// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssh import ( "bytes" "crypto/dsa" "crypto/ecdsa" "crypto/ed25519" "crypto/elliptic" "crypto/rand" "crypto/rsa" "crypto/x509" "encoding/base64" "encoding/hex" "encoding/pem" "errors" "fmt" "io" "reflect" "strings" "testing" "golang.org/x/crypto/ssh/testdata" ) func rawKey(pub PublicKey) interface{} { switch k := pub.(type) { case *rsaPublicKey: return (*rsa.PublicKey)(k) case *dsaPublicKey: return (*dsa.PublicKey)(k) case *ecdsaPublicKey: return (*ecdsa.PublicKey)(k) case ed25519PublicKey: return (ed25519.PublicKey)(k) case *Certificate: return k } panic("unknown key type") } func TestKeyMarshalParse(t *testing.T) { for _, priv := range testSigners { pub := priv.PublicKey() roundtrip, err := ParsePublicKey(pub.Marshal()) if err != nil { t.Errorf("ParsePublicKey(%T): %v", pub, err) } k1 := rawKey(pub) k2 := rawKey(roundtrip) if !reflect.DeepEqual(k1, k2) { t.Errorf("got %#v in roundtrip, want %#v", k2, k1) } } } func TestUnsupportedCurves(t *testing.T) { raw, err := ecdsa.GenerateKey(elliptic.P224(), rand.Reader) if err != nil { t.Fatalf("GenerateKey: %v", err) } if _, err = NewSignerFromKey(raw); err == nil || !strings.Contains(err.Error(), "only P-256") { t.Fatalf("NewPrivateKey should not succeed with P-224, got: %v", err) } if _, err = NewPublicKey(&raw.PublicKey); err == nil || !strings.Contains(err.Error(), "only P-256") { t.Fatalf("NewPublicKey should not succeed with P-224, got: %v", err) } } func TestNewPublicKey(t *testing.T) { for _, k := range testSigners { raw := rawKey(k.PublicKey()) // Skip certificates, as NewPublicKey does not support them. if _, ok := raw.(*Certificate); ok { continue } pub, err := NewPublicKey(raw) if err != nil { t.Errorf("NewPublicKey(%#v): %v", raw, err) } if !reflect.DeepEqual(k.PublicKey(), pub) { t.Errorf("NewPublicKey(%#v) = %#v, want %#v", raw, pub, k.PublicKey()) } } } func TestKeySignVerify(t *testing.T) { for _, priv := range testSigners { pub := priv.PublicKey() data := []byte("sign me") sig, err := priv.Sign(rand.Reader, data) if err != nil { t.Fatalf("Sign(%T): %v", priv, err) } if err := pub.Verify(data, sig); err != nil { t.Errorf("publicKey.Verify(%T): %v", priv, err) } sig.Blob[5]++ if err := pub.Verify(data, sig); err == nil { t.Errorf("publicKey.Verify on broken sig did not fail") } } } func TestKeySignWithAlgorithmVerify(t *testing.T) { for k, priv := range testSigners { if algorithmSigner, ok := priv.(MultiAlgorithmSigner); !ok { t.Errorf("Signers %q constructed by ssh package should always implement the MultiAlgorithmSigner interface: %T", k, priv) } else { pub := priv.PublicKey() data := []byte("sign me") signWithAlgTestCase := func(algorithm string, expectedAlg string) { sig, err := algorithmSigner.SignWithAlgorithm(rand.Reader, data, algorithm) if err != nil { t.Fatalf("Sign(%T): %v", priv, err) } if sig.Format != expectedAlg { t.Errorf("signature format did not match requested signature algorithm: %s != %s", sig.Format, expectedAlg) } if err := pub.Verify(data, sig); err != nil { t.Errorf("publicKey.Verify(%T): %v", priv, err) } sig.Blob[5]++ if err := pub.Verify(data, sig); err == nil { t.Errorf("publicKey.Verify on broken sig did not fail") } } // Using the empty string as the algorithm name should result in the same signature format as the algorithm-free Sign method. defaultSig, err := priv.Sign(rand.Reader, data) if err != nil { t.Fatalf("Sign(%T): %v", priv, err) } signWithAlgTestCase("", defaultSig.Format) // RSA keys are the only ones which currently support more than one signing algorithm if pub.Type() == KeyAlgoRSA { for _, algorithm := range []string{KeyAlgoRSA, KeyAlgoRSASHA256, KeyAlgoRSASHA512} { signWithAlgTestCase(algorithm, algorithm) } } } } } func TestParseRSAPrivateKey(t *testing.T) { key := testPrivateKeys["rsa"] rsa, ok := key.