...

Source file src/golang.org/x/crypto/pbkdf2/pbkdf2.go

Documentation: golang.org/x/crypto/pbkdf2

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  /*
     6  Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC
     7  2898 / PKCS #5 v2.0.
     8  
     9  A key derivation function is useful when encrypting data based on a password
    10  or any other not-fully-random data. It uses a pseudorandom function to derive
    11  a secure encryption key based on the password.
    12  
    13  While v2.0 of the standard defines only one pseudorandom function to use,
    14  HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved
    15  Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To
    16  choose, you can pass the `New` functions from the different SHA packages to
    17  pbkdf2.Key.
    18  */
    19  package pbkdf2 // import "golang.org/x/crypto/pbkdf2"
    20  
    21  import (
    22  	"crypto/hmac"
    23  	"hash"
    24  )
    25  
    26  // Key derives a key from the password, salt and iteration count, returning a
    27  // []byte of length keylen that can be used as cryptographic key. The key is
    28  // derived based on the method described as PBKDF2 with the HMAC variant using
    29  // the supplied hash function.
    30  //
    31  // For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
    32  // can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
    33  // doing:
    34  //
    35  //	dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
    36  //
    37  // Remember to get a good random salt. At least 8 bytes is recommended by the
    38  // RFC.
    39  //
    40  // Using a higher iteration count will increase the cost of an exhaustive
    41  // search but will also make derivation proportionally slower.
    42  func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte {
    43  	prf := hmac.New(h, password)
    44  	hashLen := prf.Size()
    45  	numBlocks := (keyLen + hashLen - 1) / hashLen
    46  
    47  	var buf [4]byte
    48  	dk := make([]byte, 0, numBlocks*hashLen)
    49  	U := make([]byte, hashLen)
    50  	for block := 1; block <= numBlocks; block++ {
    51  		// N.B.: || means concatenation, ^ means XOR
    52  		// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
    53  		// U_1 = PRF(password, salt || uint(i))
    54  		prf.Reset()
    55  		prf.Write(salt)
    56  		buf[0] = byte(block >> 24)
    57  		buf[1] = byte(block >> 16)
    58  		buf[2] = byte(block >> 8)
    59  		buf[3] = byte(block)
    60  		prf.Write(buf[:4])
    61  		dk = prf.Sum(dk)
    62  		T := dk[len(dk)-hashLen:]
    63  		copy(U, T)
    64  
    65  		// U_n = PRF(password, U_(n-1))
    66  		for n := 2; n <= iter; n++ {
    67  			prf.Reset()
    68  			prf.Write(U)
    69  			U = U[:0]
    70  			U = prf.Sum(U)
    71  			for x := range U {
    72  				T[x] ^= U[x]
    73  			}
    74  		}
    75  	}
    76  	return dk[:keyLen]
    77  }
    78  

View as plain text