeZeroAddr {
   791  		typedmemclr(urv.typ, urv.ptr)
   792  	}
   793  }
   794  
   795  // rvMakeSlice updates the slice to point to a new array.
   796  // It copies data from old slice to new slice.
   797  // It returns set=true iff it updates it, else it just returns a new slice pointing to a newly made array.
   798  func rvMakeSlice(rv reflect.Value, ti *typeInfo, xlen, xcap int) (_ reflect.Value, set bool) {
   799  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   800  	ux := (*unsafeSlice)(urv.ptr)
   801  	t := ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr
   802  	s := unsafeSlice{newarray(t, xcap), xlen, xcap}
   803  	if ux.Len > 0 {
   804  		typedslicecopy(t, s, *ux)
   805  	}
   806  	*ux = s
   807  	return rv, true
   808  }
   809  
   810  // rvSlice returns a sub-slice of the slice given new lenth,
   811  // without modifying passed in value.
   812  // It is typically called when we know that SetLen(...) cannot be done.
   813  func rvSlice(rv reflect.Value, length int) reflect.Value {
   814  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   815  	var x []struct{}
   816  	ux := (*unsafeSlice)(unsafe.Pointer(&x))
   817  	*ux = *(*unsafeSlice)(urv.ptr)
   818  	ux.Len = length
   819  	urv.ptr = unsafe.Pointer(ux)
   820  	return rv
   821  }
   822  
   823  // rcGrowSlice updates the slice to point to a new array with the cap incremented, and len set to the new cap value.
   824  // It copies data from old slice to new slice.
   825  // It returns set=true iff it updates it, else it just returns a new slice pointing to a newly made array.
   826  func rvGrowSlice(rv reflect.Value, ti *typeInfo, cap, incr int) (v reflect.Value, newcap int, set bool) {
   827  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   828  	ux := (*unsafeSlice)(urv.ptr)
   829  	t := ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr
   830  	*ux = unsafeGrowslice(t, *ux, cap, incr)
   831  	ux.Len = ux.Cap
   832  	return rv, ux.Cap, true
   833  }
   834  
   835  // ------------
   836  
   837  func rvSliceIndex(rv reflect.Value, i int, ti *typeInfo) (v reflect.Value) {
   838  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   839  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   840  	uv.ptr = unsafe.Pointer(uintptr(((*unsafeSlice)(urv.ptr)).Data) + uintptr(int(ti.elemsize)*i))
   841  	uv.typ = ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr
   842  	uv.flag = uintptr(ti.elemkind) | unsafeFlagIndir | unsafeFlagAddr
   843  	return
   844  }
   845  
   846  func rvSliceZeroCap(t reflect.Type) (v reflect.Value) {
   847  	urv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   848  	urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
   849  	urv.flag = uintptr(reflect.Slice) | unsafeFlagIndir
   850  	urv.ptr = unsafe.Pointer(&unsafeZeroSlice)
   851  	return
   852  }
   853  
   854  func rvLenSlice(rv reflect.Value) int {
   855  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   856  	return (*unsafeSlice)(urv.ptr).Len
   857  }
   858  
   859  func rvCapSlice(rv reflect.Value) int {
   860  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   861  	return (*unsafeSlice)(urv.ptr).Cap
   862  }
   863  
   864  func rvArrayIndex(rv reflect.Value, i int, ti *typeInfo) (v reflect.Value) {
   865  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   866  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   867  	uv.ptr = unsafe.Pointer(uintptr(urv.ptr) + uintptr(int(ti.elemsize)*i))
   868  	uv.typ = ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr
   869  	uv.flag = uintptr(ti.elemkind) | unsafeFlagIndir | unsafeFlagAddr
   870  	return
   871  }
   872  
   873  // if scratch is nil, then return a writable view (assuming canAddr=true)
   874  func rvGetArrayBytes(rv reflect.Value, scratch []byte) (bs []byte) {
   875  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   876  	bx := (*unsafeSlice)(unsafe.Pointer(&bs))
   877  	bx.Data = urv.ptr
   878  	bx.Len = rv.Len()
   879  	bx.Cap = bx.Len
   880  	return
   881  }
   882  
   883  func rvGetArray4Slice(rv reflect.Value) (v reflect.Value) {
   884  	// It is possible that this slice is based off an array with a larger
   885  	// len that we want (where array len == slice cap).
