// Copyright 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // linux/mkall.go - Generates all Linux zsysnum, zsyscall, zerror, and ztype // files for all Linux architectures supported by the go compiler. See // README.md for more information about the build system. // To run it you must have a git checkout of the Linux kernel and glibc. Once // the appropriate sources are ready, the program is run as: // go run linux/mkall.go //go:build ignore package main import ( "bufio" "bytes" "debug/elf" "encoding/binary" "errors" "fmt" "go/build/constraint" "io" "os" "os/exec" "path/filepath" "runtime" "strings" "sync" "unicode" ) // These will be paths to the appropriate source directories. var LinuxDir string var GlibcDir string const TempDir = "/tmp" const GOOS = "linux" // Only for Linux targets const BuildArch = "amd64" // Must be built on this architecture const MinKernel = "2.6.23" // https://golang.org/doc/install#requirements type target struct { GoArch string // Architecture name according to Go LinuxArch string // Architecture name according to the Linux Kernel GNUArch string // Architecture name according to GNU tools (https://wiki.debian.org/Multiarch/Tuples) BigEndian bool // Default Little Endian SignedChar bool // Is -fsigned-char needed (default no) Bits int env []string stderrBuf bytes.Buffer compiler string } // List of all Linux targets supported by the go compiler. Currently, sparc64 is // not fully supported, but there is enough support already to generate Go type // and error definitions. var targets = []target{ { GoArch: "386", LinuxArch: "x86", GNUArch: "i686-linux-gnu", // Note "i686" not "i386" Bits: 32, }, { GoArch: "amd64", LinuxArch: "x86", GNUArch: "x86_64-linux-gnu", Bits: 64, }, { GoArch: "arm64", LinuxArch: "arm64", GNUArch: "aarch64-linux-gnu", SignedChar: true, Bits: 64, }, { GoArch: "arm", LinuxArch: "arm", GNUArch: "arm-linux-gnueabi", Bits: 32, }, { GoArch: "loong64", LinuxArch: "loongarch", GNUArch: "loongarch64-linux-gnu", Bits: 64, }, { GoArch: "mips", LinuxArch: "mips", GNUArch: "mips-linux-gnu", BigEndian: true, Bits: 32, }, { GoArch: "mipsle", LinuxArch: "mips", GNUArch: "mipsel-linux-gnu", Bits: 32, }, { GoArch: "mips64", LinuxArch: "mips", GNUArch: "mips64-linux-gnuabi64", BigEndian: true, Bits: 64, }, { GoArch: "mips64le", LinuxArch: "mips", GNUArch: "mips64el-linux-gnuabi64", Bits: 64, }, { GoArch: "ppc", LinuxArch: "powerpc", GNUArch: "powerpc-linux-gnu", BigEndian: true, Bits: 32, }, { GoArch: "ppc64", LinuxArch: "powerpc", GNUArch: "powerpc64-linux-gnu", BigEndian: true, Bits: 64, }, { GoArch: "ppc64le", LinuxArch: "powerpc", GNUArch: "powerpc64le-linux-gnu", Bits: 64, }, { GoArch: "riscv64", LinuxArch: "riscv", GNUArch: "riscv64-linux-gnu", Bits: 64, }, { GoArch: "s390x", LinuxArch: "s390", GNUArch: "s390x-linux-gnu", BigEndian: true, SignedChar: true, Bits: 64, }, { GoArch: "sparc64", LinuxArch: "sparc", GNUArch: "sparc64-linux-gnu", BigEndian: true, Bits: 64, }, } // ptracePairs is a list of pairs of targets that can, in some cases, // run each other's binaries. 