// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build linux package unix_test import ( "bufio" "bytes" "encoding/hex" "errors" "fmt" "io" "net" "os" "os/exec" "path/filepath" "runtime" "runtime/debug" "strconv" "strings" "syscall" "testing" "time" "unsafe" "golang.org/x/sys/unix" ) func TestIoctlGetEthtoolDrvinfo(t *testing.T) { if runtime.GOOS == "android" { t.Skip("ethtool driver info is not available on android, skipping test") } s, err := unix.Socket(unix.AF_INET, unix.SOCK_STREAM, 0) if err != nil { t.Fatalf("failed to open socket: %v", err) } defer unix.Close(s) ifis, err := net.Interfaces() if err != nil { t.Fatalf("failed to get network interfaces: %v", err) } // Print the interface name and associated driver information for each // network interface supported by ethtool. for _, ifi := range ifis { drv, err := unix.IoctlGetEthtoolDrvinfo(s, ifi.Name) if err != nil { if err == unix.EOPNOTSUPP { continue } t.Fatalf("failed to get ethtool driver info for %q: %v", ifi.Name, err) } // Trim trailing NULLs. t.Logf("%s: %q", ifi.Name, string(bytes.TrimRight(drv.Driver[:], "\x00"))) } } func TestIoctlGetInt(t *testing.T) { f, err := os.Open("/dev/random") if err != nil { t.Fatalf("failed to open device: %v", err) } defer f.Close() v, err := unix.IoctlGetInt(int(f.Fd()), unix.RNDGETENTCNT) if err != nil { t.Fatalf("failed to perform ioctl: %v", err) } t.Logf("%d bits of entropy available", v) } func TestIoctlRetInt(t *testing.T) { f, err := os.Open("/proc/self/ns/mnt") if err != nil { t.Skipf("skipping test, %v", err) } defer f.Close() v, err := unix.IoctlRetInt(int(f.Fd()), unix.NS_GET_NSTYPE) if err != nil { if err == unix.ENOTTY { t.Skipf("old kernel? (need Linux >= 4.11)") } t.Fatalf("failed to perform ioctl: %v", err) } if v != unix.CLONE_NEWNS { t.Fatalf("unexpected return from ioctl; expected %v, got %v", v, unix.CLONE_NEWNS) } } func TestIoctlGetRTCTime(t *testing.T) { f, err := os.Open("/dev/rtc0") if err != nil { t.Skipf("skipping test, %v", err) } defer f.Close() v, err := unix.IoctlGetRTCTime(int(f.Fd())) if err != nil { t.Fatalf("failed to perform ioctl: %v", err) } t.Logf("RTC time: %04d-%02d-%02d %02d:%02d:%02d", v.Year+1900, v.Mon+1, v.Mday, v.Hour, v.Min, v.Sec) } func TestIoctlGetRTCWkAlrm(t *testing.T) { f, err := os.Open("/dev/rtc0") if err != nil { t.Skipf("skipping test, %v", err) } defer f.Close() v, err := unix.IoctlGetRTCWkAlrm(int(f.Fd())) // Not all RTC drivers support wakeup alarms, and will return EINVAL in such cases. if err == unix.EINVAL { t.Skip("RTC_WKALM_RD ioctl not supported on this rtc, skipping test") } if err != nil { t.Fatalf("failed to perform ioctl: %v", err) } t.Logf("RTC wake alarm enabled '%d'; time: %04d-%02d-%02d %02d:%02d:%02d", v.Enabled, v.Time.Year+1900, v.Time.Mon+1, v.Time.Mday, v.Time.Hour, v.Time.Min, v.Time.Sec) } func TestIoctlIfreq(t *testing.T) { s, err := unix.Socket(unix.AF_INET, unix.SOCK_STREAM, 0) if err != nil { t.Fatalf("failed to open socket: %v", err) } defer unix.Close(s) ifis, err := net.Interfaces() if err != nil { t.Fatalf("failed to get network interfaces: %v", err) } // Compare the network interface fetched from rtnetlink with the data from // the equivalent ioctl API. for _, ifi := range ifis { ifr, err := unix.NewIfreq(ifi.Name) if err != nil { t.Fatalf("failed to create ifreq for %q: %v", ifi.Name, err) } if err := unix.IoctlIfreq(s, unix.SIOCGIFINDEX, ifr); err != nil { t.Fatalf("failed to get interface index for %q: %v", ifi.Name, err) } if want, got := ifi.Index, int(ifr.Uint32()); want != got { t.Fatalf("unexpected interface index for %q: got: %d, want: %d", ifi.Name, got, want) } if want, got := ifi.Name, ifr.Name(); want != got { t.Fatalf("unexpected interface name