...

Source file src/go/types/unify.go

Documentation: go/types

     1  // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
     2  
     3  // Copyright 2020 The Go Authors. All rights reserved.
     4  // Use of this source code is governed by a BSD-style
     5  // license that can be found in the LICENSE file.
     6  
     7  // This file implements type unification.
     8  //
     9  // Type unification attempts to make two types x and y structurally
    10  // equivalent by determining the types for a given list of (bound)
    11  // type parameters which may occur within x and y. If x and y are
    12  // structurally different (say []T vs chan T), or conflicting
    13  // types are determined for type parameters, unification fails.
    14  // If unification succeeds, as a side-effect, the types of the
    15  // bound type parameters may be determined.
    16  //
    17  // Unification typically requires multiple calls u.unify(x, y) to
    18  // a given unifier u, with various combinations of types x and y.
    19  // In each call, additional type parameter types may be determined
    20  // as a side effect and recorded in u.
    21  // If a call fails (returns false), unification fails.
    22  //
    23  // In the unification context, structural equivalence of two types
    24  // ignores the difference between a defined type and its underlying
    25  // type if one type is a defined type and the other one is not.
    26  // It also ignores the difference between an (external, unbound)
    27  // type parameter and its core type.
    28  // If two types are not structurally equivalent, they cannot be Go
    29  // identical types. On the other hand, if they are structurally
    30  // equivalent, they may be Go identical or at least assignable, or
    31  // they may be in the type set of a constraint.
    32  // Whether they indeed are identical or assignable is determined
    33  // upon instantiation and function argument passing.
    34  
    35  package types
    36  
    37  import (
    38  	"bytes"
    39  	"fmt"
    40  	"sort"
    41  	"strings"
    42  )
    43  
    44  const (
    45  	// Upper limit for recursion depth. Used to catch infinite recursions
    46  	// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
    47  	unificationDepthLimit = 50
    48  
    49  	// Whether to panic when unificationDepthLimit is reached.
    50  	// If disabled, a recursion depth overflow results in a (quiet)
    51  	// unification failure.
    52  	panicAtUnificationDepthLimit = true
    53  
    54  	// If enableCoreTypeUnification is set, unification will consider
    55  	// the core types, if any, of non-local (unbound) type parameters.
    56  	enableCoreTypeUnification = true
    57  
    58  	// If traceInference is set, unification will print a trace of its operation.
    59  	// Interpretation of trace:
    60  	//   x ≡ y    attempt to unify types x and y
    61  	//   p ➞ y    type parameter p is set to type y (p is inferred to be y)
    62  	//   p ⇄ q    type parameters p and q match (p is inferred to be q and vice versa)
    63  	//   x ≢ y    types x and y cannot be unified
    64  	//   [p, q, ...] ➞ [x, y, ...]    mapping from type parameters to types
    65  	traceInference = false
    66  )
    67  
    68  // A unifier maintains a list of type parameters and
    69  // corresponding types inferred for each type parameter.
    70  // A unifier is created by calling newUnifier.
    71  type unifier struct {
    72  	// handles maps each type parameter to its inferred type through
    73  	// an indirection *Type called (inferred type) "handle".
    74  	// Initially, each type parameter has its own, separate handle,
    75  	// with a nil (i.e., not yet inferred) type.
    76  	// After a type parameter P is unified with a type parameter Q,
    77  	// P and Q share the same handle (and thus type). This ensures
    78  	// that inferring the type for a given type parameter P will
    79  	// automatically infer the same type for all other parameters
    80  	// unified (joined) with P.
    81  	handles                  map[*TypeParam]*Type
    82  	depth                    int  // recursion depth during unification
    83  	enableInterfaceInference bool // use shared methods for better inference
    84  }
    85  
    86  // newUnifier returns a new unifier initialized with the given type parameter
    87  // and corresponding type argument lists. The type argument list may be shorter
    88  // than the type parameter list, and it may contain nil types. Matching type
    89  // parameters and arguments must have the same index.