'archName' is the combined name of 'a1' // and 'a2', which is used in the file name. Generally we use an 'x' // suffix in the file name to indicate that the file works for both // big-endian and little-endian, here we use 'nn' to indicate that this // file is suitable for 32-bit and 64-bit. var ptracePairs = []struct{ a1, a2, archName string }{ {"386", "amd64", "x86"}, {"arm", "arm64", "armnn"}, {"mips", "mips64", "mipsnn"}, {"mipsle", "mips64le", "mipsnnle"}, } func main() { if runtime.GOOS != GOOS || runtime.GOARCH != BuildArch { fmt.Printf("Build system has GOOS_GOARCH = %s_%s, need %s_%s\n", runtime.GOOS, runtime.GOARCH, GOOS, BuildArch) return } // Check that we are using the new build system if we should if os.Getenv("GOLANG_SYS_BUILD") != "docker" { fmt.Println("In the new build system, mkall.go should not be called directly.") fmt.Println("See README.md") return } // Parse the command line options if len(os.Args) != 3 { fmt.Println("USAGE: go run linux/mkall.go ") return } LinuxDir = os.Args[1] GlibcDir = os.Args[2] wg := sync.WaitGroup{} for _, t := range targets { fmt.Printf("arch %s: GENERATING\n", t.GoArch) if err := t.setupEnvironment(); err != nil { fmt.Printf("arch %s: could not setup environment: %v\n", t.GoArch, err) break } includeDir := filepath.Join(TempDir, t.GoArch, "include") // Make the include directory and fill it with headers if err := os.MkdirAll(includeDir, os.ModePerm); err != nil { fmt.Printf("arch %s: could not make directory: %v\n", t.GoArch, err) break } // During header generation "/git/linux/scripts/basic/fixdep" is created by "basic/Makefile" for each // instance of "make headers_install". This leads to a "text file is busy" error from any running // "make headers_install" after the first one's target. Workaround is to serialize header generation if err := t.makeHeaders(); err != nil { fmt.Printf("arch %s: could not make header files: %v\n", t.GoArch, err) break } wg.Add(1) go func(t target) { defer wg.Done() fmt.Printf("arch %s: header files generated\n", t.GoArch) if err := t.generateFiles(); err != nil { fmt.Printf("%v\n***** FAILURE: %s *****\n\n", err, t.GoArch) } else { fmt.Printf("arch %s: SUCCESS\n", t.GoArch) } }(t) } wg.Wait() fmt.Printf("----- GENERATING: merging generated files -----\n") if err := mergeFiles(); err != nil { fmt.Printf("%v\n***** FAILURE: merging generated files *****\n\n", err) } else { fmt.Printf("----- SUCCESS: merging generated files -----\n\n") } fmt.Printf("----- GENERATING ptrace pairs -----\n") ok := true for _, p := range ptracePairs { if err := generatePtracePair(p.a1, p.a2, p.archName); err != nil { fmt.Printf("%v\n***** FAILURE: %s/%s *****\n\n", err, p.a1, p.a2) ok = false } } // generate functions PtraceGetRegSetArm64 and PtraceSetRegSetArm64. if err := generatePtraceRegSet("arm64"); err != nil { fmt.Printf("%v\n***** FAILURE: generatePtraceRegSet(%q) *****\n\n", err, "arm64") ok = false } if ok { fmt.Printf("----- SUCCESS ptrace pairs -----\n\n") } } func (t *target) printAndResetBuilder() { if t.stderrBuf.Len() > 0 { for _, l := range bytes.Split(t.stderrBuf.Bytes(), []byte{'\n'}) { fmt.Printf("arch %s: stderr: %s\n", t.GoArch, l) } t.stderrBuf.Reset() } } // Makes an exec.Cmd with Stderr attached to the target string Builder, and target environment func (t *target) makeCommand(name string, args ...string) *exec.Cmd { cmd := exec.Command(name, args...) cmd.Env = t.env cmd.Stderr = &t.stderrBuf return cmd } // Set GOARCH for target and build environments. func (t *target) setTargetBuildArch(cmd *exec.Cmd) { // Set GOARCH_TARGET so command knows what GOARCH is.. var env []string env = append(env, t.env...) cmd.Env = append(env, "GOARCH_TARGET="+t.GoArch) // Set GOARCH to host arch for command, so it can run natively. for i, s := range cmd.Env { if strings.HasPrefix(s, "GOARCH=") { cmd.Env[i] = "GOARCH=" + BuildArch } } } // Runs the command, pipes output to a