for index %d: got: %q, want: %q", ifi.Index, got, want) } wantIP, ok := firstIPv4(t, &ifi) if err := unix.IoctlIfreq(s, unix.SIOCGIFADDR, ifr); err != nil { // Interface may have no assigned IPv4 address. if err != unix.EADDRNOTAVAIL { t.Fatalf("failed to get IPv4 address for %q: %v", ifi.Name, err) } // But if we found an address via rtnetlink, we should expect the // ioctl to return one. if ok { t.Fatalf("found IPv4 address %q for %q but ioctl returned none", wantIP, ifi.Name) } continue } // Found an address, compare it directly. addr, err := ifr.Inet4Addr() if err != nil { t.Fatalf("failed to get ifreq IPv4 address: %v", err) } if want, got := wantIP, addr; !want.Equal(got) { t.Fatalf("unexpected first IPv4 address for %q: got: %q, want: %q", ifi.Name, got, want) } } } // firstIPv4 reports whether the interface has an IPv4 address assigned, // returning the first discovered address. func firstIPv4(t *testing.T, ifi *net.Interface) (net.IP, bool) { t.Helper() addrs, err := ifi.Addrs() if err != nil { t.Fatalf("failed to get interface %q addresses: %v", ifi.Name, err) } for _, a := range addrs { // Only want valid IPv4 addresses. ipn, ok := a.(*net.IPNet) if !ok || ipn.IP.To4() == nil { continue } return ipn.IP, true } return nil, false } func TestPidfd(t *testing.T) { // Start a child process which will sleep for 1 hour; longer than the 10 // minute default Go test timeout. cmd := exec.Command("sleep", "1h") if err := cmd.Start(); err != nil { t.Fatalf("failed to exec sleep: %v", err) } fd, err := unix.PidfdOpen(cmd.Process.Pid, 0) if err != nil { // GOARCH arm/arm64 and GOOS android builders do not support pidfds. if errors.Is(err, unix.ENOSYS) { t.Skipf("skipping, pidfd_open is not implemented: %v", err) } t.Fatalf("failed to open child pidfd: %v", err) } defer unix.Close(fd) // Child is running but not terminated. if err := unix.Waitid(unix.P_PIDFD, fd, nil, unix.WEXITED|unix.WNOHANG, nil); err != nil { if errors.Is(err, unix.EINVAL) { t.Skip("skipping due to waitid EINVAL, see https://go.dev/issues/52014") } t.Fatalf("failed to check for child exit: %v", err) } const want = unix.SIGHUP if err := unix.PidfdSendSignal(fd, want, nil, 0); err != nil { t.Fatalf("failed to signal child process: %v", err) } // Now verify that the child process received the expected signal. var eerr *exec.ExitError if err := cmd.Wait(); !errors.As(err, &eerr) { t.Fatalf("child process terminated but did not return an exit error: %v", err) } if err := unix.Waitid(unix.P_PIDFD, fd, nil, unix.WEXITED, nil); !errors.Is(err, unix.ECHILD) { t.Fatalf("expected ECHILD for final waitid, but got: %v", err) } ws, ok := eerr.Sys().(syscall.WaitStatus) if !ok { t.Fatalf("expected syscall.WaitStatus value, but got: %#T", eerr.Sys()) } if got := ws.Signal(); got != want { t.Fatalf("unexpected child exit signal, got: %s, want: %s", got, want) } } func TestPpoll(t *testing.T) { if runtime.GOOS == "android" { t.Skip("mkfifo syscall is not available on android, skipping test") } chtmpdir(t) f := mktmpfifo(t) const timeout = 100 * time.Millisecond ok := make(chan bool, 1) go func() { select { case <-time.After(10 * timeout): t.Errorf("Ppoll: failed to timeout after %d", 10*timeout) case <-ok: } }() fds := []unix.PollFd{{Fd: int32(f.Fd()), Events: unix.POLLIN}} timeoutTs := unix.NsecToTimespec(int64(timeout)) n, err := unix.Ppoll(fds, &timeoutTs, nil) ok <- true if err != nil { t.Errorf("Ppoll: unexpected error: %v", err) return } if n != 0 { t.Errorf("Ppoll: wrong number of events: got %v, expected %v", n, 0) return } } func TestTime(t *testing.T) { var ut unix.Time_t ut2, err := unix.Time(&ut) if err != nil { t.Fatalf("Time: %v", err) } if ut != ut2 { t.Errorf("Time: return value %v