    90  func newUnifier(tparams []*TypeParam, targs []Type, enableInterfaceInference bool) *unifier {
    91  	assert(len(tparams) >= len(targs))
    92  	handles := make(map[*TypeParam]*Type, len(tparams))
    93  	// Allocate all handles up-front: in a correct program, all type parameters
    94  	// must be resolved and thus eventually will get a handle.
    95  	// Also, sharing of handles caused by unified type parameters is rare and
    96  	// so it's ok to not optimize for that case (and delay handle allocation).
    97  	for i, x := range tparams {
    98  		var t Type
    99  		if i < len(targs) {
   100  			t = targs[i]
   101  		}
   102  		handles[x] = &t
   103  	}
   104  	return &unifier{handles, 0, enableInterfaceInference}
   105  }
   106  
   107  // unifyMode controls the behavior of the unifier.
   108  type unifyMode uint
   109  
   110  const (
   111  	// If assign is set, we are unifying types involved in an assignment:
   112  	// they may match inexactly at the top, but element types must match
   113  	// exactly.
   114  	assign unifyMode = 1 << iota
   115  
   116  	// If exact is set, types unify if they are identical (or can be
   117  	// made identical with suitable arguments for type parameters).
   118  	// Otherwise, a named type and a type literal unify if their
   119  	// underlying types unify, channel directions are ignored, and
   120  	// if there is an interface, the other type must implement the
   121  	// interface.
   122  	exact
   123  )
   124  
   125  func (m unifyMode) String() string {
   126  	switch m {
   127  	case 0:
   128  		return "inexact"
   129  	case assign:
   130  		return "assign"
   131  	case exact:
   132  		return "exact"
   133  	case assign | exact:
   134  		return "assign, exact"
   135  	}
   136  	return fmt.Sprintf("mode %d", m)
   137  }
   138  
   139  // unify attempts to unify x and y and reports whether it succeeded.
   140  // As a side-effect, types may be inferred for type parameters.
   141  // The mode parameter controls how types are compared.
   142  func (u *unifier) unify(x, y Type, mode unifyMode) bool {
   143  	return u.nify(x, y, mode, nil)
   144  }
   145  
   146  func (u *unifier) tracef(format string, args ...interface{}) {
   147  	fmt.Println(strings.Repeat(".  ", u.depth) + sprintf(nil, nil, true, format, args...))
   148  }
   149  
   150  // String returns a string representation of the current mapping
   151  // from type parameters to types.
   152  func (u *unifier) String() string {
   153  	// sort type parameters for reproducible strings
   154  	tparams := make(typeParamsById, len(u.handles))
   155  	i := 0
   156  	for tpar := range u.handles {
   157  		tparams[i] = tpar
   158  		i++
   159  	}
   160  	sort.Sort(tparams)
   161  
   162  	var buf bytes.Buffer
   163  	w := newTypeWriter(&buf, nil)
   164  	w.byte('[')
   165  	for i, x := range tparams {
   166  		if i > 0 {
   167  			w.string(", ")
   168  		}
   169  		w.typ(x)
   170  		w.string(": ")
   171  		w.typ(u.at(x))
   172  	}
   173  	w.byte(']')
   174  	return buf.String()
   175  }
   176  
   177  type typeParamsById []*TypeParam
   178  
   179  func (s typeParamsById) Len() int           { return len(s) }
   180  func (s typeParamsById) Less(i, j int) bool { return s[i].id < s[j].id }
   181  func (s typeParamsById) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
   182  
   183  // join unifies the given type parameters x and y.
   184  // If both type parameters already have a type associated with them
   185  // and they are not joined, join fails and returns false.
   186  func (u *unifier) join(x, y *TypeParam) bool {
   187  	if traceInference {
   188  		u.tracef("%s ⇄ %s", x, y)
   189  	}
   190  	switch hx, hy := u.handles[x], u.handles[y]; {
   191  	case hx == hy:
   192  		// Both type parameters already share the same handle. Nothing to do.
   193  	case *hx != nil && *hy != nil:
   194  		// Both type parameters have (possibly different) inferred types. Cannot join.
   195  		return false
   196  	case *hx != nil:
   197  		// Only type parameter x has an inferred type. Use handle of x.
