// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Support for testing against external disassembler program. // Copied and simplified from ../../x86/x86asm/ext_test.go. package armasm import ( "bufio" "bytes" "encoding/hex" "flag" "fmt" "io" "io/ioutil" "log" "math/rand" "os" "os/exec" "regexp" "runtime" "strings" "testing" "time" ) var ( printTests = flag.Bool("printtests", false, "print test cases that exercise new code paths") dumpTest = flag.Bool("dump", false, "dump all encodings") mismatch = flag.Bool("mismatch", false, "log allowed mismatches") longTest = flag.Bool("long", false, "long test") keep = flag.Bool("keep", false, "keep object files around") debug = false ) // An ExtInst represents a single decoded instruction parsed // from an external disassembler's output. type ExtInst struct { addr uint32 enc [4]byte nenc int text string } func (r ExtInst) String() string { return fmt.Sprintf("%#x: % x: %s", r.addr, r.enc, r.text) } // An ExtDis is a connection between an external disassembler and a test. type ExtDis struct { Arch Mode Dec chan ExtInst File *os.File Size int KeepFile bool Cmd *exec.Cmd } // Run runs the given command - the external disassembler - and returns // a buffered reader of its standard output. func (ext *ExtDis) Run(cmd ...string) (*bufio.Reader, error) { if *keep { log.Printf("%s\n", strings.Join(cmd, " ")) } ext.Cmd = exec.Command(cmd[0], cmd[1:]...) out, err := ext.Cmd.StdoutPipe() if err != nil { return nil, fmt.Errorf("stdoutpipe: %v", err) } if err := ext.Cmd.Start(); err != nil { return nil, fmt.Errorf("exec: %v", err) } b := bufio.NewReaderSize(out, 1<<20) return b, nil } // Wait waits for the command started with Run to exit. func (ext *ExtDis) Wait() error { return ext.Cmd.Wait() } // testExtDis tests a set of byte sequences against an external disassembler. // The disassembler is expected to produce the given syntax and be run // in the given architecture mode (16, 32, or 64-bit). // The extdis function must start the external disassembler // and then parse its output, sending the parsed instructions on ext.Dec. // The generate function calls its argument f once for each byte sequence // to be tested. The generate function itself will be called twice, and it must // make the same sequence of calls to f each time. // When a disassembly does not match the internal decoding, // allowedMismatch determines whether this mismatch should be // allowed, or else considered an error. func testExtDis( t *testing.T, syntax string, arch Mode, extdis func(ext *ExtDis) error, generate func(f func([]byte)), allowedMismatch func(text string, size int, inst *Inst, dec ExtInst) bool, ) { start := time.Now() ext := &ExtDis{ Dec: make(chan ExtInst), Arch: arch, } errc := make(chan error) // First pass: write instructions to input file for external disassembler. file, f, size, err := writeInst(generate) if err != nil { t.Fatal(err) } ext.Size = size ext.File = f defer func() { f.Close() if !*keep { os.Remove(file) } }() // Second pass: compare disassembly against our decodings. var ( totalTests = 0 totalSkips = 0 totalErrors = 0 errors = make([]string, 0, 100) // sampled errors, at most cap ) go func() { errc <- extdis(ext) }() generate(func(enc []byte) { dec, ok := <-ext.Dec if !ok { t.Errorf("decoding stream ended early") return } inst, text := disasm(syntax, arch, pad(enc)) totalTests++ if *dumpTest { fmt.Printf("%x -> %s [%d]\n", enc[:len(enc)], dec.text, dec.nenc) } if text != dec.text || inst.Len != dec.nenc { suffix := "" if allowedMismatch(text, size, &inst, dec) { totalSkips++ if !*mismatch { return } suffix += " (allowed mismatch)" } totalErrors++ if len(errors) >= cap(errors) { j := rand.Intn(totalErrors) if j >= cap(errors) { return } errors = append(errors[:j], errors[j+1:]...) } errors = append(errors, fmt.Sprintf("decode(%x) = %q, %d, want %q, %d%s", enc, text, inst.Len, dec.text, dec.nenc, suffix)) } }) if *mismatch { totalErrors -= totalSkips } for _, b := range errors { t.Log(b) } if totalErrors > 0 { t.Fail() } t.Logf("%d test cases, %d expected mismatches, %d failures; %.0f cases/second", totalTests, totalSkips, totalErrors, float64(totalTests)/time.Since(start).Seconds()) if err := <-errc; err != nil { t.Fatalf("external disassembler: %v", err) } } const start = 0x8000 // start address of text // writeInst writes the generated byte sequences to a new file // starting at offset start. That file is intended to be the input to // the