formatter, pipes that to an output file. func (t *target) commandFormatOutput(formatter string, outputFile string, name string, args ...string) (err error) { mainCmd := t.makeCommand(name, args...) if name == "mksyscall" { args = append([]string{"run", "mksyscall.go"}, args...) mainCmd = t.makeCommand("go", args...) t.setTargetBuildArch(mainCmd) } else if name == "mksysnum" { args = append([]string{"run", "linux/mksysnum.go"}, args...) mainCmd = t.makeCommand("go", args...) t.setTargetBuildArch(mainCmd) } fmtCmd := t.makeCommand(formatter) if formatter == "mkpost" { fmtCmd = t.makeCommand("go", "run", "mkpost.go") t.setTargetBuildArch(fmtCmd) } else if formatter == "gofmt2" { fmtCmd = t.makeCommand("gofmt") mainCmd.Dir = filepath.Join(TempDir, t.GoArch, "mkerrors") if err = os.MkdirAll(mainCmd.Dir, os.ModePerm); err != nil { return err } } defer t.printAndResetBuilder() // mainCmd | fmtCmd > outputFile if fmtCmd.Stdin, err = mainCmd.StdoutPipe(); err != nil { return } if fmtCmd.Stdout, err = os.Create(outputFile); err != nil { return } // Make sure the formatter eventually closes if err = fmtCmd.Start(); err != nil { return } defer func() { fmtErr := fmtCmd.Wait() if err == nil { err = fmtErr } }() return mainCmd.Run() } func (t *target) setupEnvironment() error { // Setup environment variables t.env = append(os.Environ(), fmt.Sprintf("%s=%s", "GOOS", GOOS)) t.env = append(t.env, fmt.Sprintf("%s=%s", "GOARCH", t.GoArch)) // Get appropriate compiler and emulator (unless on x86) if t.LinuxArch != "x86" { // Check/Setup cross compiler t.compiler = t.GNUArch + "-gcc" if _, err := exec.LookPath(t.compiler); err != nil { return err } t.env = append(t.env, fmt.Sprintf("%s=%s", "CC", t.compiler)) // Check/Setup emulator (usually first component of GNUArch) qemuArchName := t.GNUArch[:strings.Index(t.GNUArch, "-")] if t.LinuxArch == "powerpc" { qemuArchName = t.GoArch } // Fake uname for QEMU to allow running on Host kernel version < 4.15 if t.LinuxArch == "riscv" { t.env = append(t.env, fmt.Sprintf("%s=%s", "QEMU_UNAME", "4.15")) } t.env = append(t.env, fmt.Sprintf("%s=%s", "GORUN", "qemu-"+qemuArchName)) } else { t.compiler = "gcc" t.env = append(t.env, fmt.Sprintf("%s=%s", "CC", "gcc")) } return nil } // Generates all the files for a Linux target func (t *target) generateFiles() error { // Make each of the four files if err := t.makeZSysnumFile(); err != nil { return fmt.Errorf("could not make zsysnum file: %v", err) } fmt.Printf("arch %s: zsysnum file generated\n", t.GoArch) if err := t.makeZSyscallFile(); err != nil { return fmt.Errorf("could not make zsyscall file: %v", err) } fmt.Printf("arch %s: zsyscall file generated\n", t.GoArch) if err := t.makeZTypesFile(); err != nil { return fmt.Errorf("could not make ztypes file: %v", err) } fmt.Printf("arch %s: ztypes file generated\n", t.GoArch) if err := t.makeZErrorsFile(); err != nil { return fmt.Errorf("could not make zerrors file: %v", err) } fmt.Printf("arch %s: zerrors file generated\n", t.GoArch) return nil } // Create the Linux, glibc and ABI (C compiler convention) headers in the include directory. func (t *target) makeHeaders() error { defer t.printAndResetBuilder() // Make the Linux headers we need for this architecture linuxMake := t.makeCommand("make", "headers_install", "ARCH="+t.LinuxArch, "INSTALL_HDR_PATH="+filepath.Join(TempDir, t.GoArch)) linuxMake.Dir = LinuxDir if err := linuxMake.Run(); err != nil { return err } buildDir := filepath.Join(TempDir, t.GoArch, "build") // A