should be equal to argument %v", ut2, ut) } var now time.Time for i := 0; i < 10; i++ { ut, err = unix.Time(nil) if err != nil { t.Fatalf("Time: %v", err) } now = time.Now() diff := int64(ut) - now.Unix() if -1 <= diff && diff <= 1 { return } } t.Errorf("Time: return value %v should be nearly equal to time.Now().Unix() %v±1", ut, now.Unix()) } func TestUtime(t *testing.T) { chtmpdir(t) touch(t, "file1") buf := &unix.Utimbuf{ Modtime: 12345, } err := unix.Utime("file1", buf) if err != nil { t.Fatalf("Utime: %v", err) } fi, err := os.Stat("file1") if err != nil { t.Fatal(err) } if fi.ModTime().Unix() != 12345 { t.Errorf("Utime: failed to change modtime: expected %v, got %v", 12345, fi.ModTime().Unix()) } } func TestRlimitAs(t *testing.T) { // disable GC during to avoid flaky test defer debug.SetGCPercent(debug.SetGCPercent(-1)) var rlim unix.Rlimit err := unix.Getrlimit(unix.RLIMIT_AS, &rlim) if err != nil { t.Fatalf("Getrlimit: %v", err) } var zero unix.Rlimit if zero == rlim { t.Fatalf("Getrlimit: got zero value %#v", rlim) } set := rlim set.Cur = uint64(unix.Getpagesize()) err = unix.Setrlimit(unix.RLIMIT_AS, &set) if err != nil { t.Fatalf("Setrlimit: set failed: %#v %v", set, err) } // RLIMIT_AS was set to the page size, so mmap()'ing twice the page size // should fail. See 'man 2 getrlimit'. _, err = unix.Mmap(-1, 0, 2*unix.Getpagesize(), unix.PROT_NONE, unix.MAP_ANON|unix.MAP_PRIVATE) if err == nil { t.Fatal("Mmap: unexpectedly succeeded after setting RLIMIT_AS") } err = unix.Setrlimit(unix.RLIMIT_AS, &rlim) if err != nil { t.Fatalf("Setrlimit: restore failed: %#v %v", rlim, err) } b, err := unix.Mmap(-1, 0, 2*unix.Getpagesize(), unix.PROT_NONE, unix.MAP_ANON|unix.MAP_PRIVATE) if err != nil { t.Fatalf("Mmap: %v", err) } err = unix.Munmap(b) if err != nil { t.Fatalf("Munmap: %v", err) } } func TestPselect(t *testing.T) { for { n, err := unix.Pselect(0, nil, nil, nil, &unix.Timespec{Sec: 0, Nsec: 0}, nil) if err == unix.EINTR { t.Logf("Pselect interrupted") continue } else if err != nil { t.Fatalf("Pselect: %v", err) } if n != 0 { t.Fatalf("Pselect: got %v ready file descriptors, expected 0", n) } break } dur := 2500 * time.Microsecond var took time.Duration for { // On some platforms (e.g. Linux), the passed-in timespec is // updated by pselect(2). Make sure to reset to the full // duration in case of an EINTR. ts := unix.NsecToTimespec(int64(dur)) start := time.Now() n, err := unix.Pselect(0, nil, nil, nil, &ts, nil) took = time.Since(start) if err == unix.EINTR { t.Logf("Pselect interrupted after %v", took) continue } else if err != nil { t.Fatalf("Pselect: %v", err) } if n != 0 { t.Fatalf("Pselect: got %v ready file descriptors, expected 0", n) } break } // On some builder the actual timeout might also be slightly less than the requested. // Add an acceptable margin to avoid flaky tests. if took < dur*2/3 { t.Errorf("Pselect: got %v timeout, expected at least %v", took, dur) } } func TestPselectWithSigmask(t *testing.T) { var sigmask unix.Sigset_t sigmask.Val[0] |= 1 << (uint(unix.SIGUSR1) - 1) for { n, err := unix.Pselect(0, nil, nil, nil, &unix.Timespec{Sec: 0, Nsec: 0}, &sigmask) if err == unix.EINTR { t.Logf("Pselect interrupted") continue } else if err != nil { t.Fatalf("Pselect: %v", err) } if n != 0 { t.Fatalf("Pselect: got %v ready file descriptors, expected 0", n) } break } } func TestSchedSetaffinity(t *testing.T) { var newMask unix.CPUSet newMask.Zero() if newMask.Count() != 0 { t.Errorf("CpuZero: didn't zero CPU set: %v", newMask) } cpu := 1 newMask.Set(cpu) if newMask.Count() != 1 || !newMask.IsSet(cpu) { t.Errorf("CpuSet: didn't set CPU %d in set: %v", cpu, newMask) } cpu = 5 newMask.Set(cpu) if newMask.Count() != 2 || !newMask.IsSet(cpu) { t.Errorf("CpuSet: didn't set CPU %d in set: %v", cpu, newMask) } newMask.Clear(cpu) if newMask.Count() != 1 || newMask.IsSet(cpu) { t.Errorf("CpuClr: didn't clear CPU %d in set: %v", cpu, newMask) } runtime.LockOSThread() defer runtime.UnlockOSThread() var oldMask unix.CPUSet err := unix.SchedGetaffinity(0, &oldMask) if err != nil { t.Fatalf("SchedGetaffinity: %v", err) } if runtime.NumCPU() < 2 { t.Skip("skipping setaffinity tests on single CPU system") } if runtime.GOOS == "android" { t.Skip("skipping setaffinity tests on android") } // On a system like ppc64x where some cores can be disabled using ppc64_cpu, // setaffinity should only be called with enabled cores. The valid cores // are found from the oldMask, but if none are found then the setaffinity // tests are skipped. Issue #27875. cpu = 1 if !oldMask.IsSet(cpu) { newMask.Zero() for i := 0; i < len(oldMask); i++ { if oldMask.IsSet(i) { newMask.Set(i) break } } if newMask.Count() == 0 { t.Skip("skipping setaffinity tests if CPU not available") } } err = unix.SchedSetaffinity(0, &newMask) if err != nil { t.Fatalf("SchedSetaffinity: %v", err) } var gotMask unix.CPUSet err = unix.SchedGetaffinity(0, &gotMask) if err != nil { t.Fatalf("SchedGetaffinity: %v", err) } if gotMask != newMask { t.Errorf("SchedSetaffinity: returned affinity mask does not match set affinity mask") } // Restore old mask so it doesn't affect successive tests err = unix.SchedSetaffinity(0, &oldMask) if err != nil { t.Fatalf("SchedSetaffinity: %v", err) } } func TestStatx(t *testing.T) { var stx unix.Statx_t err := unix.Statx(unix.AT_FDCWD, ".", 0, 0, &stx) if err == unix.ENOSYS || err == unix.EPERM { t.Skip("statx syscall is not available, skipping test") } else if err != nil { t.Fatalf("Statx: %v", err) } chtmpdir(t) touch(t, "file1") var st unix.Stat_t err = unix.Stat("file1", &st) if err != nil { t.Fatalf("Stat: %v", err) } flags := unix.AT_STATX_SYNC_AS_STAT err = unix.Statx(unix.AT_FDCWD, "file1", flags, unix.STATX_ALL, &stx) if err != nil { t.Fatalf("Statx: %v", err) } if uint32(stx.Mode) != st.Mode { t.Errorf("Statx: returned stat mode does not match Stat") } ctime := unix.StatxTimestamp{Sec: int64(st.Ctim.Sec), Nsec: uint32(st.Ctim.Nsec)} mtime := unix.StatxTimestamp{Sec: int64(st.Mtim.Sec), Nsec: uint32(st.Mtim.Nsec)} if stx.Ctime != ctime { t.Errorf("Statx: returned stat ctime does not match Stat") } if stx.Mtime != mtime { t.Errorf("Statx: returned stat mtime does not match Stat") } err = os.Symlink("file1", "symlink1") if err != nil { t.Fatal(err) } err = unix.Lstat("symlink1", &st) if err != nil { t.Fatalf("Lstat: %v", err) } err = unix.Statx(unix.AT_FDCWD, "symlink1", flags, unix.STATX_BASIC_STATS, &stx) if err != nil { t.Fatalf("Statx: %v", err) } // follow symlink, expect a regulat file if stx.Mode&unix.S_IFREG == 0 { t.Errorf("Statx: didn't follow symlink") } err = unix.Statx(unix.AT_FDCWD, "symlink1", flags|unix.AT_SYMLINK_NOFOLLOW, unix.STATX_ALL, &stx) if err != nil { t.Fatalf("Statx: %v", err) } // follow symlink, expect a symlink if stx.Mode&unix.S_IFLNK == 0 { t.Errorf("Statx: unexpectedly followed symlink") } if uint32(stx.Mode) != st.Mode { t.Errorf("Statx: returned stat mode does not match Lstat") } ctime = unix.StatxTimestamp{Sec: int64(st.Ctim.Sec), Nsec: uint32(st.Ctim.Nsec)} mtime = unix.StatxTimestamp{Sec: int64(st.Mtim.Sec), Nsec: uint32(st.Mtim.Nsec)} if stx.Ctime != ctime { t.Errorf("Statx: returned stat ctime does not match Lstat") } if stx.Mtime != mtime { t.Errorf("Statx: returned stat mtime does not match Lstat") } } // stringsFromByteSlice converts a sequence of attributes to a []string. // On Linux, each entry is a NULL-terminated string. func stringsFromByteSlice(buf []byte) []string { var result []string off := 0 for i, b := range buf { if b == 0 { result = append(result, string(buf[off:i])) off = i + 1 } } return result } func TestFaccessat(t *testing.T) { chtmpdir(t) touch(t, "file1") err := unix.Faccessat(unix.AT_FDCWD, "file1", unix.R_OK, 0) if err != nil { t.Errorf("Faccessat: unexpected error: %v", err) } err = unix.Faccessat(unix.AT_FDCWD, "file1", unix.R_OK, 2) if err != unix.EINVAL { t.Errorf("Faccessat: unexpected error: %v, want EINVAL", err) } err = unix.Faccessat(unix.AT_FDCWD, "file1", unix.R_OK, unix.AT_EACCESS) if err != nil { t.Errorf("Faccessat: unexpected error: %v", err) } err = os.Symlink("file1", "symlink1") if err != nil { t.Fatal(err) } err = unix.Faccessat(unix.AT_FDCWD, "symlink1", unix.R_OK, unix.AT_SYMLINK_NOFOLLOW) if err != nil { t.Errorf("Faccessat SYMLINK_NOFOLLOW: unexpected error %v", err) } // We can't really test AT_SYMLINK_NOFOLLOW, because there // doesn't seem to be any way to change the mode of a symlink. // We don't test AT_EACCESS because such tests are only // meaningful if run as root. err = unix.Fchmodat(unix.AT_FDCWD, "file1", 0, 0) if err != nil { t.Errorf("Fchmodat: unexpected error %v", err) } err = unix.Faccessat(unix.AT_FDCWD, "file1", unix.F_OK, unix.AT_SYMLINK_NOFOLLOW) if err != nil { t.Errorf("Faccessat: unexpected error: %v", err) } err = unix.Faccessat(unix.AT_FDCWD, "file1", unix.R_OK, unix.AT_SYMLINK_NOFOLLOW) if err != unix.EACCES { if unix.Getuid() != 0 { t.Errorf("Faccessat: unexpected error: %v, want EACCES", err) } } } func TestSyncFileRange(t *testing.T) { file, err := os.Create(filepath.Join(t.TempDir(), t.Name())) if err != nil { t.Fatal(err) } defer file.Close() err = unix.SyncFileRange(int(file.Fd()), 0, 0, 0) if err == unix.ENOSYS || err == unix.EPERM { t.Skip("sync_file_range syscall is not available, skipping test") } else if err != nil { t.Fatalf("SyncFileRange: %v", err) } // invalid flags flags := 0xf00 err = unix.SyncFileRange(int(file.Fd()), 0, 0, flags) if err != unix.EINVAL { t.Fatalf("SyncFileRange: unexpected error: %v, want EINVAL", err) } } func TestClockNanosleep(t *testing.T) { delay := 50 * time.Millisecond // Relative timespec. start := time.Now() rel := unix.NsecToTimespec(delay.Nanoseconds()) remain := unix.Timespec{} for { err := unix.ClockNanosleep(unix.CLOCK_MONOTONIC, 0, &rel, &remain) if err == unix.ENOSYS || err == unix.EPERM { t.Skip("clock_nanosleep syscall is not available, skipping test") } else if err == unix.EINTR { t.Logf("ClockNanosleep interrupted after %v", time.Since(start)) rel = remain continue } else if err != nil { t.Errorf("ClockNanosleep(CLOCK_MONOTONIC, 0, %#v, nil) = %v", &rel, err) } else if slept := time.Since(start); slept < delay { t.Errorf("ClockNanosleep(CLOCK_MONOTONIC, 0, %#v, nil) slept only %v", &rel, slept) } break } // Absolute timespec. for { start = time.Now() until := start.Add(delay) abs := unix.NsecToTimespec(until.UnixNano()) err := unix.ClockNanosleep(unix.CLOCK_REALTIME, unix.TIMER_ABSTIME, &abs, nil) if err == unix.EINTR { t.Logf("ClockNanosleep interrupted after %v", time.Since(start)) continue } else if err != nil { t.Errorf("ClockNanosleep(CLOCK_REALTIME, TIMER_ABSTIME, %#v (=%v), nil) = %v", &abs, until, err) } else { // We asked for CLOCK_REALTIME, but we have no way to know whether it // jumped backward after ClockNanosleep returned. Compare both ways, // and only fail if both the monotonic and wall clocks agree that // the elapsed sleep was too short. // // This can still theoretically fail spuriously: if the clock jumps // forward during ClockNanosleep and then backward again before we can // call time.Now, then we could end up with a time that is too short on // both the monotonic