   198  		u.setHandle(y, hx)
   199  	// This case is treated like the default case.
   200  	// case *hy != nil:
   201  	// 	// Only type parameter y has an inferred type. Use handle of y.
   202  	//	u.setHandle(x, hy)
   203  	default:
   204  		// Neither type parameter has an inferred type. Use handle of y.
   205  		u.setHandle(x, hy)
   206  	}
   207  	return true
   208  }
   209  
   210  // asTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u.
   211  // Otherwise, the result is nil.
   212  func (u *unifier) asTypeParam(x Type) *TypeParam {
   213  	if x, _ := x.(*TypeParam); x != nil {
   214  		if _, found := u.handles[x]; found {
   215  			return x
   216  		}
   217  	}
   218  	return nil
   219  }
   220  
   221  // setHandle sets the handle for type parameter x
   222  // (and all its joined type parameters) to h.
   223  func (u *unifier) setHandle(x *TypeParam, h *Type) {
   224  	hx := u.handles[x]
   225  	assert(hx != nil)
   226  	for y, hy := range u.handles {
   227  		if hy == hx {
   228  			u.handles[y] = h
   229  		}
   230  	}
   231  }
   232  
   233  // at returns the (possibly nil) type for type parameter x.
   234  func (u *unifier) at(x *TypeParam) Type {
   235  	return *u.handles[x]
   236  }
   237  
   238  // set sets the type t for type parameter x;
   239  // t must not be nil.
   240  func (u *unifier) set(x *TypeParam, t Type) {
   241  	assert(t != nil)
   242  	if traceInference {
   243  		u.tracef("%s ➞ %s", x, t)
   244  	}
   245  	*u.handles[x] = t
   246  }
   247  
   248  // unknowns returns the number of type parameters for which no type has been set yet.
   249  func (u *unifier) unknowns() int {
   250  	n := 0
   251  	for _, h := range u.handles {
   252  		if *h == nil {
   253  			n++
   254  		}
   255  	}
   256  	return n
   257  }
   258  
   259  // inferred returns the list of inferred types for the given type parameter list.
   260  // The result is never nil and has the same length as tparams; result types that
   261  // could not be inferred are nil. Corresponding type parameters and result types
   262  // have identical indices.
   263  func (u *unifier) inferred(tparams []*TypeParam) []Type {
   264  	list := make([]Type, len(tparams))
   265  	for i, x := range tparams {
   266  		list[i] = u.at(x)
   267  	}
   268  	return list
   269  }
   270  
   271  // asInterface returns the underlying type of x as an interface if
   272  // it is a non-type parameter interface. Otherwise it returns nil.
   273  func asInterface(x Type) (i *Interface) {
   274  	if _, ok := x.(*TypeParam); !ok {
   275  		i, _ = under(x).(*Interface)
   276  	}
   277  	return i
   278  }
   279  
   280  // nify implements the core unification algorithm which is an
   281  // adapted version of Checker.identical. For changes to that
   282  // code the corresponding changes should be made here.
   283  // Must not be called directly from outside the unifier.
   284  func (u *unifier) nify(x, y Type, mode unifyMode, p *ifacePair) (result bool) {
   285  	u.depth++
   286  	if traceInference {
   287  		u.tracef("%s ≡ %s\t// %s", x, y, mode)
   288  	}
   289  	defer func() {
   290  		if traceInference && !result {
   291  			u.tracef("%s ≢ %s", x, y)
   292  		}
   293  		u.depth--
   294  	}()
   295  
   296  	x = Unalias(x)
   297  	y = Unalias(y)
   298  
   299  	// nothing to do if x == y
   300  	if x == y {
   301  		return true
   302  	}
   303  
   304  	// Stop gap for cases where unification fails.
   305  	if u.depth > unificationDepthLimit {
   306  		if traceInference {
   307  			u.tracef("depth %d >= %d", u.depth, unificationDepthLimit)
   308  		}
   309  		if panicAtUnificationDepthLimit {
   310  			panic("unification reached recursion depth limit")
   311  		}
   312  		return false
   313  	}
   314  
   315  	// Unification is symmetric, so we can swap the operands.