Temporary build directory for glibc if err := os.MkdirAll(buildDir, os.ModePerm); err != nil { return err } defer os.RemoveAll(buildDir) // Make the glibc headers we need for this architecture confScript := filepath.Join(GlibcDir, "configure") glibcArgs := []string{"--prefix=" + filepath.Join(TempDir, t.GoArch), "--host=" + t.GNUArch} if t.LinuxArch == "loongarch" { // The minimum version requirement of the Loongarch for the kernel in glibc // is 5.19, if --enable-kernel is less than 5.19, glibc handles errors glibcArgs = append(glibcArgs, "--enable-kernel=5.19.0") } else { glibcArgs = append(glibcArgs, "--enable-kernel="+MinKernel) } glibcConf := t.makeCommand(confScript, glibcArgs...) glibcConf.Dir = buildDir if err := glibcConf.Run(); err != nil { return err } glibcMake := t.makeCommand("make", "install-headers") glibcMake.Dir = buildDir if err := glibcMake.Run(); err != nil { return err } // We only need an empty stubs file stubsFile := filepath.Join(TempDir, t.GoArch, "include", "gnu", "stubs.h") if file, err := os.Create(stubsFile); err != nil { return err } else { file.Close() } // ABI headers will specify C compiler behavior for the target platform. return t.makeABIHeaders() } // makeABIHeaders generates C header files based on the platform's calling convention. // While many platforms have formal Application Binary Interfaces, in practice, whatever the // dominant C compilers generate is the de-facto calling convention. // // We generate C headers instead of a Go file, so as to enable references to the ABI from Cgo. func (t *target) makeABIHeaders() (err error) { abiDir := filepath.Join(TempDir, t.GoArch, "include", "abi") if err = os.Mkdir(abiDir, os.ModePerm); err != nil { return err } if t.compiler == "" { return errors.New("CC (compiler) env var not set") } // Build a sacrificial ELF file, to mine for C compiler behavior. binPath := filepath.Join(TempDir, t.GoArch, "tmp_abi.o") bin, err := t.buildELF(t.compiler, cCode, binPath) if err != nil { return fmt.Errorf("cannot build ELF to analyze: %v", err) } defer bin.Close() defer os.Remove(binPath) // Right now, we put everything in abi.h, but we may change this later. abiFile, err := os.Create(filepath.Join(abiDir, "abi.h")) if err != nil { return err } defer func() { if cerr := abiFile.Close(); cerr != nil && err == nil { err = cerr } }() if err = t.writeBitFieldMasks(bin, abiFile); err != nil { return fmt.Errorf("cannot write bitfield masks: %v", err) } return nil } func (t *target) buildELF(cc, src, path string) (*elf.File, error) { // Compile the cCode source using the set compiler - we will need its .data section. // Do not link the binary, so that we can find .data section offsets from the symbol values. ccCmd := t.makeCommand(cc, "-o", path, "-gdwarf", "-x", "c", "-c", "-") ccCmd.Stdin = strings.NewReader(src) ccCmd.Stdout = os.Stdout defer t.printAndResetBuilder() if err := ccCmd.Run(); err != nil { return nil, fmt.Errorf("compiler error: %v", err) } bin, err := elf.Open(path) if err != nil { return nil, fmt.Errorf("cannot read ELF file %s: %v", path, err) } return bin, nil } func (t *target) writeBitFieldMasks(bin *elf.File, out io.Writer) error { symbols, err := bin.Symbols() if err != nil { return fmt.Errorf("getting ELF symbols: %v", err) } var masksSym *elf.Symbol for _, sym := range symbols { if sym.Name == "masks" { masksSym = &sym } } if masksSym == nil { return errors.New("could not find the 'masks' symbol in ELF symtab") } dataSection := bin.Section(".data") if