scale (because of the forward jump) and the // real-time scale (because of the backward jump. However, it seems // unlikely that two such contrary jumps will ever occur in the time it // takes to execute this test. if now := time.Now(); now.Before(until) && now.Round(0).Before(until) { t.Errorf("ClockNanosleep(CLOCK_REALTIME, TIMER_ABSTIME, %#v (=%v), nil) slept only until %v", &abs, until, now) } } break } // Invalid clock. clock_nanosleep(2) says EINVAL, but it’s actually EOPNOTSUPP. err := unix.ClockNanosleep(unix.CLOCK_THREAD_CPUTIME_ID, 0, &rel, nil) if err != unix.EINVAL && err != unix.EOPNOTSUPP { t.Errorf("ClockNanosleep(CLOCK_THREAD_CPUTIME_ID, 0, %#v, nil) = %v, want EINVAL or EOPNOTSUPP", &rel, err) } } func TestOpenByHandleAt(t *testing.T) { skipIfNotSupported := func(t *testing.T, name string, err error) { if err == unix.EPERM { t.Skipf("skipping %s test without CAP_DAC_READ_SEARCH", name) } if err == unix.ENOSYS { t.Skipf("%s system call not available", name) } if err == unix.EOPNOTSUPP { t.Skipf("%s not supported on this filesystem", name) } } h, mountID, err := unix.NameToHandleAt(unix.AT_FDCWD, "syscall_linux_test.go", 0) if err != nil { skipIfNotSupported(t, "name_to_handle_at", err) t.Fatalf("NameToHandleAt: %v", err) } t.Logf("mountID: %v, handle: size=%d, type=%d, bytes=%q", mountID, h.Size(), h.Type(), h.Bytes()) mount, err := openMountByID(mountID) if err != nil { t.Fatalf("openMountByID: %v", err) } defer mount.Close() for _, clone := range []bool{false, true} { t.Run("clone="+strconv.FormatBool(clone), func(t *testing.T) { if clone { h = unix.NewFileHandle(h.Type(), h.Bytes()) } fd, err := unix.OpenByHandleAt(int(mount.Fd()), h, unix.O_RDONLY) skipIfNotSupported(t, "open_by_handle_at", err) if err != nil { t.Fatalf("OpenByHandleAt: %v", err) } t.Logf("opened fd %v", fd) f := os.NewFile(uintptr(fd), "") defer f.Close() slurp, err := io.ReadAll(f) if err != nil { t.Fatal(err) } const substr = "Some substring for a test." if !strings.Contains(string(slurp), substr) { t.Errorf("didn't find substring %q in opened file; read %d bytes", substr, len(slurp)) } }) } } func openMountByID(mountID int) (f *os.File, err error) { mi, err := os.Open("/proc/self/mountinfo") if err != nil { return nil, err } defer mi.Close() bs := bufio.NewScanner(mi) wantPrefix := []byte(fmt.Sprintf("%v ", mountID)) for bs.Scan() { if !bytes.HasPrefix(bs.Bytes(), wantPrefix) { continue } fields := strings.Fields(bs.Text()) dev := fields[4] return os.Open(dev) } if err := bs.Err(); err != nil { return nil, err } return nil, errors.New("mountID not found") } func TestEpoll(t *testing.T) { efd, err := unix.EpollCreate1(unix.EPOLL_CLOEXEC) if err != nil { t.Fatalf("EpollCreate1: %v", err) } defer unix.Close(efd) r, w, err := os.Pipe() if err != nil { t.Fatal(err) } defer r.Close() defer w.Close() fd := int(r.Fd()) ev := unix.EpollEvent{Events: unix.EPOLLIN, Fd: int32(fd)} err = unix.EpollCtl(efd, unix.EPOLL_CTL_ADD, fd, &ev) if err != nil { t.Fatalf("EpollCtl: %v", err) } if _, err := w.Write([]byte("HELLO GOPHER")); err != nil { t.Fatal(err) } events := make([]unix.EpollEvent, 128) n, err := unix.EpollWait(efd, events, 1) if err != nil { t.Fatalf("EpollWait: %v", err) } if n != 1 { t.Errorf("EpollWait: wrong number of events: got %v, expected 1", n) } got := int(events[0].Fd) if got != fd { t.Errorf("EpollWait: wrong Fd in event: got %v, expected %v", got, fd) } } func TestPrctlRetInt(t *testing.T) { skipc := make(chan bool, 1) skip := func() { skipc <- true runtime.Goexit() } go func() { // This test uses prctl to modify the calling thread, so run it on its own // throwaway thread and do not unlock it when the goroutine exits. runtime.LockOSThread() defer