   316  	// Ensure that if we have at least one
   317  	// - defined type, make sure one is in y
   318  	// - type parameter recorded with u, make sure one is in x
   319  	if asNamed(x) != nil || u.asTypeParam(y) != nil {
   320  		if traceInference {
   321  			u.tracef("%s ≡ %s\t// swap", y, x)
   322  		}
   323  		x, y = y, x
   324  	}
   325  
   326  	// Unification will fail if we match a defined type against a type literal.
   327  	// If we are matching types in an assignment, at the top-level, types with
   328  	// the same type structure are permitted as long as at least one of them
   329  	// is not a defined type. To accommodate for that possibility, we continue
   330  	// unification with the underlying type of a defined type if the other type
   331  	// is a type literal. This is controlled by the exact unification mode.
   332  	// We also continue if the other type is a basic type because basic types
   333  	// are valid underlying types and may appear as core types of type constraints.
   334  	// If we exclude them, inferred defined types for type parameters may not
   335  	// match against the core types of their constraints (even though they might
   336  	// correctly match against some of the types in the constraint's type set).
   337  	// Finally, if unification (incorrectly) succeeds by matching the underlying
   338  	// type of a defined type against a basic type (because we include basic types
   339  	// as type literals here), and if that leads to an incorrectly inferred type,
   340  	// we will fail at function instantiation or argument assignment time.
   341  	//
   342  	// If we have at least one defined type, there is one in y.
   343  	if ny := asNamed(y); mode&exact == 0 && ny != nil && isTypeLit(x) && !(u.enableInterfaceInference && IsInterface(x)) {
   344  		if traceInference {
   345  			u.tracef("%s ≡ under %s", x, ny)
   346  		}
   347  		y = ny.under()
   348  		// Per the spec, a defined type cannot have an underlying type
   349  		// that is a type parameter.
   350  		assert(!isTypeParam(y))
   351  		// x and y may be identical now
   352  		if x == y {
   353  			return true
   354  		}
   355  	}
   356  
   357  	// Cases where at least one of x or y is a type parameter recorded with u.
   358  	// If we have at least one type parameter, there is one in x.
   359  	// If we have exactly one type parameter, because it is in x,
   360  	// isTypeLit(x) is false and y was not changed above. In other
   361  	// words, if y was a defined type, it is still a defined type
   362  	// (relevant for the logic below).
   363  	switch px, py := u.asTypeParam(x), u.asTypeParam(y); {
   364  	case px != nil && py != nil:
   365  		// both x and y are type parameters
   366  		if u.join(px, py) {
   367  			return true
   368  		}
   369  		// both x and y have an inferred type - they must match
   370  		return u.nify(u.at(px), u.at(py), mode, p)
   371  
   372  	case px != nil:
   373  		// x is a type parameter, y is not
   374  		if x := u.at(px); x != nil {
   375  			// x has an inferred type which must match y
   376  			if u.nify(x, y, mode, p) {
   377  				// We have a match, possibly through underlying types.
   378  				xi := asInterface(x)
   379  				yi := asInterface(y)
   380  				xn := asNamed(x) != nil
   381  				yn := asNamed(y) != nil
   382  				// If we have two interfaces, what to do depends on
   383  				// whether they are named and their method sets.
   384  				if xi != nil && yi != nil {
   385  					// Both types are interfaces.
   386  					// If both types are defined types, they must be identical
   387  					// because unification doesn't know which type has the "right" name.
   388  					if xn && yn {
   389  						return Identical(x, y)
   390  					}
   391  					// In all other cases, the method sets must match.
   392  					// The types unified so we know that corresponding methods
   393  					// match and we can simply compare the number of methods.
   394  					// TODO(gri) We may be able to relax this rule and select
   395  					// the more general interface. But if one of them is a defined
   396  					// type, it's not clear how to choose and whether we introduce
   397  					// an order dependency or not. Requiring the same method set
   398  					// is conservative.