   886  	// However, it is ok to create an array type that is a subset of the full
   887  	// e.g. full slice is based off a *[16]byte, but we can create a *[4]byte
   888  	// off of it. That is ok.
   889  	//
   890  	// Consequently, we use rvLenSlice, not rvCapSlice.
   891  
   892  	t := reflectArrayOf(rvLenSlice(rv), rv.Type().Elem())
   893  	// v = rvZeroAddrK(t, reflect.Array)
   894  
   895  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
   896  	uv.flag = uintptr(reflect.Array) | unsafeFlagIndir | unsafeFlagAddr
   897  	uv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
   898  
   899  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   900  	uv.ptr = *(*unsafe.Pointer)(urv.ptr) // slice rv has a ptr to the slice.
   901  
   902  	return
   903  }
   904  
   905  func rvGetSlice4Array(rv reflect.Value, v interface{}) {
   906  	// v is a pointer to a slice to be populated
   907  	uv := (*unsafeIntf)(unsafe.Pointer(&v))
   908  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   909  
   910  	s := (*unsafeSlice)(uv.ptr)
   911  	s.Data = urv.ptr
   912  	s.Len = rv.Len()
   913  	s.Cap = s.Len
   914  }
   915  
   916  func rvCopySlice(dest, src reflect.Value, elemType reflect.Type) {
   917  	typedslicecopy((*unsafeIntf)(unsafe.Pointer(&elemType)).ptr,
   918  		*(*unsafeSlice)((*unsafeReflectValue)(unsafe.Pointer(&dest)).ptr),
   919  		*(*unsafeSlice)((*unsafeReflectValue)(unsafe.Pointer(&src)).ptr))
   920  }
   921  
   922  // ------------
   923  
   924  func rvGetBool(rv reflect.Value) bool {
   925  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   926  	return *(*bool)(v.ptr)
   927  }
   928  
   929  func rvGetBytes(rv reflect.Value) []byte {
   930  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   931  	return *(*[]byte)(v.ptr)
   932  }
   933  
   934  func rvGetTime(rv reflect.Value) time.Time {
   935  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   936  	return *(*time.Time)(v.ptr)
   937  }
   938  
   939  func rvGetString(rv reflect.Value) string {
   940  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   941  	return *(*string)(v.ptr)
   942  }
   943  
   944  func rvGetFloat64(rv reflect.Value) float64 {
   945  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   946  	return *(*float64)(v.ptr)
   947  }
   948  
   949  func rvGetFloat32(rv reflect.Value) float32 {
   950  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   951  	return *(*float32)(v.ptr)
   952  }
   953  
   954  func rvGetComplex64(rv reflect.Value) complex64 {
   955  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   956  	return *(*complex64)(v.ptr)
   957  }
   958  
   959  func rvGetComplex128(rv reflect.Value) complex128 {
   960  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   961  	return *(*complex128)(v.ptr)
   962  }
   963  
   964  func rvGetInt(rv reflect.Value) int {
   965  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   966  	return *(*int)(v.ptr)
   967  }
   968  
   969  func rvGetInt8(rv reflect.Value) int8 {
   970  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   971  	return *(*int8)(v.ptr)
   972  }
   973  
   974  func rvGetInt16(rv reflect.Value) int16 {
   975  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   976  	return *(*int16)(v.ptr)
   977  }
   978  
   979  func rvGetInt32(rv reflect.Value) int32 {
   980  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   981  	return *(*int32)(v.ptr)
   982  }
   983  
   984  func rvGetInt64(rv reflect.Value) int64 {
   985  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   986  	return *(*int64)(v.ptr)
   987  }
   988  
   989  func rvGetUint(rv reflect.Value) uint {
   990  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   991  	return *(*uint)(v.ptr)
   992  }
   993  
   994  func rvGetUint8(rv reflect.Value) uint8 {
   995  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
   996  	return *(*uint8)(v.ptr)
   997  }
   998  
   999  func rvGetUint16(rv reflect.Value) uint16 {
  1000  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
  1001  	return *(*uint16)(v.ptr)
  1002  }
  1003  
  1004  func rvGetUint32(rv reflect.Value) uint32 {
  1005  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
  1006  	return *(*uint32)(v.ptr)
  1007  }
  1008  
  1009  func rvGetUint64(rv reflect.Value) uint64 {
  1010  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
  1011  	return *(*uint64)(v.ptr)
  1012  }
  1013  
  1014  func rvGetUintptr(rv reflect.Value) uintptr {
  1015  	v := (*unsafeReflectValue)(unsafe.Pointer(&rv))
  1016  	return *(*uintptr)(v.ptr)
  1017  }
  1018  
  1019  func rvLenMap(rv reflect.Value) int {
  1020  	// maplen is not inlined, because as of go1.16beta, go:linkname's are not inlined.
