// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package idna // This file implements the Punycode algorithm from RFC 3492. import ( "math" "strings" "unicode/utf8" ) // These parameter values are specified in section 5. // // All computation is done with int32s, so that overflow behavior is identical // regardless of whether int is 32-bit or 64-bit. const ( base int32 = 36 damp int32 = 700 initialBias int32 = 72 initialN int32 = 128 skew int32 = 38 tmax int32 = 26 tmin int32 = 1 ) func punyError(s string) error { return &labelError{s, "A3"} } // decode decodes a string as specified in section 6.2. func decode(encoded string) (string, error) { if encoded == "" { return "", nil } pos := 1 + strings.LastIndex(encoded, "-") if pos == 1 { return "", punyError(encoded) } if pos == len(encoded) { return encoded[:len(encoded)-1], nil } output := make([]rune, 0, len(encoded)) if pos != 0 { for _, r := range encoded[:pos-1] { output = append(output, r) } } i, n, bias := int32(0), initialN, initialBias overflow := false for pos < len(encoded) { oldI, w := i, int32(1) for k := base; ; k += base { if pos == len(encoded) { return "", punyError(encoded) } digit, ok := decodeDigit(encoded[pos]) if !ok { return "", punyError(encoded) } pos++ i, overflow = madd(i, digit, w) if overflow { return "", punyError(encoded) } t := k - bias if k <= bias { t = tmin } else if k >= bias+tmax { t = tmax } if digit < t { break } w, overflow = madd(0, w, base-t) if overflow { return "", punyError(encoded) } } if len(output) >= 1024 { return "", punyError(encoded) } x := int32(len(output) + 1) bias = adapt(i-oldI, x, oldI == 0) n += i / x i %= x if n < 0 || n > utf8.MaxRune { return "", punyError(encoded) } output = append(output, 0) copy(output[i+1:], output[i:]) output[i] = n i++ } return string(output), nil } // encode encodes a string as specified in section 6.3 and prepends prefix to // the result. // // The "while h < length(input)" line in the specification becomes "for // remaining != 0" in the Go code, because len(s) in Go is in bytes, not runes. func encode(prefix, s string) (string, error) { output := make([]byte, len(prefix), len(prefix)+1+2*len(s)) copy(output, prefix) delta, n, bias := int32(0), initialN, initialBias b, remaining := int32(0), int32(0) for _, r := range s { if r < 0x80 { b++ output = append(output, byte(r)) } else { remaining++ } } h := b if b > 0 { output = append(output, '-') } overflow := false for remaining != 0 { m := int32(0x7fffffff) for _, r := range s { if m > r && r >= n { m = r } } delta, overflow = madd(delta, m-n, h+1) if overflow { return "", punyError(s) } n = m for _, r := range s { if r < n { delta++ if delta < 0 { return "", punyError(s) } continue } if r > n { continue } q := delta for k := base; ; k += base { t := k - bias if k <= bias { t = tmin } else if k >= bias+tmax { t = tmax } if q < t { break } output = append(output, encodeDigit(t+(q-t)%(base-t))) q = (q - t) / (base - t) } output = append(output, encodeDigit(q)) bias = adapt(delta, h+1, h == b) delta = 0 h++ remaining-- } delta++ n++ } return string(output), nil } // madd computes a + (b * c), detecting overflow. func madd(a, b, c int32) (next int32, overflow bool) { p := int64(b) * int64(c) if p > math.MaxInt32-int64(a) { return 0, true } return a + int32(p), false } func decodeDigit(x byte) (digit int32, ok bool) { switch { case '0' <= x && x <= '9': return int32(x - ('0' - 26)), true case 'A' <= x && x <= 'Z': return int32(x - 'A'), true case 'a' <= x && x <= 'z': return int32(x - 'a'), true } return 0, false } func encodeDigit(digit int32) byte { switch { case 0 <= digit && digit < 26: return byte(digit + 'a') case 26 <= digit && digit < 36: return byte(digit + ('0' - 26)) } panic("idna: internal error in punycode encoding") } // adapt is the bias adaptation function specified in section 6.1. func adapt(delta, numPoints int32, firstTime bool) int32 { if firstTime { delta /= damp } else { delta /= 2 } delta += delta / numPoints k := int32(0) for delta > ((base-tmin)*tmax)/2 { delta /= base - tmin k += base } return k + (base-tmin+1)*delta/(delta+skew) }