   399  					if len(xi.typeSet().methods) != len(yi.typeSet().methods) {
   400  						return false
   401  					}
   402  				} else if xi != nil || yi != nil {
   403  					// One but not both of them are interfaces.
   404  					// In this case, either x or y could be viable matches for the corresponding
   405  					// type parameter, which means choosing either introduces an order dependence.
   406  					// Therefore, we must fail unification (go.dev/issue/60933).
   407  					return false
   408  				}
   409  				// If we have inexact unification and one of x or y is a defined type, select the
   410  				// defined type. This ensures that in a series of types, all matching against the
   411  				// same type parameter, we infer a defined type if there is one, independent of
   412  				// order. Type inference or assignment may fail, which is ok.
   413  				// Selecting a defined type, if any, ensures that we don't lose the type name;
   414  				// and since we have inexact unification, a value of equally named or matching
   415  				// undefined type remains assignable (go.dev/issue/43056).
   416  				//
   417  				// Similarly, if we have inexact unification and there are no defined types but
   418  				// channel types, select a directed channel, if any. This ensures that in a series
   419  				// of unnamed types, all matching against the same type parameter, we infer the
   420  				// directed channel if there is one, independent of order.
   421  				// Selecting a directional channel, if any, ensures that a value of another
   422  				// inexactly unifying channel type remains assignable (go.dev/issue/62157).
   423  				//
   424  				// If we have multiple defined channel types, they are either identical or we
   425  				// have assignment conflicts, so we can ignore directionality in this case.
   426  				//
   427  				// If we have defined and literal channel types, a defined type wins to avoid
   428  				// order dependencies.
   429  				if mode&exact == 0 {
   430  					switch {
   431  					case xn:
   432  						// x is a defined type: nothing to do.
   433  					case yn:
   434  						// x is not a defined type and y is a defined type: select y.
   435  						u.set(px, y)
   436  					default:
   437  						// Neither x nor y are defined types.
   438  						if yc, _ := under(y).(*Chan); yc != nil && yc.dir != SendRecv {
   439  							// y is a directed channel type: select y.
   440  							u.set(px, y)
   441  						}
   442  					}
   443  				}
   444  				return true
   445  			}
   446  			return false
   447  		}
   448  		// otherwise, infer type from y
   449  		u.set(px, y)
   450  		return true
   451  	}
   452  
   453  	// x != y if we get here
   454  	assert(x != y)
   455  
   456  	// If u.EnableInterfaceInference is set and we don't require exact unification,
   457  	// if both types are interfaces, one interface must have a subset of the
   458  	// methods of the other and corresponding method signatures must unify.
   459  	// If only one type is an interface, all its methods must be present in the
   460  	// other type and corresponding method signatures must unify.
   461  	if u.enableInterfaceInference && mode&exact == 0 {
   462  		// One or both interfaces may be defined types.
   463  		// Look under the name, but not under type parameters (go.dev/issue/60564).
   464  		xi := asInterface(x)
   465  		yi := asInterface(y)
   466  		// If we have two interfaces, check the type terms for equivalence,
   467  		// and unify common methods if possible.
   468  		if xi != nil && yi != nil {
   469  			xset := xi.typeSet()
   470  			yset := yi.typeSet()
   471  			if xset.comparable != yset.comparable {
   472  				return false
   473  			}
   474  			// For now we require terms to be equal.
   475  			// We should be able to relax this as well, eventually.
   476  			if !xset.terms.equal(yset.terms) {
   477  				return false
   478  			}
   479  			// Interface types are the only types where cycles can occur
   480  			// that are not "terminated" via named types; and such cycles
   481  			// can only be created via method parameter types that are
   482  			// anonymous interfaces (directly or indirectly) embedding
   483  			// the current interface. Example:
   484  			//
   485  			//    type T interface {
   486  			//        m() interface{T}
   487  			//    }
   488  			//
   489  			// If two such (differently named) interfaces are compared,
   490  			// endless recursion occurs if the cycle is not detected.
   491  			//
   492  			// If x and y were compared before, they must be equal
   493  			// (if they were not, the recursion would have stopped);
   494  			// search the ifacePair stack for the same pair.