  1021  	// thus, faster to call rv.Len() directly.
  1022  	//
  1023  	// MARKER: review after https://github.com/golang/go/issues/20019 fixed.
  1024  
  1025  	// return rv.Len()
  1026  
  1027  	return len_map(rvRefPtr((*unsafeReflectValue)(unsafe.Pointer(&rv))))
  1028  }
  1029  
  1030  // copy is an intrinsic, which may use asm if length is small,
  1031  // or make a runtime call to runtime.memmove if length is large.
  1032  // Performance suffers when you always call runtime.memmove function.
  1033  //
  1034  // Consequently, there's no value in a copybytes call - just call copy() directly
  1035  
  1036  // func copybytes(to, from []byte) (n int) {
  1037  // 	n = (*unsafeSlice)(unsafe.Pointer(&from)).Len
  1038  // 	memmove(
  1039  // 		(*unsafeSlice)(unsafe.Pointer(&to)).Data,
  1040  // 		(*unsafeSlice)(unsafe.Pointer(&from)).Data,
  1041  // 		uintptr(n),
  1042  // 	)
  1043  // 	return
  1044  // }
  1045  
  1046  // func copybytestr(to []byte, from string) (n int) {
  1047  // 	n = (*unsafeSlice)(unsafe.Pointer(&from)).Len
  1048  // 	memmove(
  1049  // 		(*unsafeSlice)(unsafe.Pointer(&to)).Data,
  1050  // 		(*unsafeSlice)(unsafe.Pointer(&from)).Data,
  1051  // 		uintptr(n),
  1052  // 	)
  1053  // 	return
  1054  // }
  1055  
  1056  // Note: it is hard to find len(...) of an array type,
  1057  // as that is a field in the arrayType representing the array, and hard to introspect.
  1058  //
  1059  // func rvLenArray(rv reflect.Value) int {	return rv.Len() }
  1060  
  1061  // ------------ map range and map indexing ----------
  1062  
  1063  // regular calls to map via reflection: MapKeys, MapIndex, MapRange/MapIter etc
  1064  // will always allocate for each map key or value.
  1065  //
  1066  // It is more performant to provide a value that the map entry is set into,
  1067  // and that elides the allocation.
  1068  
  1069  // go 1.4+ has runtime/hashmap.go or runtime/map.go which has a
  1070  // hIter struct with the first 2 values being key and value
  1071  // of the current iteration.
  1072  //
  1073  // This *hIter is passed to mapiterinit, mapiternext, mapiterkey, mapiterelem.
  1074  // We bypass the reflect wrapper functions and just use the *hIter directly.
  1075  //
  1076  // Though *hIter has many fields, we only care about the first 2.
  1077  //
  1078  // We directly embed this in unsafeMapIter below
  1079  //
  1080  // hiter is typically about 12 words, but we just fill up unsafeMapIter to 32 words,
  1081  // so it fills multiple cache lines and can give some extra space to accomodate small growth.