external disassembler. func writeInst(generate func(func([]byte))) (file string, f *os.File, size int, err error) { f, err = ioutil.TempFile("", "armasm") if err != nil { return } file = f.Name() f.Seek(start, io.SeekStart) w := bufio.NewWriter(f) defer w.Flush() size = 0 generate(func(x []byte) { if len(x) > 4 { x = x[:4] } if debug { fmt.Printf("%#x: %x%x\n", start+size, x, zeros[len(x):]) } w.Write(x) w.Write(zeros[len(x):]) size += len(zeros) }) return file, f, size, nil } var zeros = []byte{0, 0, 0, 0} // pad pads the code sequence with pops. func pad(enc []byte) []byte { if len(enc) < 4 { enc = append(enc[:len(enc):len(enc)], zeros[:4-len(enc)]...) } return enc } // disasm returns the decoded instruction and text // for the given source bytes, using the given syntax and mode. func disasm(syntax string, mode Mode, src []byte) (inst Inst, text string) { // If printTests is set, we record the coverage value // before and after, and we write out the inputs for which // coverage went up, in the format expected in testdata/decode.text. // This produces a fairly small set of test cases that exercise nearly // all the code. var cover float64 if *printTests { cover -= coverage() } inst, err := Decode(src, mode) if err != nil { text = "error: " + err.Error() } else { text = inst.String() switch syntax { //case "arm": // text = ARMSyntax(inst) case "gnu": text = GNUSyntax(inst) //case "plan9": // [sic] // text = GoSyntax(inst, 0, nil) default: text = "error: unknown syntax " + syntax } } if *printTests { cover += coverage() if cover > 0 { max := len(src) if max > 4 && inst.Len <= 4 { max = 4 } fmt.Printf("%x|%x\t%d\t%s\t%s\n", src[:inst.Len], src[inst.Len:max], mode, syntax, text) } } return } // coverage returns a floating point number denoting the // test coverage until now. The number increases when new code paths are exercised, // both in the Go program and in the decoder byte code. func coverage() float64 { /* testing.Coverage is not in the main distribution. The implementation, which must go in package testing, is: // Coverage reports the current code coverage as a fraction in the range [0, 1]. func Coverage() float64 { var n, d int64 for _, counters := range cover.Counters { for _, c := range counters { if c > 0 { n++ } d++ } } if d == 0 { return 0 } return float64(n) / float64(d) } */ var f float64 f += testing.Coverage() f += decodeCoverage() return f } func decodeCoverage() float64 { n := 0 for _, t := range decoderCover { if t { n++ } } return float64(1+n) / float64(1+len(decoderCover)) } // Helpers for writing disassembler output parsers. // hasPrefix reports whether any of the space-separated words in the text s // begins with any of the given prefixes. func hasPrefix(s string, prefixes ...string) bool { for _, prefix := range prefixes { for s := s; s != ""; { if strings.HasPrefix(s, prefix) { return true } i := strings.Index(s, " ") if i < 0 { break } s = s[i+1:] } } return false } // contains reports whether the text s contains any of the given substrings. func contains(s string, substrings ...string) bool { for _, sub := range substrings { if strings.Contains(s, sub) { return true } } return false } // isHex reports whether b is a hexadecimal character (0-9A-Fa-f). func isHex(b byte) bool { return b == '0' || unhex[b] > 0 } // parseHex parses the hexadecimal byte dump in hex, // appending the parsed bytes to raw and returning the updated slice. // The returned bool signals whether any invalid hex was found. // Spaces and tabs between bytes are okay but any other non-hex is not. func parseHex(hex []byte, raw []byte) ([]byte, bool) { hex = trimSpace(hex) for j := 0; j < len(hex); { for hex[j] == ' ' || hex[j] == '\t' { j++ } if j >= len(hex) { break } if j+2 > len(hex) || !isHex(hex[j]) || !isHex(hex[j+1]) { return nil, false } raw = append(raw, unhex[hex[j]]<<4|unhex[hex[j+1]]) j += 2 } return raw, true } var unhex = [256]byte{ '0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, 'A': 10, 'B': 11, 'C': 12, 'D': 13, 'E': 14, 'F': 15, 'a': 10, 'b': 11, 'c': 12, 'd': 13, 'e': 14, 'f': 15, } // index is like bytes.Index(s, []byte(t)) but avoids the allocation. func index(s []byte, t string) int { i := 0 for { j := bytes.IndexByte(s[i:], t[0]) if j < 0 { return -1 } i = i + j if i+len(t) > len(s) { return -1 } for k := 1; k < len(t); k++ { if s[i+k] != t[k] { goto nomatch } } return i nomatch: i++ } } // fixSpace rewrites runs of spaces, tabs, and newline