...

Source file src/golang.org/x/crypto/pkcs12/pbkdf.go

Documentation: golang.org/x/crypto/pkcs12

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package pkcs12
     6  
     7  import (
     8  	"bytes"
     9  	"crypto/sha1"
    10  	"math/big"
    11  )
    12  
    13  var (
    14  	one = big.NewInt(1)
    15  )
    16  
    17  // sha1Sum returns the SHA-1 hash of in.
    18  func sha1Sum(in []byte) []byte {
    19  	sum := sha1.Sum(in)
    20  	return sum[:]
    21  }
    22  
    23  // fillWithRepeats returns v*ceiling(len(pattern) / v) bytes consisting of
    24  // repeats of pattern.
    25  func fillWithRepeats(pattern []byte, v int) []byte {
    26  	if len(pattern) == 0 {
    27  		return nil
    28  	}
    29  	outputLen := v * ((len(pattern) + v - 1) / v)
    30  	return bytes.Repeat(pattern, (outputLen+len(pattern)-1)/len(pattern))[:outputLen]
    31  }
    32  
    33  func pbkdf(hash func([]byte) []byte, u, v int, salt, password []byte, r int, ID byte, size int) (key []byte) {
    34  	// implementation of https://tools.ietf.org/html/rfc7292#appendix-B.2 , RFC text verbatim in comments
    35  
    36  	//    Let H be a hash function built around a compression function f:
    37  
    38  	//       Z_2^u x Z_2^v -> Z_2^u
    39  
    40  	//    (that is, H has a chaining variable and output of length u bits, and
    41  	//    the message input to the compression function of H is v bits).  The
    42  	//    values for u and v are as follows:
    43  
    44  	//            HASH FUNCTION     VALUE u        VALUE v
    45  	//              MD2, MD5          128            512
    46  	//                SHA-1           160            512
    47  	//               SHA-224          224            512
    48  	//               SHA-256          256            512
    49  	//               SHA-384          384            1024
    50  	//               SHA-512          512            1024
    51  	//             SHA-512/224        224            1024
    52  	//             SHA-512/256        256            1024
    53  
    54  	//    Furthermore, let r be the iteration count.
    55  
    56  	//    We assume here that u and v are both multiples of 8, as are the
    57  	//    lengths of the password and salt strings (which we denote by p and s,
    58  	//    respectively) and the number n of pseudorandom bits required.  In
    59  	//    addition, u and v are of course non-zero.
    60  
    61  	//    For information on security considerations for MD5 [19], see [25] and
    62  	//    [1], and on those for MD2, see [18].
    63  
    64  	//    The following procedure can be used to produce pseudorandom bits for
    65  	//    a particular "purpose" that is identified by a byte called "ID".
    66  	//    This standard specifies 3 different values for the ID byte:
    67  
    68  	//    1.  If ID=1, then the pseudorandom bits being produced are to be used
    69  	//        as key material for performing encryption or decryption.
    70  
    71  	//    2.  If ID=2, then the pseudorandom bits being produced are to be used
    72  	//        as an IV (Initial Value) for encryption or decryption.
    73  
    74  	//    3.  If ID=3, then the pseudorandom bits being produced are to be used
    75  	//        as an integrity key for MACing.
    76  
    77  	//    1.  Construct a string, D (the "diversifier"), by concatenating v/8
    78  	//        copies of ID.
    79  	var D []byte
    80  	for i := 0; i < v; i++ {
    81  		D = append(D, ID)
    82  	}
    83  
    84  	//    2.  Concatenate copies of the salt together to create a string S of
    85  	//        length v(ceiling(s/v)) bits (the final copy of the salt may be
    86  	//        truncated to create S).  Note that if the salt is the empty
    87  	//        string, then so is S.
    88  
    89  	S := fillWithRepeats(salt, v)
    90  
    91  	//    3.  Concatenate copies of the password together to create a string P
    92  	//        of length v(ceiling(p/v)) bits (the final copy of the password
    93  	//        may be truncated to create P).  Note that if the password is the
    94  	//        empty string, then so is P.
    95  
    96  	P := fillWithRepeats(password, v)
    97  
    98  	//    4.  Set I=S||P to be the concatenation of S and P.
    99  	I := append(S, P...)
   100  
   101  	//    5.  Set c=ceiling(n/u).
   102  	c := (size + u - 1) / u
   103  
   104  	//    6.  For i=1, 2, ..., c, do the following:
   105  	A := make([]byte, c*20)
   106  	var IjBuf []byte
   107  	for i := 0; i < c; i++ {
   108  		//        A.  Set A2=H^r(D||I). (i.e., the r-th hash of D||1,
   109  		//            H(H(H(... H(D||I))))
   110  		Ai := hash(append(D, I...))
   111  		for j := 1; j < r; j++ {
   112  			Ai = hash(Ai)
   113  		}
   114  		copy(A[i*20:], Ai[:])
   115  
   116  		if i < c-1 { // skip on last iteration
   117  			// B.  Concatenate copies of Ai to create a string B of length v
   118  			//     bits (the final copy of Ai may be truncated to create B).
   119  			var B []byte
   120  			for len(B) < v {
   121  				B = append(B, Ai[:]...)
   122  			}
   123  			B = B[:v]
   124  
   125  			// C.  Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit
   126  			//     blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by
   127  			//     setting I_j=(I_j+B+1) mod 2^v for each j.
   128  			{
   129  				Bbi := new(big.Int).SetBytes(B)
   130  				Ij := new(big.Int)
   131  
   132  				for j := 0; j < len(I)/v; j++ {
   133  					Ij.SetBytes(I[j*v : (j+1)*v])
   134  					Ij.Add(Ij, Bbi)
   135  					Ij.Add(Ij, one)
   136  					Ijb := Ij.Bytes()
   137  					// We expect Ijb to be exactly v bytes,
   138  					// if it is longer or shorter we must
   139  					// adjust it accordingly.
   140  					if len(Ijb) > v {
   141  						Ijb = Ijb[len(Ijb)-v:]
   142  					}
   143  					if len(Ijb) < v {
   144  						if IjBuf == nil {
   145  							IjBuf = make([]byte, v)
   146  						}
   147  						bytesShort := v - len(Ijb)
   148  						for i := 0; i < bytesShort; i++ {
   149  							IjBuf[i] = 0
   150  						}
   151  						copy(IjBuf[bytesShort:], Ijb)
   152  						Ijb = IjBuf
   153  					}
   154  					copy(I[j*v:(j+1)*v], Ijb)
   155  				}
   156  			}
   157  		}
   158  	}
   159  	//    7.  Concatenate A_1, A_2, ..., A_c together to form a pseudorandom
   160  	//        bit string, A.
   161  
   162  	//    8.  Use the first n bits of A as the output of this entire process.
   163  	return A[:size]
   164  
   165  	//    If the above process is being used to generate a DES key, the process
   166  	//    should be used to create 64 random bits, and the key's parity bits
   167  	//    should be set after the 64 bits have been produced.  Similar concerns
   168  	//    hold for 2-key and 3-key triple-DES keys, for CDMF keys, and for any
   169  	//    similar keys with parity bits "built into them".
   170  }
   171  

View as plain text