  1082  
  1083  type unsafeMapIter struct {
  1084  	mtyp, mptr unsafe.Pointer
  1085  	k, v       reflect.Value
  1086  	kisref     bool
  1087  	visref     bool
  1088  	mapvalues  bool
  1089  	done       bool
  1090  	started    bool
  1091  	_          [3]byte // padding
  1092  	it         struct {
  1093  		key   unsafe.Pointer
  1094  		value unsafe.Pointer
  1095  		_     [20]uintptr // padding for other fields (to make up 32 words for enclosing struct)
  1096  	}
  1097  }
  1098  
  1099  func (t *unsafeMapIter) Next() (r bool) {
  1100  	if t == nil || t.done {
  1101  		return
  1102  	}
  1103  	if t.started {
  1104  		mapiternext((unsafe.Pointer)(&t.it))
  1105  	} else {
  1106  		t.started = true
  1107  	}
  1108  
  1109  	t.done = t.it.key == nil
  1110  	if t.done {
  1111  		return
  1112  	}
  1113  
  1114  	if helperUnsafeDirectAssignMapEntry || t.kisref {
  1115  		(*unsafeReflectValue)(unsafe.Pointer(&t.k)).ptr = t.it.key
  1116  	} else {
  1117  		k := (*unsafeReflectValue)(unsafe.Pointer(&t.k))
  1118  		typedmemmove(k.typ, k.ptr, t.it.key)
  1119  	}
  1120  
  1121  	if t.mapvalues {
  1122  		if helperUnsafeDirectAssignMapEntry || t.visref {
  1123  			(*unsafeReflectValue)(unsafe.Pointer(&t.v)).ptr = t.it.value
  1124  		} else {
  1125  			v := (*unsafeReflectValue)(unsafe.Pointer(&t.v))
  1126  			typedmemmove(v.typ, v.ptr, t.it.value)
  1127  		}
  1128  	}
  1129  
  1130  	return true
  1131  }
  1132  
  1133  func (t *unsafeMapIter) Key() (r reflect.Value) {
  1134  	return t.k
  1135  }
  1136  
  1137  func (t *unsafeMapIter) Value() (r reflect.Value) {
  1138  	return t.v
  1139  }
  1140  
  1141  func (t *unsafeMapIter) Done() {}
  1142  
  1143  type mapIter struct {
  1144  	unsafeMapIter
  1145  }
  1146  
  1147  func mapRange(t *mapIter, m, k, v reflect.Value, mapvalues bool) {
  1148  	if rvIsNil(m) {
  1149  		t.done = true
  1150  		return
  1151  	}
  1152  	t.done = false
  1153  	t.started = false
  1154  	t.mapvalues = mapvalues
  1155  
  1156  	// var urv *unsafeReflectValue
  1157  
  1158  	urv := (*unsafeReflectValue)(unsafe.Pointer(&m))
  1159  	t.mtyp = urv.typ
  1160  	t.mptr = rvRefPtr(urv)
  1161  
  1162  	// t.it = (*unsafeMapHashIter)(reflect_mapiterinit(t.mtyp, t.mptr))
  1163  	mapiterinit(t.mtyp, t.mptr, unsafe.Pointer(&t.it))
  1164  
  1165  	t.k = k
  1166  	t.kisref = refBitset.isset(byte(k.Kind()))
  1167  
  1168  	if mapvalues {
  1169  		t.v = v
  1170  		t.visref = refBitset.isset(byte(v.Kind()))
  1171  	} else {
  1172  		t.v = reflect.Value{}
  1173  	}
  1174  }
  1175  
  1176  // unsafeMapKVPtr returns the pointer if flagIndir, else it returns a pointer to the pointer.
  1177  // It is needed as maps always keep a reference to the underlying value.
  1178  func unsafeMapKVPtr(urv *unsafeReflectValue) unsafe.Pointer {
  1179  	if urv.flag&unsafeFlagIndir == 0 {
  1180  		return unsafe.Pointer(&urv.ptr)
  1181  	}
  1182  	return urv.ptr
  1183  }
  1184  
  1185  // func mapDelete(m, k reflect.Value) {
  1186  // 	var urv = (*unsafeReflectValue)(unsafe.Pointer(&k))
  1187  // 	var kptr = unsafeMapKVPtr(urv)
  1188  // 	urv = (*unsafeReflectValue)(unsafe.Pointer(&m))
  1189  // 	mapdelete(urv.typ, rv2ptr(urv), kptr)
  1190  // }
  1191  
  1192  // return an addressable reflect value that can be used in mapRange and mapGet operations.