   495  			//
   496  			// This is a quadratic algorithm, but in practice these stacks
   497  			// are extremely short (bounded by the nesting depth of interface
   498  			// type declarations that recur via parameter types, an extremely
   499  			// rare occurrence). An alternative implementation might use a
   500  			// "visited" map, but that is probably less efficient overall.
   501  			q := &ifacePair{xi, yi, p}
   502  			for p != nil {
   503  				if p.identical(q) {
   504  					return true // same pair was compared before
   505  				}
   506  				p = p.prev
   507  			}
   508  			// The method set of x must be a subset of the method set
   509  			// of y or vice versa, and the common methods must unify.
   510  			xmethods := xset.methods
   511  			ymethods := yset.methods
   512  			// The smaller method set must be the subset, if it exists.
   513  			if len(xmethods) > len(ymethods) {
   514  				xmethods, ymethods = ymethods, xmethods
   515  			}
   516  			// len(xmethods) <= len(ymethods)
   517  			// Collect the ymethods in a map for quick lookup.
   518  			ymap := make(map[string]*Func, len(ymethods))
   519  			for _, ym := range ymethods {
   520  				ymap[ym.Id()] = ym
   521  			}
   522  			// All xmethods must exist in ymethods and corresponding signatures must unify.
   523  			for _, xm := range xmethods {
   524  				if ym := ymap[xm.Id()]; ym == nil || !u.nify(xm.typ, ym.typ, exact, p) {
   525  					return false
   526  				}
   527  			}
   528  			return true
   529  		}
   530  
   531  		// We don't have two interfaces. If we have one, make sure it's in xi.
   532  		if yi != nil {
   533  			xi = yi
   534  			y = x
   535  		}
   536  
   537  		// If we have one interface, at a minimum each of the interface methods
   538  		// must be implemented and thus unify with a corresponding method from
   539  		// the non-interface type, otherwise unification fails.
   540  		if xi != nil {
   541  			// All xi methods must exist in y and corresponding signatures must unify.
   542  			xmethods := xi.typeSet().methods
   543  			for _, xm := range xmethods {
   544  				obj, _, _ := LookupFieldOrMethod(y, false, xm.pkg, xm.name)
   545  				if ym, _ := obj.(*Func); ym == nil || !u.nify(xm.typ, ym.typ, exact, p) {
   546  					return false
   547  				}
   548  			}
   549  			return true
   550  		}
   551  	}
   552  
   553  	// Unless we have exact unification, neither x nor y are interfaces now.
   554  	// Except for unbound type parameters (see below), x and y must be structurally
   555  	// equivalent to unify.
   556  
   557  	// If we get here and x or y is a type parameter, they are unbound
   558  	// (not recorded with the unifier).
   559  	// Ensure that if we have at least one type parameter, it is in x
   560  	// (the earlier swap checks for _recorded_ type parameters only).
   561  	// This ensures that the switch switches on the type parameter.
   562  	//
   563  	// TODO(gri) Factor out type parameter handling from the switch.
   564  	if isTypeParam(y) {
   565  		if traceInference {
   566  			u.tracef("%s ≡ %s\t// swap", y, x)
   567  		}
   568  		x, y = y, x
   569  	}
   570  
   571  	// Type elements (array, slice, etc. elements) use emode for unification.
   572  	// Element types must match exactly if the types are used in an assignment.
   573  	emode := mode
   574  	if mode&assign != 0 {
   575  		emode |= exact
   576  	}
   577  
   578  	switch x := x.(type) {
   579  	case *Basic:
   580  		// Basic types are singletons except for the rune and byte
   581  		// aliases, thus we cannot solely rely on the x == y check
   582  		// above. See also comment in TypeName.IsAlias.
   583  		if y, ok := y.(*Basic); ok {
   584  			return x.kind == y.kind
   585  		}
   586  
   587  	case *Array:
   588  		// Two array types unify if they have the same array length
   589  		// and their element types unify.
   590  		if y, ok := y.(*Array); ok {
   591  			// If one or both array lengths are unknown (< 0) due to some error,
   592  			// assume they are the same to avoid spurious follow-on errors.