(*rsa.PrivateKey) if !ok { t.Fatalf("got %T, want *rsa.PrivateKey", rsa) } if err := rsa.Validate(); err != nil { t.Errorf("Validate: %v", err) } } func TestParseECPrivateKey(t *testing.T) { key := testPrivateKeys["ecdsa"] ecKey, ok := key.(*ecdsa.PrivateKey) if !ok { t.Fatalf("got %T, want *ecdsa.PrivateKey", ecKey) } if !validateECPublicKey(ecKey.Curve, ecKey.X, ecKey.Y) { t.Fatalf("public key does not validate.") } } func TestParseEncryptedPrivateKeysWithPassphrase(t *testing.T) { data := []byte("sign me") for _, tt := range testdata.PEMEncryptedKeys { t.Run(tt.Name, func(t *testing.T) { _, err := ParsePrivateKeyWithPassphrase(tt.PEMBytes, []byte("incorrect")) if err != x509.IncorrectPasswordError { t.Errorf("got %v want IncorrectPasswordError", err) } s, err := ParsePrivateKeyWithPassphrase(tt.PEMBytes, []byte(tt.EncryptionKey)) if err != nil { t.Fatalf("ParsePrivateKeyWithPassphrase returned error: %s", err) } sig, err := s.Sign(rand.Reader, data) if err != nil { t.Fatalf("Signer.Sign: %v", err) } if err := s.PublicKey().Verify(data, sig); err != nil { t.Errorf("Verify failed: %v", err) } _, err = ParsePrivateKey(tt.PEMBytes) if err == nil { t.Fatalf("ParsePrivateKey succeeded, expected an error") } if err, ok := err.(*PassphraseMissingError); !ok { t.Errorf("got error %q, want PassphraseMissingError", err) } else if tt.IncludesPublicKey { if err.PublicKey == nil { t.Fatalf("expected PassphraseMissingError.PublicKey not to be nil") } got, want := err.PublicKey.Marshal(), s.PublicKey().Marshal() if !bytes.Equal(got, want) { t.Errorf("error field %q doesn't match signer public key %q", got, want) } } }) } } func TestParseEncryptedPrivateKeysWithIncorrectPassphrase(t *testing.T) { pem := testdata.PEMEncryptedKeys[0].PEMBytes for i := 0; i < 4096; i++ { _, err := ParseRawPrivateKeyWithPassphrase(pem, []byte(fmt.Sprintf("%d", i))) if !errors.Is(err, x509.IncorrectPasswordError) { t.Fatalf("expected error: %v, got: %v", x509.IncorrectPasswordError, err) } } } func TestParseDSA(t *testing.T) { // We actually exercise the ParsePrivateKey codepath here, as opposed to // using the ParseRawPrivateKey+NewSignerFromKey path that testdata_test.go // uses. s, err := ParsePrivateKey(testdata.PEMBytes["dsa"]) if err != nil { t.Fatalf("ParsePrivateKey returned error: %s", err) } data := []byte("sign me") sig, err := s.Sign(rand.Reader, data) if err != nil { t.Fatalf("dsa.Sign: %v", err) } if err := s.PublicKey().Verify(data, sig); err != nil { t.Errorf("Verify failed: %v", err) } } // Tests for authorized_keys parsing. // getTestKey returns a public key, and its base64 encoding. func getTestKey() (PublicKey, string) { k := testPublicKeys["rsa"] b := &bytes.Buffer{} e := base64.NewEncoder(base64.StdEncoding, b) e.Write(k.Marshal()) e.Close() return k, b.String() } func TestMarshalParsePublicKey(t *testing.T) { pub, pubSerialized := getTestKey() line := fmt.Sprintf("%s %s user@host", pub.Type(), pubSerialized) authKeys := MarshalAuthorizedKey(pub) actualFields := strings.Fields(string(authKeys)) if len(actualFields) == 0 { t.Fatalf("failed authKeys: %v", authKeys) } // drop the comment expectedFields := strings.Fields(line)[0:2] if !reflect.DeepEqual(actualFields, expectedFields) { t.Errorf("got %v, expected %v", actualFields, expectedFields) } actPub, _, _, _, err := ParseAuthorizedKey([]byte(line)) if err != nil { t.Fatalf("cannot parse %v: %v", line, err) } if !reflect.DeepEqual(actPub, pub) { t.Errorf("got %v, expected %v", actPub, pub) } } func TestMarshalPrivateKey(t *testing.T) { tests := []struct { name string }{ {"rsa-openssh-format"}, {"ed25519"}, {"p256-openssh-format"}, {"p384-openssh-format"}, {"p521-openssh-format"}, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { expected, ok := testPrivateKeys[tt.name] if !ok { t.Fatalf("cannot find key %s", tt.name) } block, err := MarshalPrivateKey(expected, "test@golang.org") if err != nil { t.Fatalf("cannot marshal %s: %v", tt.name, err) } key, err := ParseRawPrivateKey(pem.EncodeToMemory(block)) if err != nil { t.Fatalf("cannot parse %s: %v", tt.name, err) } if !reflect.DeepEqual(expected, key) { t.Errorf("unexpected marshaled key %s", tt.name) } }) } } func TestMarshalPrivateKeyWithPassphrase(t *testing.T) { tests := []struct { name string }{ {"rsa-openssh-format"}, {"ed25519"}, {"p256-openssh-format"}, {"p384-openssh-format"}, {"p521-openssh-format"}, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { expected, ok := testPrivateKeys[tt.name] if !ok { t.Fatalf("cannot find key %s", tt.name) } block, err := MarshalPrivateKeyWithPassphrase(expected, "test@golang.org", []byte("test-passphrase")) if err != nil { t.Fatalf("cannot marshal %s: %v", tt.name, err) } key, err := ParseRawPrivateKeyWithPassphrase(pem.EncodeToMemory(block), []byte("test-passphrase")) if err != nil { t.Fatalf("cannot parse %s: %v", tt.name, err) } if !reflect.DeepEqual(expected, key) { t.Errorf("unexpected marshaled key %s", tt.name) } }) } } type testAuthResult struct { pubKey PublicKey options []string comments string rest string ok bool } func testAuthorizedKeys(t *testing.T, authKeys []byte, expected []testAuthResult) { rest := authKeys var values []testAuthResult for len(rest) > 0 { var r testAuthResult var err error r.pubKey, r.comments, r.options, rest, err = ParseAuthorizedKey(rest) r.ok = (err == nil) t.Log(err) r.rest = string(rest) values = append(values, r) } if !reflect.DeepEqual(values, expected) { t.Errorf("got %#v, expected %#v", values, expected) } } func TestAuthorizedKeyBasic(t *testing.T) { pub, pubSerialized := getTestKey() line := "ssh-rsa " + pubSerialized + " user@host" testAuthorizedKeys(t, []byte(line), []testAuthResult{ {pub, nil, "user@host", "", true}, }) } func TestAuth(t *testing.T) { pub, pubSerialized := getTestKey() authWithOptions := []string{ `# comments to ignore before any keys...`, ``, `env="HOME=/home/root",no-port-forwarding ssh-rsa ` + pubSerialized + ` user@host`, `# comments to ignore, along with a blank line`, ``, `env="HOME=/home/root2" ssh-rsa ` + pubSerialized + ` user2@host2`, ``, `# more comments, plus a invalid entry`, `ssh-rsa data-that-will-not-parse user@host3`, } for _, eol := range []string{"\n", "\r\n"} { authOptions := strings.Join(authWithOptions, eol) rest2 := strings.Join(authWithOptions[3:], eol) rest3 := strings.Join(authWithOptions[6:], eol) testAuthorizedKeys(t, []byte(authOptions), []testAuthResult{ {pub, []string{`env="HOME=/home/root"`, "no-port-forwarding"}, "user@host", rest2, true}, {pub, []string{`env="HOME=/home/root2"`}, "user2@host2", rest3, true}, {nil, nil, "", "", false}, }) } } func TestAuthWithQuotedSpaceInEnv(t *testing.T) { pub, pubSerialized := getTestKey() authWithQuotedSpaceInEnv := []byte(`env="HOME=/home/root dir",no-port-forwarding ssh-rsa ` + pubSerialized + ` user@host`) testAuthorizedKeys(t, []byte(authWithQuotedSpaceInEnv), []testAuthResult{ {pub, []string{`env="HOME=/home/root dir"`, "no-port-forwarding"}, "user@host", "", true}, }) } func TestAuthWithQuotedCommaInEnv(t *testing.T) { pub, pubSerialized := getTestKey() authWithQuotedCommaInEnv := []byte(`env="HOME=/home/root,dir",no-port-forwarding ssh-rsa ` + pubSerialized + ` user@host`) testAuthorizedKeys(t, []byte(authWithQuotedCommaInEnv), []testAuthResult{ {pub, []string{`env="HOME=/home/root,dir"`, "no-port-forwarding"}, "user@host", "", true}, }) } func TestAuthWithQuotedQuoteInEnv(t *testing.T) { pub, pubSerialized := getTestKey() authWithQuotedQuoteInEnv := []byte(`env="HOME=/home/\"root dir",no-port-forwarding` + "\t" + `ssh-rsa` + "\t" + pubSerialized + ` user@host`) authWithDoubleQuotedQuote := []byte(`no-port-forwarding,env="HOME=/home/ \"root dir\"" ssh-rsa ` + pubSerialized + "\t" + `user@host`) testAuthorizedKeys(t, []byte(authWithQuotedQuoteInEnv), []testAuthResult{ {pub, []string{`env="HOME=/home/\"root dir"`, "no-port-forwarding"}, "user@host", "", true}, }) testAuthorizedKeys(t, []byte(authWithDoubleQuotedQuote), []testAuthResult{ {pub, []string{"no-port-forwarding", `env="HOME=/home/ \"root dir\""`}, "user@host", "", true}, }) } func TestAuthWithInvalidSpace(t *testing.T) { _, pubSerialized := getTestKey() authWithInvalidSpace := []byte(`env="HOME=/home/root dir", no-port-forwarding ssh-rsa ` + pubSerialized + ` user@host #more to follow but still no valid keys`) testAuthorizedKeys(t, []byte(authWithInvalidSpace), []testAuthResult{ {nil, nil, "", "", false}, }) } func TestAuthWithMissingQuote(t *testing.T) { pub, pubSerialized := getTestKey() authWithMissingQuote := []byte(`env="HOME=/home/root,no-port-forwarding ssh-rsa ` + pubSerialized + ` user@host env="HOME=/home/root",shared-control ssh-rsa ` + pubSerialized + ` user@host`) testAuthorizedKeys(t, []byte(authWithMissingQuote), []testAuthResult{ {pub, []string{`env="HOME=/home/root"`, `shared-control`}, "user@host", "", true}, }) } func TestInvalidEntry(t *testing.T) { authInvalid := []byte(`ssh-rsa`) _, _, _, _, err := ParseAuthorizedKey(authInvalid) if err == nil { t.Errorf("got valid entry for %q", authInvalid) } } var knownHostsParseTests = []struct { input string err string marker string comment string hosts []string rest string }{ { "", "EOF", "", "", nil, "", }, { "# Just a comment", "EOF", "", "", nil, "", }, { " \t ", "EOF", "", "", nil, "", }, { "localhost ssh-rsa {RSAPUB}", "", "", "", []string{"localhost"}, "", }, { "localhost\tssh-rsa {RSAPUB}", "", "", "", []string{"localhost"}, "", }, { "localhost\tssh-rsa {RSAPUB}\tcomment comment", "", "", "comment comment", []string{"localhost"}, "", }, { "localhost\tssh-rsa {RSAPUB}\tcomment comment\n", "", "", "comment comment", []string{"localhost"}, "", }, { "localhost\tssh-rsa {RSAPUB}\tcomment comment\r\n", "", "", "comment comment", []string{"localhost"}, "", }, { "localhost\tssh-rsa {RSAPUB}\tcomment comment\r\nnext line", "", "", "comment comment", []string{"localhost"}, "next line", }, { "localhost,[host2:123]\tssh-rsa {RSAPUB}\tcomment comment", "", "", "comment comment", []string{"localhost", "[host2:123]"}, "", }, { "@marker \tlocalhost,[host2:123]\tssh-rsa {RSAPUB}", "", "marker", "", []string{"localhost", "[host2:123]"}, "", }, { "@marker \tlocalhost,[host2:123]\tssh-rsa aabbccdd", "short read", "", "", nil, "", }, } func TestKnownHostsParsing(t *testing.T) { rsaPub, rsaPubSerialized := getTestKey() for i, test := range knownHostsParseTests { var expectedKey PublicKey const rsaKeyToken = "{RSAPUB}" input := test.input if strings.Contains(input, rsaKeyToken) { expectedKey = rsaPub input = strings.Replace(test.input, rsaKeyToken, rsaPubSerialized, -1) } marker, hosts, pubKey, comment, rest, err := ParseKnownHosts([]byte(input)) if err != nil { if len(test.err) == 0 { t.Errorf("#%d: unexpectedly failed with %q", i, err) } else if !strings.Contains(err.Error(), test.err) { t.Errorf("#%d: expected error containing %q, but got %q", i, test.err, err) } continue } else if len(test.err) != 0 { t.Errorf("#%d: succeeded but expected error including %q", i, test.err) continue } if !reflect.DeepEqual(expectedKey, pubKey) { t.Errorf("#%d: expected key %#v, but got %#v", i, expectedKey, pubKey) } if marker != test.marker { t.Errorf("#%d: expected marker %q, but got %q", i, test.marker, marker) } if comment != test.comment { t.Errorf("#%d: expected comment %q, but got %q", i, test.comment, comment) } if !reflect.DeepEqual(test.hosts, hosts) { t.Errorf("#%d: expected hosts %#v, but got %#v", i, test.hosts, hosts) } if rest := string(rest); rest != test.rest { t.Errorf("#%d: expected remaining input to be %q, but got %q", i, test.rest, rest) } } } func TestFingerprintLegacyMD5(t *testing.T) { pub, _ := getTestKey() fingerprint := FingerprintLegacyMD5(pub) want := "fb:61:6d:1a:e3:f0:95:45:3c:a0:79:be:4a:93:63:66" // ssh-keygen -lf -E md5 rsa if fingerprint != want { t.Errorf("got fingerprint %q want %q", fingerprint, want) } } func TestFingerprintSHA256(t *testing.T) { pub, _ := getTestKey() fingerprint := FingerprintSHA256(pub) want := "SHA256:Anr3LjZK8YVpjrxu79myrW9Hrb/wpcMNpVvTq/RcBm8" // ssh-keygen -lf rsa if fingerprint != want { t.Errorf("got fingerprint %q want %q", fingerprint, want) } } func TestInvalidKeys(t *testing.T) { keyTypes := []string{ "RSA PRIVATE KEY", "PRIVATE KEY", "EC PRIVATE KEY", "DSA PRIVATE KEY", "OPENSSH PRIVATE KEY", } for _, keyType := range keyTypes { for _, dataLen := range []int{0, 1, 2, 5, 10, 20} { data := make([]byte, dataLen) if _, err := io.ReadFull(rand.Reader, data); err != nil { t.Fatal(err) } var buf bytes.Buffer pem.Encode(&buf, &pem.Block{ Type: keyType, Bytes: data, }) // This test is just to ensure that the function // doesn't panic so the return value is ignored. ParseRawPrivateKey(buf.Bytes()) } } } func TestSKKeys(t *testing.T) { for _, d := range testdata.SKData { pk, _, _, _, err := ParseAuthorizedKey(d.PubKey) if err != nil { t.Fatalf("parseAuthorizedKey returned error: %v", err) } sigBuf := make([]byte, hex.DecodedLen(len(d.HexSignature))) if _, err := hex.Decode(sigBuf, d.HexSignature); err != nil { t.Fatalf("hex.Decode() failed: %v", err) } dataBuf := make([]byte, hex.DecodedLen(len(d.HexData))) if _, err := hex.Decode(dataBuf, d.HexData); err != nil { t.Fatalf("hex.Decode() failed: %v", err) } sig, _, ok := parseSignature(sigBuf) if !ok { t.Fatalf("parseSignature(%v) failed", sigBuf) } // Test that good data and signature pass verification if err := pk.Verify(dataBuf, sig); err != nil { t.Errorf("%s: PublicKey.Verify(%v, %v) failed: %v", d.Name, dataBuf, sig, err) } // Invalid data being passed in invalidData := []byte("INVALID DATA") if err := pk.Verify(invalidData, sig); err == nil { t.Errorf("%s with invalid data: PublicKey.Verify(%v, %v) passed unexpectedly", d.Name, invalidData, sig) } // Change byte in blob to corrup signature sig.Blob[5] = byte('A') // Corrupted data being passed in if err := pk.Verify(dataBuf, sig); err == nil { t.Errorf("%s with corrupted signature: PublicKey.Verify(%v, %v) passed unexpectedly", d.Name, dataBuf, sig) } } } func TestNewSignerWithAlgos(t *testing.T) { algorithSigner, ok := testSigners["rsa"].(AlgorithmSigner) if !ok { t.Fatal("rsa test signer does not implement the AlgorithmSigner interface") } _, err := NewSignerWithAlgorithms(algorithSigner, nil) if err == nil { t.Error("signer with algos created with no algorithms") } _, err = NewSignerWithAlgorithms(algorithSigner, []string{KeyAlgoED25519}) if err == nil { t.Error("signer with algos created with invalid algorithms") } _, err = NewSignerWithAlgorithms(algorithSigner, []string{CertAlgoRSASHA256v01}) if err == nil { t.Error("signer with algos created with certificate algorithms") } mas, err := NewSignerWithAlgorithms(algorithSigner, []string{KeyAlgoRSASHA256, KeyAlgoRSASHA512}) if err != nil { t.Errorf("unable to create signer with valid algorithms: %v", err) } _, err = NewSignerWithAlgorithms(mas, []string{KeyAlgoRSA}) if err == nil { t.Error("signer with algos created with restricted algorithms") } }