  1193  //
  1194  // all calls to mapGet or mapRange will call here to get an addressable reflect.Value.
  1195  func mapAddrLoopvarRV(t reflect.Type, k reflect.Kind) (rv reflect.Value) {
  1196  	// return rvZeroAddrK(t, k)
  1197  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
  1198  	urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr
  1199  	urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr
  1200  	// since we always set the ptr when helperUnsafeDirectAssignMapEntry=true,
  1201  	// we should only allocate if it is not true
  1202  	if !helperUnsafeDirectAssignMapEntry {
  1203  		urv.ptr = unsafeNew(urv.typ)
  1204  	}
  1205  	return
  1206  }
  1207  
  1208  // ---------- ENCODER optimized ---------------
  1209  
  1210  func (e *Encoder) jsondriver() *jsonEncDriver {
  1211  	return (*jsonEncDriver)((*unsafeIntf)(unsafe.Pointer(&e.e)).ptr)
  1212  }
  1213  
  1214  func (d *Decoder) zerocopystate() bool {
  1215  	return d.decByteState == decByteStateZerocopy && d.h.ZeroCopy
  1216  }
  1217  
  1218  func (d *Decoder) stringZC(v []byte) (s string) {
  1219  	// MARKER: inline zerocopystate directly so genHelper forwarding function fits within inlining cost
  1220  
  1221  	// if d.zerocopystate() {
  1222  	if d.decByteState == decByteStateZerocopy && d.h.ZeroCopy {
  1223  		return stringView(v)
  1224  	}
  1225  	return d.string(v)
  1226  }
  1227  
  1228  func (d *Decoder) mapKeyString(callFnRvk *bool, kstrbs, kstr2bs *[]byte) string {
  1229  	if !d.zerocopystate() {
  1230  		*callFnRvk = true
  1231  		if d.decByteState == decByteStateReuseBuf {
  1232  			*kstrbs = append((*kstrbs)[:0], (*kstr2bs)...)
  1233  			*kstr2bs = *kstrbs
  1234  		}
  1235  	}
  1236  	return stringView(*kstr2bs)
  1237  }
  1238  
  1239  // ---------- DECODER optimized ---------------
  1240  
  1241  func (d *Decoder) jsondriver() *jsonDecDriver {
  1242  	return (*jsonDecDriver)((*unsafeIntf)(unsafe.Pointer(&d.d)).ptr)
  1243  }
  1244  
  1245  // ---------- structFieldInfo optimized ---------------
  1246  
  1247  func (n *structFieldInfoPathNode) rvField(v reflect.Value) (rv reflect.Value) {
  1248  	// we already know this is exported, and maybe embedded (based on what si says)
  1249  	uv := (*unsafeReflectValue)(unsafe.Pointer(&v))
  1250  	urv := (*unsafeReflectValue)(unsafe.Pointer(&rv))
  1251  	// clear flagEmbedRO if necessary, and inherit permission bits from v
  1252  	urv.flag = uv.flag&(unsafeFlagStickyRO|unsafeFlagIndir|unsafeFlagAddr) | uintptr(n.kind)
  1253  	urv.typ = ((*unsafeIntf)(unsafe.Pointer(&n.typ))).ptr
  1254  	urv.ptr = unsafe.Pointer(uintptr(uv.ptr) + uintptr(n.offset))
  1255  	return
  1256  }
  1257  
  1258  // runtime chan and map are designed such that the first field is the count.
  1259  // len builtin uses this to get the length of a chan/map easily.