   593  			return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, emode, p)
   594  		}
   595  
   596  	case *Slice:
   597  		// Two slice types unify if their element types unify.
   598  		if y, ok := y.(*Slice); ok {
   599  			return u.nify(x.elem, y.elem, emode, p)
   600  		}
   601  
   602  	case *Struct:
   603  		// Two struct types unify if they have the same sequence of fields,
   604  		// and if corresponding fields have the same names, their (field) types unify,
   605  		// and they have identical tags. Two embedded fields are considered to have the same
   606  		// name. Lower-case field names from different packages are always different.
   607  		if y, ok := y.(*Struct); ok {
   608  			if x.NumFields() == y.NumFields() {
   609  				for i, f := range x.fields {
   610  					g := y.fields[i]
   611  					if f.embedded != g.embedded ||
   612  						x.Tag(i) != y.Tag(i) ||
   613  						!f.sameId(g.pkg, g.name) ||
   614  						!u.nify(f.typ, g.typ, emode, p) {
   615  						return false
   616  					}
   617  				}
   618  				return true
   619  			}
   620  		}
   621  
   622  	case *Pointer:
   623  		// Two pointer types unify if their base types unify.
   624  		if y, ok := y.(*Pointer); ok {
   625  			return u.nify(x.base, y.base, emode, p)
   626  		}
   627  
   628  	case *Tuple:
   629  		// Two tuples types unify if they have the same number of elements
   630  		// and the types of corresponding elements unify.
   631  		if y, ok := y.(*Tuple); ok {
   632  			if x.Len() == y.Len() {
   633  				if x != nil {
   634  					for i, v := range x.vars {
   635  						w := y.vars[i]
   636  						if !u.nify(v.typ, w.typ, mode, p) {
   637  							return false
   638  						}
   639  					}
   640  				}
   641  				return true
   642  			}
   643  		}
   644  
   645  	case *Signature:
   646  		// Two function types unify if they have the same number of parameters
   647  		// and result values, corresponding parameter and result types unify,
   648  		// and either both functions are variadic or neither is.
   649  		// Parameter and result names are not required to match.
   650  		// TODO(gri) handle type parameters or document why we can ignore them.
   651  		if y, ok := y.(*Signature); ok {
   652  			return x.variadic == y.variadic &&
   653  				u.nify(x.params, y.params, emode, p) &&
   654  				u.nify(x.results, y.results, emode, p)
   655  		}
   656  
   657  	case *Interface:
   658  		assert(!u.enableInterfaceInference || mode&exact != 0) // handled before this switch
   659  
   660  		// Two interface types unify if they have the same set of methods with
   661  		// the same names, and corresponding function types unify.
   662  		// Lower-case method names from different packages are always different.
   663  		// The order of the methods is irrelevant.
   664  		if y, ok := y.(*Interface); ok {
   665  			xset := x.typeSet()
   666  			yset := y.typeSet()
   667  			if xset.comparable != yset.comparable {
   668  				return false
   669  			}
   670  			if !xset.terms.equal(yset.terms) {
   671  				return false
   672  			}
   673  			a := xset.methods
   674  			b := yset.methods
   675  			if len(a) == len(b) {
   676  				// Interface types are the only types where cycles can occur
   677  				// that are not "terminated" via named types; and such cycles
   678  				// can only be created via method parameter types that are
   679  				// anonymous interfaces (directly or indirectly) embedding
   680  				// the current interface. Example:
   681  				//
   682  				//    type T interface {
   683  				//        m() interface{T}
   684  				//    }
   685  				//
   686  				// If two such (differently named) interfaces are compared,
   687  				// endless recursion occurs if the cycle is not detected.
   688  				//
   689  				// If x and y were compared before, they must be equal
   690  				// (if they were not, the recursion would have stopped);
   691  				// search the ifacePair stack for the same pair.
   692  				//
   693  				// This is a quadratic algorithm, but in practice these stacks
   694  				// are extremely short (bounded by the nesting depth of interface
   695  				// type declarations that recur via parameter types, an extremely
   696  				// rare occurrence). An alternative implementation might use a
   697  				// "visited" map, but that is probably less efficient overall.