close(skipc) err := unix.Prctl(unix.PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) if err != nil { t.Logf("Prctl: %v, skipping test", err) skip() } v, err := unix.PrctlRetInt(unix.PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0) if err != nil { t.Errorf("failed to perform prctl: %v", err) } if v != 1 { t.Errorf("unexpected return from prctl; got %v, expected %v", v, 1) } }() if <-skipc { t.SkipNow() } } func TestTimerfd(t *testing.T) { var now unix.Timespec if err := unix.ClockGettime(unix.CLOCK_REALTIME, &now); err != nil { t.Fatalf("ClockGettime: %v", err) } tfd, err := unix.TimerfdCreate(unix.CLOCK_REALTIME, 0) if err == unix.ENOSYS { t.Skip("timerfd_create system call not implemented") } else if err != nil { t.Fatalf("TimerfdCreate: %v", err) } defer unix.Close(tfd) var timeSpec unix.ItimerSpec if err := unix.TimerfdGettime(tfd, &timeSpec); err != nil { t.Fatalf("TimerfdGettime: %v", err) } if timeSpec.Value.Nsec != 0 || timeSpec.Value.Sec != 0 { t.Fatalf("TimerfdGettime: timer is already set, but shouldn't be") } timeSpec = unix.ItimerSpec{ Interval: unix.NsecToTimespec(int64(time.Millisecond)), Value: now, } if err := unix.TimerfdSettime(tfd, unix.TFD_TIMER_ABSTIME, &timeSpec, nil); err != nil { t.Fatalf("TimerfdSettime: %v", err) } const totalTicks = 10 const bufferLength = 8 buffer := make([]byte, bufferLength) var count uint64 = 0 for count < totalTicks { n, err := unix.Read(tfd, buffer) if err != nil { t.Fatalf("Timerfd: %v", err) } else if n != bufferLength { t.Fatalf("Timerfd: got %d bytes from timerfd, expected %d bytes", n, bufferLength) } count += *(*uint64)(unsafe.Pointer(&buffer)) } } func TestOpenat2(t *testing.T) { how := &unix.OpenHow{ Flags: unix.O_RDONLY, } fd, err := unix.Openat2(unix.AT_FDCWD, ".", how) if err != nil { if err == unix.ENOSYS || err == unix.EPERM { t.Skipf("openat2: %v (old kernel? need Linux >= 5.6)", err) } t.Fatalf("openat2: %v", err) } if err := unix.Close(fd); err != nil { t.Fatalf("close: %v", err) } // prepare subdir := filepath.Join(t.TempDir(), "dir") if err := os.Mkdir(subdir, 0755); err != nil { t.Fatal(err) } symlink := filepath.Join(subdir, "symlink") if err := os.Symlink("../", symlink); err != nil { t.Fatal(err) } dirfd, err := unix.Open(subdir, unix.O_RDONLY, 0) if err != nil { t.Fatalf("open(%q): %v", subdir, err) } defer unix.Close(dirfd) // openat2 with no extra flags -- should succeed fd, err = unix.Openat2(dirfd, "symlink", how) if err != nil { t.Errorf("Openat2 should succeed, got %v", err) } if err := unix.Close(fd); err != nil { t.Fatalf("close: %v", err) } // open with RESOLVE_BENEATH, should result in EXDEV how.Resolve = unix.RESOLVE_BENEATH fd, err = unix.Openat2(dirfd, "symlink", how) if err == nil { if err := unix.Close(fd); err != nil { t.Fatalf("close: %v", err) } } if err != unix.EXDEV { t.Errorf("Openat2 should fail with EXDEV, got %v", err) } } func TestIoctlFileDedupeRange(t *testing.T) { dir := t.TempDir() f1, err := os.Create(filepath.Join(dir, "f1")) if err != nil { t.Fatal(err) } defer f1.Close() // Test deduplication with two blocks of zeros data := make([]byte, 4096) for i := 0; i < 2; i += 1 { _, err = f1.Write(data) if err != nil { t.Fatal(err) } } f2, err := os.Create(filepath.Join(dir, "f2")) if err != nil { t.Fatal(err) } defer f2.Close() for i := 0; i < 2; i += 1 { // Make the 2nd block different if i == 1 { data[1] = 1 } _, err = f2.Write(data) if err != nil { t.Fatal(err) } } dedupe := unix.FileDedupeRange{ Src_offset: uint64(0), Src_length: uint64(4096), Info: []unix.FileDedupeRangeInfo{ unix.FileDedupeRangeInfo{ Dest_fd: int64(f2.Fd()), Dest_offset: uint64(0), }, unix.FileDedupeRangeInfo{ Dest_fd: int64(f2.Fd()), Dest_offset: uint64(4096), }, }} err = unix.IoctlFileDedupeRange(int(f1.Fd()), &dedupe) if err == unix.EOPNOTSUPP || err == unix.EINVAL || err == unix.ENOTTY { t.Skip("deduplication not supported on this filesystem") } else if err != nil { t.Fatal(err) } // The first Info should be equal if dedupe.Info[0].Status < 0 { errno := unix.Errno(-dedupe.Info[0].Status) if errno == unix.EINVAL { t.Skip("deduplication not supported on this filesystem") } t.Errorf("Unexpected error in FileDedupeRange: %s", unix.ErrnoName(errno)) } else if dedupe.Info[0].Status == unix.FILE_DEDUPE_RANGE_DIFFERS { t.Errorf("Unexpected different bytes in FileDedupeRange") } if dedupe.Info[0].Bytes_deduped != 4096 { t.Errorf("Unexpected amount of bytes deduped %v != %v", dedupe.Info[0].Bytes_deduped, 4096) } // The second Info should be different if dedupe.Info[1].Status < 0 { errno := unix.Errno(-dedupe.Info[1].Status) if errno == unix.EINVAL { t.Skip("deduplication not supported on this filesystem") } t.Errorf("Unexpected error in FileDedupeRange: %s", unix.ErrnoName(errno)) } else if dedupe.Info[1].Status == unix.FILE_DEDUPE_RANGE_SAME { t.Errorf("Unexpected equal bytes in FileDedupeRange") } if dedupe.Info[1].Bytes_deduped != 0 { t.Errorf("Unexpected amount of bytes deduped %v != %v", dedupe.Info[1].Bytes_deduped, 0) } } // TestPwritevOffsets tests golang.org/issues/57291 where // offs2lohi was shifting by the size of long in bytes, not bits. func TestPwritevOffsets(t *testing.T) { path := filepath.Join(t.TempDir(), "x.txt") f, err := os.Create(path) if err != nil { t.Fatal(err) } t.Cleanup(func() { f.Close() }) const ( off = 20 ) b := [][]byte{{byte(0)}} n, err := unix.Pwritev(int(f.Fd()), b, off) if err != nil { t.Fatal(err) } if n != len(b) { t.Fatalf("expected to write %d, wrote %d", len(b), n) } info, err := f.Stat() if err != nil { t.Fatal(err) } want := off + int64(len(b)) if info.Size() != want { t.Fatalf("expected size to be %d, got %d", want, info.Size()) } } func TestReadvAllocate(t *testing.T) { f, err := os.Create(filepath.Join(t.TempDir(), "test")) if err != nil { t.Fatal(err) } t.Cleanup(func() { f.Close() }) test := func(name string, fn func(fd int)) { n := int(testing.AllocsPerRun(100, func() { fn(int(f.Fd())) })) if n != 0 { t.Errorf("%q got %d allocations, want 0", name, n) } } iovs := make([][]byte, 8) for i := range iovs { iovs[i] = []byte{'A'} } test("Writev", func(fd int) { unix.Writev(fd, iovs) }) test("Pwritev", func(fd int) { unix.Pwritev(fd, iovs, 0) }) test("Pwritev2", func(fd int) { unix.Pwritev2(fd, iovs, 0, 0) }) test("Readv", func(fd int) { unix.Readv(fd, iovs) }) test("Preadv", func(fd int) { unix.Preadv(fd, iovs, 0) }) test("Preadv2", func(fd int) { unix.Preadv2(fd, iovs, 0, 0) }) } func TestSockaddrALG(t *testing.T) { // Open a socket to perform SHA1 hashing. fd, err := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0) if err != nil { t.Skip("socket(AF_ALG):", err) } defer unix.Close(fd) addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"} if err := unix.Bind(fd, addr); err != nil { t.Fatal("bind:", err) } // Need to call accept(2) with the second and third arguments as 0, // which is not possible via unix.Accept, thus the use of unix.Syscall. hashfd, _, errno := unix.Syscall6(unix.SYS_ACCEPT4, uintptr(fd), 0, 0, 0, 0, 0) if errno != 0 { t.Fatal("accept:", errno) } hash := os.NewFile(hashfd, "sha1") defer hash.Close() // Hash an input string and read the results. const ( input = "Hello, world." exp = "2ae01472317d1935a84797ec1983ae243fc6aa28" ) if _, err := hash.WriteString(input); err != nil { t.Fatal(err) } b := make([]byte, 20) if _, err := hash.Read(b); err != nil { t.Fatal(err) } got := hex.EncodeToString(b) if got != exp { t.Fatalf("got: %q, want: %q", got, exp) } }