  1260  // leverage this knowledge, since maplen and chanlen functions from runtime package
  1261  // are go:linkname'd here, and thus not inlined as of go1.16beta
  1262  
  1263  func len_map_chan(m unsafe.Pointer) int {
  1264  	if m == nil {
  1265  		return 0
  1266  	}
  1267  	return *((*int)(m))
  1268  }
  1269  
  1270  func len_map(m unsafe.Pointer) int {
  1271  	// return maplen(m)
  1272  	return len_map_chan(m)
  1273  }
  1274  func len_chan(m unsafe.Pointer) int {
  1275  	// return chanlen(m)
  1276  	return len_map_chan(m)
  1277  }
  1278  
  1279  func unsafeNew(typ unsafe.Pointer) unsafe.Pointer {
  1280  	return mallocgc(rtsize2(typ), typ, true)
  1281  }
  1282  
  1283  // ---------- go linknames (LINKED to runtime/reflect) ---------------
  1284  
  1285  // MARKER: always check that these linknames match subsequent versions of go
  1286  //
  1287  // Note that as of Jan 2021 (go 1.16 release), go:linkname(s) are not inlined
  1288  // outside of the standard library use (e.g. within sync, reflect, etc).
  1289  // If these link'ed functions were normally inlined, calling them here would
  1290  // not necessarily give a performance boost, due to function overhead.
  1291  //
  1292  // However, it seems most of these functions are not inlined anyway,
  1293  // as only maplen, chanlen and mapaccess are small enough to get inlined.
  1294  //
  1295  //   We checked this by going into $GOROOT/src/runtime and running:
  1296  //   $ go build -tags codec.notfastpath -gcflags "-m=2"
  1297  
  1298  // reflect.{unsafe_New, unsafe_NewArray} are not supported in gollvm,
  1299  // failing with "error: undefined reference" error.
  1300  // however, runtime.{mallocgc, newarray} are supported, so use that instead.
  1301  
  1302  //go:linkname memmove runtime.memmove
  1303  //go:noescape
  1304  func memmove(to, from unsafe.Pointer, n uintptr)
  1305  
  1306  //go:linkname mallocgc runtime.mallocgc
  1307  //go:noescape
  1308  func mallocgc(size uintptr, typ unsafe.Pointer, needzero bool) unsafe.Pointer
  1309  
  1310  //go:linkname newarray runtime.newarray
  1311  //go:noescape
  1312  func newarray(typ unsafe.Pointer, n int) unsafe.Pointer
  1313  
  1314  //go:linkname mapiterinit runtime.mapiterinit
  1315  //go:noescape
  1316  func mapiterinit(typ unsafe.Pointer, m unsafe.Pointer, it unsafe.Pointer)
  1317  
  1318  //go:linkname mapiternext runtime.mapiternext
  1319  //go:noescape
  1320  func mapiternext(it unsafe.Pointer) (key unsafe.Pointer)
  1321  
  1322  //go:linkname mapdelete runtime.mapdelete
  1323  //go:noescape
  1324  func mapdelete(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer)
  1325  
  1326  //go:linkname mapassign runtime.mapassign
  1327  //go:noescape
  1328  func mapassign(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer) unsafe.Pointer
  1329  
  1330  //go:linkname mapaccess2 runtime.mapaccess2
  1331  //go:noescape
  1332  func mapaccess2(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer, ok bool)
  1333  
  1334  // reflect.typed{memmove, memclr, slicecopy} will handle checking if the type has pointers or not,
  1335  // and if a writeBarrier is needed, before delegating to the right method in the runtime.
  1336  //
  1337  // This is why we use the functions in reflect, and not the ones in runtime directly.
  1338  // Calling runtime.XXX here will lead to memory issues.
  1339  
  1340  //go:linkname typedslicecopy reflect.typedslicecopy
  1341  //go:noescape
  1342  func typedslicecopy(elemType unsafe.Pointer, dst, src unsafeSlice) int
  1343  
  1344  //go:linkname typedmemmove reflect.typedmemmove
  1345  //go:noescape
  1346  func typedmemmove(typ unsafe.Pointer, dst, src unsafe.Pointer)
  1347  
  1348  //go:linkname typedmemclr reflect.typedmemclr
  1349  //go:noescape
  1350  func typedmemclr(typ unsafe.Pointer, dst unsafe.Pointer)
  1351  

View as plain text