dataSection == nil { return errors.New("ELF file has no .data section") } data, err := dataSection.Data() if err != nil { return fmt.Errorf("could not read .data section: %v\n", err) } var bo binary.ByteOrder if t.BigEndian { bo = binary.BigEndian } else { bo = binary.LittleEndian } // 64 bit masks of type uint64 are stored in the data section starting at masks.Value. // Here we are running on AMD64, but these values may be big endian or little endian, // depending on target architecture. for i := uint64(0); i < 64; i++ { off := masksSym.Value + i*8 // Define each mask in native by order, so as to match target endian. fmt.Fprintf(out, "#define BITFIELD_MASK_%d %dULL\n", i, bo.Uint64(data[off:off+8])) } return nil } // makes the zsysnum_linux_$GOARCH.go file func (t *target) makeZSysnumFile() error { zsysnumFile := fmt.Sprintf("zsysnum_linux_%s.go", t.GoArch) unistdFile := filepath.Join(TempDir, t.GoArch, "include", "asm", "unistd.h") args := append(t.cFlags(), unistdFile) return t.commandFormatOutput("gofmt", zsysnumFile, "mksysnum", args...) } // makes the zsyscall_linux_$GOARCH.go file func (t *target) makeZSyscallFile() error { zsyscallFile := fmt.Sprintf("zsyscall_linux_%s.go", t.GoArch) // Find the correct architecture syscall file (might end with x.go) archSyscallFile := fmt.Sprintf("syscall_linux_%s.go", t.GoArch) if _, err := os.Stat(archSyscallFile); os.IsNotExist(err) { shortArch := strings.TrimSuffix(t.GoArch, "le") archSyscallFile = fmt.Sprintf("syscall_linux_%sx.go", shortArch) } args := append(t.mksyscallFlags(), "-tags", "linux,"+t.GoArch, "syscall_linux.go", archSyscallFile, ) files, err := t.archMksyscallFiles() if err != nil { return fmt.Errorf("failed to check GOARCH-specific mksyscall files: %v", err) } args = append(args, files...) return t.commandFormatOutput("gofmt", zsyscallFile, "mksyscall", args...) } // archMksyscallFiles produces additional file arguments to mksyscall if the // build constraints in those files match those defined for target. func (t *target) archMksyscallFiles() ([]string, error) { // These input files don't fit the typical GOOS/GOARCH file name conventions // but are included conditionally in the arguments to mksyscall based on // whether or not the target matches the build constraints defined in each // file. // // TODO(mdlayher): it should be possible to generalize this approach to work // over all of syscall_linux_* rather than hard-coding a few special files. // Investigate this. inputs := []string{ // GOARCH: all except arm* and riscv. "syscall_linux_alarm.go", } var outputs []string for _, in := range inputs { ok, err := t.matchesMksyscallFile(in) if err != nil { return nil, fmt.Errorf("failed to parse file %q: %v", in, err) } if ok { // Constraints match, use for this target's code generation. outputs = append(outputs, in) } } return outputs, nil } // matchesMksyscallFile reports whether the input file contains constraints // which match those defined for target. func (t *target) matchesMksyscallFile(file string) (bool, error) { f, err := os.Open(file) if err != nil { return false, err } defer f.Close() var ( expr constraint.Expr found bool ) s := bufio.NewScanner(f) for s.Scan() { // Keep scanning until a valid constraint is found or we hit EOF. // This is sufficient for the single-line //go:build constraints. if expr, err = constraint.Parse(s.Text()); err == nil { found = true break } } if err := s.Err(); err != nil { return false, err } if !found { return