characters into single spaces in s. // If s must be rewritten, it is rewritten in place. func fixSpace(s []byte) []byte { s = trimSpace(s) for i := 0; i < len(s); i++ { if s[i] == '\t' || s[i] == '\n' || i > 0 && s[i] == ' ' && s[i-1] == ' ' { goto Fix } } return s Fix: b := s w := 0 for i := 0; i < len(s); i++ { c := s[i] if c == '\t' || c == '\n' { c = ' ' } if c == ' ' && w > 0 && b[w-1] == ' ' { continue } b[w] = c w++ } if w > 0 && b[w-1] == ' ' { w-- } return b[:w] } // trimSpace trims leading and trailing space from s, returning a subslice of s. func trimSpace(s []byte) []byte { j := len(s) for j > 0 && (s[j-1] == ' ' || s[j-1] == '\t' || s[j-1] == '\n') { j-- } i := 0 for i < j && (s[i] == ' ' || s[i] == '\t') { i++ } return s[i:j] } // pcrel matches instructions using relative addressing mode. var ( pcrel = regexp.MustCompile(`^((?:.* )?(?:b|bl)x?(?:eq|ne|cs|cc|mi|pl|vs|vc|hi|ls|ge|lt|gt|le)?) 0x([0-9a-f]+)$`) ) // Generators. // // The test cases are described as functions that invoke a callback repeatedly, // with a new input sequence each time. These helpers make writing those // a little easier. // condCases generates conditional instructions. func condCases(t *testing.T) func(func([]byte)) { return func(try func([]byte)) { // All the strides are relatively prime to 2 and therefore to 2²⁸, // so we will not repeat any instructions until we have tried all 2²⁸. // Using a stride other than 1 is meant to visit the instructions in a // pseudorandom order, which gives better variety in the set of // test cases chosen by -printtests. stride := uint32(10007) n := 1 << 28 / 7 if testing.Short() { stride = 100003 n = 1 << 28 / 1001 } else if *longTest { stride = 200000033 n = 1 << 28 } x := uint32(0) for i := 0; i < n; i++ { enc := (x%15)<<28 | x&(1<<28-1) try([]byte{byte(enc), byte(enc >> 8), byte(enc >> 16), byte(enc >> 24)}) x += stride } } } // uncondCases generates unconditional instructions. func uncondCases(t *testing.T) func(func([]byte)) { return func(try func([]byte)) { condCases(t)(func(enc []byte) { enc[3] |= 0xF0 try(enc) }) } } func countBits(x uint32) int { n := 0 for ; x != 0; x >>= 1 { n += int(x & 1) } return n } func expandBits(x, m uint32) uint32 { var out uint32 for i := uint(0); i < 32; i++ { out >>= 1 if m&1 != 0 { out |= (x & 1) << 31 x >>= 1 } m >>= 1 } return out } func tryCondMask(mask, val uint32, try func([]byte)) { n := countBits(^mask) bits := uint32(0) for i := 0; i < 1<> 8), byte(x >> 16), byte(x >> 24)}) } } // vfpCases generates VFP instructions. func vfpCases(t *testing.T) func(func([]byte)) { const ( vfpmask uint32 = 0xFF00FE10 vfp uint32 = 0x0E009A00 ) return func(try func([]byte)) { tryCondMask(0xff00fe10, 0x0e009a00, try) // standard VFP instruction space tryCondMask(0xffc00f7f, 0x0e000b10, try) // VFP MOV core reg to/from float64 half tryCondMask(0xffe00f7f, 0x0e000a10, try) // VFP MOV core reg to/from float32 tryCondMask(0xffef0fff, 0x0ee10a10, try) // VFP MOV core reg to/from cond codes } } // hexCases generates the cases written in hexadecimal in the encoded string. // Spaces in 'encoded' separate entire test cases, not individual bytes. func hexCases(t *testing.T, encoded string) func(func([]byte)) { return func(try func([]byte)) { for _, x := range strings.Fields(encoded) { src, err := hex.DecodeString(x) if err != nil { t.Errorf("parsing %q: %v", x, err) } try(src) } } } // testdataCases generates the test cases recorded in testdata/decode.txt. // It only uses the inputs; it ignores the answers recorded in that file. func testdataCases(t *testing.T) func(func([]byte)) { var codes [][]byte data, err := ioutil.ReadFile("testdata/decode.txt") if err != nil { t.Fatal(err) } for _, line := range strings.Split(string(data), "\n") { line = strings.TrimSpace(line) if line == "" || strings.HasPrefix(line, "#") { continue } f := strings.Fields(line)[0] i := strings.Index(f, "|") if i < 0 { t.Errorf("parsing %q: missing | separator", f) continue } if i%2 != 0 { t.Errorf("parsing %q: misaligned | separator", f) } code, err := hex.DecodeString(f[:i] + f[i+1:]) if err != nil { t.Errorf("parsing %q: %v", f, err) continue } codes = append(codes, code) } return func(try func([]byte)) { for _, code := range codes { try(code) } } } func caller(skip int) string { pc, _, _, _ := runtime.Caller(skip) f := runtime.FuncForPC(pc) name := "?" if f != nil { name = f.Name() if i := strings.LastIndex(name, "."); i >= 0 { name = name[i+1:] } } return name }