   698  				q := &ifacePair{x, y, p}
   699  				for p != nil {
   700  					if p.identical(q) {
   701  						return true // same pair was compared before
   702  					}
   703  					p = p.prev
   704  				}
   705  				if debug {
   706  					assertSortedMethods(a)
   707  					assertSortedMethods(b)
   708  				}
   709  				for i, f := range a {
   710  					g := b[i]
   711  					if f.Id() != g.Id() || !u.nify(f.typ, g.typ, exact, q) {
   712  						return false
   713  					}
   714  				}
   715  				return true
   716  			}
   717  		}
   718  
   719  	case *Map:
   720  		// Two map types unify if their key and value types unify.
   721  		if y, ok := y.(*Map); ok {
   722  			return u.nify(x.key, y.key, emode, p) && u.nify(x.elem, y.elem, emode, p)
   723  		}
   724  
   725  	case *Chan:
   726  		// Two channel types unify if their value types unify
   727  		// and if they have the same direction.
   728  		// The channel direction is ignored for inexact unification.
   729  		if y, ok := y.(*Chan); ok {
   730  			return (mode&exact == 0 || x.dir == y.dir) && u.nify(x.elem, y.elem, emode, p)
   731  		}
   732  
   733  	case *Named:
   734  		// Two named types unify if their type names originate in the same type declaration.
   735  		// If they are instantiated, their type argument lists must unify.
   736  		if y := asNamed(y); y != nil {
   737  			// Check type arguments before origins so they unify
   738  			// even if the origins don't match; for better error
   739  			// messages (see go.dev/issue/53692).
   740  			xargs := x.TypeArgs().list()
   741  			yargs := y.TypeArgs().list()
   742  			if len(xargs) != len(yargs) {
   743  				return false
   744  			}
   745  			for i, xarg := range xargs {
   746  				if !u.nify(xarg, yargs[i], mode, p) {
   747  					return false
   748  				}
   749  			}
   750  			return identicalOrigin(x, y)
   751  		}
   752  
   753  	case *TypeParam:
   754  		// x must be an unbound type parameter (see comment above).
   755  		if debug {
   756  			assert(u.asTypeParam(x) == nil)
   757  		}
   758  		// By definition, a valid type argument must be in the type set of
   759  		// the respective type constraint. Therefore, the type argument's
   760  		// underlying type must be in the set of underlying types of that
   761  		// constraint. If there is a single such underlying type, it's the
   762  		// constraint's core type. It must match the type argument's under-
   763  		// lying type, irrespective of whether the actual type argument,
   764  		// which may be a defined type, is actually in the type set (that
   765  		// will be determined at instantiation time).
   766  		// Thus, if we have the core type of an unbound type parameter,
   767  		// we know the structure of the possible types satisfying such
   768  		// parameters. Use that core type for further unification
   769  		// (see go.dev/issue/50755 for a test case).
   770  		if enableCoreTypeUnification {
   771  			// Because the core type is always an underlying type,
   772  			// unification will take care of matching against a
   773  			// defined or literal type automatically.
   774  			// If y is also an unbound type parameter, we will end
   775  			// up here again with x and y swapped, so we don't
   776  			// need to take care of that case separately.
   777  			if cx := coreType(x); cx != nil {
   778  				if traceInference {
   779  					u.tracef("core %s ≡ %s", x, y)
   780  				}
   781  				// If y is a defined type, it may not match against cx which
   782  				// is an underlying type (incl. int, string, etc.). Use assign
   783  				// mode here so that the unifier automatically takes under(y)
   784  				// if necessary.
   785  				return u.nify(cx, y, assign, p)
   786  			}
   787  		}
   788  		// x != y and there's nothing to do
   789  
   790  	case nil:
   791  		// avoid a crash in case of nil type
   792  
   793  	default:
   794  		panic(sprintf(nil, nil, true, "u.nify(%s, %s, %d)", x, y, mode))
   795  	}
   796  
   797  	return false
   798  }
   799  

View as plain text