false, errors.New("no build constraints found") } // Do the defined constraints match target's GOOS/GOARCH? ok := expr.Eval(func(tag string) bool { return tag == GOOS || tag == t.GoArch }) return ok, nil } // makes the zerrors_linux_$GOARCH.go file func (t *target) makeZErrorsFile() error { zerrorsFile := fmt.Sprintf("zerrors_linux_%s.go", t.GoArch) return t.commandFormatOutput("gofmt2", zerrorsFile, "/"+filepath.Join("build", "unix", "mkerrors.sh"), t.cFlags()...) } // makes the ztypes_linux_$GOARCH.go file func (t *target) makeZTypesFile() error { ztypesFile := fmt.Sprintf("ztypes_linux_%s.go", t.GoArch) cgoDir := filepath.Join(TempDir, t.GoArch, "cgo") if err := os.MkdirAll(cgoDir, os.ModePerm); err != nil { return err } args := []string{"tool", "cgo", "-godefs", "-objdir=" + cgoDir, "--"} args = append(args, t.cFlags()...) args = append(args, "linux/types.go") return t.commandFormatOutput("mkpost", ztypesFile, "go", args...) } // Flags that should be given to gcc and cgo for this target func (t *target) cFlags() []string { // Compile statically to avoid cross-architecture dynamic linking. flags := []string{"-Wall", "-Werror", "-static", "-I" + filepath.Join(TempDir, t.GoArch, "include")} // Architecture-specific flags if t.SignedChar { flags = append(flags, "-fsigned-char") } if t.LinuxArch == "x86" { flags = append(flags, fmt.Sprintf("-m%d", t.Bits)) } return flags } // Flags that should be given to mksyscall for this target func (t *target) mksyscallFlags() (flags []string) { if t.Bits == 32 { if t.BigEndian { flags = append(flags, "-b32") } else { flags = append(flags, "-l32") } } // This flag means a 64-bit value should use (even, odd)-pair. if t.GoArch == "arm" || (t.LinuxArch == "mips" && t.Bits == 32) { flags = append(flags, "-arm") } return } // Merge all the generated files for Linux targets func mergeFiles() error { // Setup environment variables os.Setenv("GOOS", runtime.GOOS) os.Setenv("GOARCH", runtime.GOARCH) // Merge each of the four type of files for _, ztyp := range []string{"zerrors", "zsyscall", "zsysnum", "ztypes"} { cmd := exec.Command("go", "run", "./internal/mkmerge", "-out", fmt.Sprintf("%s_%s.go", ztyp, GOOS), fmt.Sprintf("%s_%s_*.go", ztyp, GOOS)) cmd.Stderr = os.Stderr err := cmd.Run() if err != nil { return fmt.Errorf("could not merge %s files: %w", ztyp, err) } fmt.Printf("%s files merged\n", ztyp) } return nil } // generatePtracePair takes a pair of GOARCH values that can run each // other's binaries, such as 386 and amd64. It extracts the PtraceRegs // type for each one. It writes a new file defining the types // PtraceRegsArch1 and PtraceRegsArch2 and the corresponding functions // Ptrace{Get,Set}Regs{arch1,arch2}. This permits debugging the other // binary on a native system. 'archName' is the combined name of 'arch1' // and 'arch2', which is used in the file name. func generatePtracePair(arch1, arch2, archName string) error { def1, err := ptraceDef(arch1) if err != nil { return err } def2, err := ptraceDef(arch2) if err != nil { return err } f, err := os.Create(fmt.Sprintf("zptrace_%s_linux.go", archName)) if err != nil { return err } buf := bufio.NewWriter(f) fmt.Fprintf(buf, "// Code generated by linux/mkall.go generatePtracePair(%q, %q). DO NOT EDIT.\n", arch1, arch2) fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "//go:build linux && (%s || %s)\n", arch1, arch2) fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "package unix\n") fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "%s\n", `import "unsafe"`) fmt.Fprintf(buf, "\n") writeOnePtrace(buf, arch1, def1) fmt.Fprintf(buf, "\n") writeOnePtrace(buf, arch2, def2) if err := buf.Flush(); err != nil { return err } if err := f.Close(); err != nil { return err } return nil } // generatePtraceRegSet takes a GOARCH value to generate a file zptrace_linux_{arch}.go // containing functions PtraceGetRegSet{arch} and PtraceSetRegSet{arch}. func generatePtraceRegSet(arch string) error { f, err := os.Create(fmt.Sprintf("zptrace_linux_%s.go", arch)) if err != nil { return err } buf := bufio.NewWriter(f) fmt.Fprintf(buf, "// Code generated by linux/mkall.go generatePtraceRegSet(%q). DO NOT EDIT.\n", arch) fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "package unix\n") fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "%s\n", `import "unsafe"`) fmt.Fprintf(buf, "\n") uarch := string(unicode.ToUpper(rune(arch[0]))) + arch[1:] fmt.Fprintf(buf, "// PtraceGetRegSet%s fetches the registers used by %s binaries.\n", uarch, arch) fmt.Fprintf(buf, "func PtraceGetRegSet%s(pid, addr int, regsout *PtraceRegs%s) error {\n", uarch, uarch) fmt.Fprintf(buf, "\tiovec := Iovec{(*byte)(unsafe.Pointer(regsout)), uint64(unsafe.Sizeof(*regsout))}\n") fmt.Fprintf(buf, "\treturn ptracePtr(PTRACE_GETREGSET, pid, uintptr(addr), unsafe.Pointer(&iovec))\n") fmt.Fprintf(buf, "}\n") fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "// PtraceSetRegSet%s sets the registers used by %s binaries.\n", uarch, arch) fmt.Fprintf(buf, "func PtraceSetRegSet%s(pid, addr int, regs *PtraceRegs%s) error {\n", uarch, uarch) fmt.Fprintf(buf, "\tiovec := Iovec{(*byte)(unsafe.Pointer(regs)), uint64(unsafe.Sizeof(*regs))}\n") fmt.Fprintf(buf, "\treturn ptracePtr(PTRACE_SETREGSET, pid, uintptr(addr), unsafe.Pointer(&iovec))\n") fmt.Fprintf(buf, "}\n") if err := buf.Flush(); err != nil { return err } if err := f.Close(); err != nil { return err } return nil } // ptraceDef returns the definition of PtraceRegs for arch. func ptraceDef(arch string) (string, error) { filename := fmt.Sprintf("ztypes_linux_%s.go", arch) data, err := os.ReadFile(filename) if err != nil { return "", fmt.Errorf("reading %s: %v", filename, err) } start := bytes.Index(data, []byte("type PtraceRegs struct")) if start < 0 { return "", fmt.Errorf("%s: no definition of PtraceRegs", filename) } data = data[start:] end := bytes.Index(data, []byte("\n}\n")) if end < 0 { return "", fmt.Errorf("%s: can't find end of PtraceRegs definition", filename) } return string(data[:end+2]), nil } // writeOnePtrace writes out the ptrace definitions for arch. func writeOnePtrace(w io.Writer, arch, def string) { uarch := string(unicode.ToUpper(rune(arch[0]))) + arch[1:] fmt.Fprintf(w, "// PtraceRegs%s is the registers used by %s binaries.\n", uarch, arch) fmt.Fprintf(w, "%s\n", strings.Replace(def, "PtraceRegs", "PtraceRegs"+uarch, 1)) fmt.Fprintf(w, "\n") fmt.Fprintf(w, "// PtraceGetRegs%s fetches the registers used by %s binaries.\n", uarch, arch) fmt.Fprintf(w, "func PtraceGetRegs%s(pid int, regsout *PtraceRegs%s) error {\n", uarch, uarch) fmt.Fprintf(w, "\treturn ptracePtr(PTRACE_GETREGS, pid, 0, unsafe.Pointer(regsout))\n") fmt.Fprintf(w, "}\n") fmt.Fprintf(w, "\n") fmt.Fprintf(w, "// PtraceSetRegs%s sets the registers used by %s binaries.\n", uarch, arch) fmt.Fprintf(w, "func PtraceSetRegs%s(pid int, regs *PtraceRegs%s) error {\n", uarch, uarch) fmt.Fprintf(w, "\treturn ptracePtr(PTRACE_SETREGS, pid, 0, unsafe.Pointer(regs))\n") fmt.Fprintf(w, "}\n") } // cCode is compiled for the target architecture, and the resulting data section is carved for // the statically initialized bit masks. const cCode = ` // Bit fields are used in some system calls and other ABIs, but their memory layout is // implementation-defined [1]. Even with formal ABIs, bit fields are a source of subtle bugs [2]. // Here we generate the offsets for all 64 bits in an uint64. // 1: http://en.cppreference.com/w/c/language/bit_field // 2: https://lwn.net/Articles/478657/ #include struct bitfield { union { uint64_t val; struct { uint64_t u64_bit_0 : 1; uint64_t u64_bit_1 : 1; uint64_t u64_bit_2 : 1; uint64_t u64_bit_3 : 1; uint64_t u64_bit_4 : 1; uint64_t u64_bit_5 : 1; uint64_t u64_bit_6 : 1; uint64_t u64_bit_7 : 1; uint64_t u64_bit_8 : 1; uint64_t u64_bit_9 : 1; uint64_t u64_bit_10 : 1; uint64_t u64_bit_11 : 1; uint64_t u64_bit_12 : 1; uint64_t u64_bit_13 : 1; uint64_t u64_bit_14 : 1; uint64_t u64_bit_15 : 1; uint64_t u64_bit_16 : 1; uint64_t u64_bit_17 : 1; uint64_t u64_bit_18 : 1; uint64_t u64_bit_19 : 1; uint64_t u64_bit_20 : 1; uint64_t u64_bit_21 : 1; uint64_t u64_bit_22 : 1; uint64_t u64_bit_23 : 1; uint64_t u64_bit_24 : 1; uint64_t u64_bit_25 : 1; uint64_t u64_bit_26 : 1; uint64_t u64_bit_27 : 1; uint64_t u64_bit_28 : 1; uint64_t u64_bit_29 : 1; uint64_t u64_bit_30 : 1; uint64_t u64_bit_31 : 1; uint64_t u64_bit_32 : 1; uint64_t u64_bit_33 : 1; uint64_t u64_bit_34 : 1; uint64_t u64_bit_35 : 1; uint64_t u64_bit_36 : 1; uint64_t u64_bit_37 : 1; uint64_t u64_bit_38 : 1; uint64_t u64_bit_39 : 1; uint64_t u64_bit_40 : 1; uint64_t u64_bit_41 : 1; uint64_t u64_bit_42 : 1; uint64_t u64_bit_43 : 1; uint64_t u64_bit_44 : 1; uint64_t u64_bit_45 : 1; uint64_t u64_bit_46 : 1; uint64_t u64_bit_47 : 1; uint64_t u64_bit_48 : 1; uint64_t u64_bit_49 : 1; uint64_t u64_bit_50 : 1; uint64_t u64_bit_51 : 1; uint64_t u64_bit_52 : 1; uint64_t u64_bit_53 : 1; uint64_t u64_bit_54 : 1; uint64_t u64_bit_55 : 1; uint64_t u64_bit_56 : 1; uint64_t u64_bit_57 : 1; uint64_t u64_bit_58 : 1; uint64_t u64_bit_59 : 1; uint64_t u64_bit_60 : 1; uint64_t u64_bit_61 : 1; uint64_t u64_bit_62 : 1; uint64_t u64_bit_63 : 1; }; }; }; struct bitfield masks[] = { {.u64_bit_0 = 1}, {.u64_bit_1 = 1}, {.u64_bit_2 = 1}, {.u64_bit_3 = 1}, {.u64_bit_4 = 1}, {.u64_bit_5 = 1}, {.u64_bit_6 = 1}, {.u64_bit_7 = 1}, {.u64_bit_8 = 1}, {.u64_bit_9 = 1}, {.u64_bit_10 = 1}, {.u64_bit_11 = 1}, {.u64_bit_12 = 1}, {.u64_bit_13 = 1}, {.u64_bit_14 = 1}, {.u64_bit_15 = 1}, {.u64_bit_16 = 1}, {.u64_bit_17 = 1}, {.u64_bit_18 = 1}, {.u64_bit_19 = 1}, {.u64_bit_20 = 1}, {.u64_bit_21 = 1}, {.u64_bit_22 = 1}, {.u64_bit_23 = 1}, {.u64_bit_24 = 1}, {.u64_bit_25 = 1}, {.u64_bit_26 = 1}, {.u64_bit_27 = 1}, {.u64_bit_28 = 1}, {.u64_bit_29 = 1}, {.u64_bit_30 = 1}, {.u64_bit_31 = 1}, {.u64_bit_32 = 1}, {.u64_bit_33 = 1}, {.u64_bit_34 = 1}, {.u64_bit_35 = 1}, {.u64_bit_36 = 1}, {.u64_bit_37 = 1}, {.u64_bit_38 = 1}, {.u64_bit_39 = 1}, {.u64_bit_40 = 1}, {.u64_bit_41 = 1}, {.u64_bit_42 = 1}, {.u64_bit_43 = 1}, {.u64_bit_44 = 1}, {.u64_bit_45 = 1}, {.u64_bit_46 = 1}, {.u64_bit_47 = 1}, {.u64_bit_48 = 1}, {.u64_bit_49 = 1}, {.u64_bit_50 = 1}, {.u64_bit_51 = 1}, {.u64_bit_52 = 1}, {.u64_bit_53 = 1}, {.u64_bit_54 = 1}, {.u64_bit_55 = 1}, {.u64_bit_56 = 1}, {.u64_bit_57 = 1}, {.u64_bit_58 = 1}, {.u64_bit_59 = 1}, {.u64_bit_60 = 1}, {.u64_bit_61 = 1}, {.u64_bit_62 = 1}, {.u64_bit_63 = 1} }; int main(int argc, char **argv) { struct bitfield *mask_ptr = &masks[0]; return mask_ptr->val; } `