...

Source file src/math/big/nat.go

Documentation: math/big

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements unsigned multi-precision integers (natural
     6  // numbers). They are the building blocks for the implementation
     7  // of signed integers, rationals, and floating-point numbers.
     8  //
     9  // Caution: This implementation relies on the function "alias"
    10  //          which assumes that (nat) slice capacities are never
    11  //          changed (no 3-operand slice expressions). If that
    12  //          changes, alias needs to be updated for correctness.
    13  
    14  package big
    15  
    16  import (
    17  	"encoding/binary"
    18  	"math/bits"
    19  	"math/rand"
    20  	"sync"
    21  )
    22  
    23  // An unsigned integer x of the form
    24  //
    25  //	x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
    26  //
    27  // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
    28  // with the digits x[i] as the slice elements.
    29  //
    30  // A number is normalized if the slice contains no leading 0 digits.
    31  // During arithmetic operations, denormalized values may occur but are
    32  // always normalized before returning the final result. The normalized
    33  // representation of 0 is the empty or nil slice (length = 0).
    34  type nat []Word
    35  
    36  var (
    37  	natOne  = nat{1}
    38  	natTwo  = nat{2}
    39  	natFive = nat{5}
    40  	natTen  = nat{10}
    41  )
    42  
    43  func (z nat) String() string {
    44  	return "0x" + string(z.itoa(false, 16))
    45  }
    46  
    47  func (z nat) clear() {
    48  	for i := range z {
    49  		z[i] = 0
    50  	}
    51  }
    52  
    53  func (z nat) norm() nat {
    54  	i := len(z)
    55  	for i > 0 && z[i-1] == 0 {
    56  		i--
    57  	}
    58  	return z[0:i]
    59  }
    60  
    61  func (z nat) make(n int) nat {
    62  	if n <= cap(z) {
    63  		return z[:n] // reuse z
    64  	}
    65  	if n == 1 {
    66  		// Most nats start small and stay that way; don't over-allocate.
    67  		return make(nat, 1)
    68  	}
    69  	// Choosing a good value for e has significant performance impact
    70  	// because it increases the chance that a value can be reused.
    71  	const e = 4 // extra capacity
    72  	return make(nat, n, n+e)
    73  }
    74  
    75  func (z nat) setWord(x Word) nat {
    76  	if x == 0 {
    77  		return z[:0]
    78  	}
    79  	z = z.make(1)
    80  	z[0] = x
    81  	return z
    82  }
    83  
    84  func (z nat) setUint64(x uint64) nat {
    85  	// single-word value
    86  	if w := Word(x); uint64(w) == x {
    87  		return z.setWord(w)
    88  	}
    89  	// 2-word value
    90  	z = z.make(2)
    91  	z[1] = Word(x >> 32)
    92  	z[0] = Word(x)
    93  	return z
    94  }
    95  
    96  func (z nat) set(x nat) nat {
    97  	z = z.make(len(x))
    98  	copy(z, x)
    99  	return z
   100  }
   101  
   102  func (z nat) add(x, y nat) nat {
   103  	m := len(x)
   104  	n := len(y)
   105  
   106  	switch {
   107  	case m < n:
   108  		return z.add(y, x)
   109  	case m == 0:
   110  		// n == 0 because m >= n; result is 0
   111  		return z[:0]
   112  	case n == 0:
   113  		// result is x
   114  		return z.set(x)
   115  	}
   116  	// m > 0
   117  
   118  	z = z.make(m + 1)
   119  	c := addVV(z[0:n], x, y)
   120  	if m > n {
   121  		c = addVW(z[n:m], x[n:], c)
   122  	}
   123  	z[m] = c
   124  
   125  	return z.norm()
   126  }
   127  
   128  func (z nat) sub(x, y nat) nat {
   129  	m := len(x)
   130  	n := len(y)
   131  
   132  	switch {
   133  	case m < n:
   134  		panic("underflow")
   135  	case m == 0:
   136  		// n == 0 because m >= n; result is 0
   137  		return z[:0]
   138  	case n == 0:
   139  		// result is x
   140  		return z.set(x)
   141  	}
   142  	// m > 0
   143  
   144  	z = z.make(m)
   145  	c := subVV(z[0:n], x, y)
   146  	if m > n {
   147  		c = subVW(z[n:], x[n:], c)
   148  	}
   149  	if c != 0 {
   150  		panic("underflow")
   151  	}
   152  
   153  	return z.norm()
   154  }
   155  
   156  func (x nat) cmp(y nat) (r int) {
   157  	m := len(x)
   158  	n := len(y)
   159  	if m != n || m == 0 {
   160  		switch {
   161  		case m < n:
   162  			r = -1
   163  		case m > n:
   164  			r = 1
   165  		}
   166  		return
   167  	}
   168  
   169  	i := m - 1
   170  	for i > 0 && x[i] == y[i] {
   171  		i--
   172  	}
   173  
   174  	switch {
   175  	case x[i] < y[i]:
   176  		r = -1
   177  	case x[i] > y[i]:
   178  		r = 1
   179  	}
   180  	return
   181  }
   182  
   183  func (z nat) mulAddWW(x nat, y, r Word) nat {
   184  	m := len(x)
   185  	if m == 0 || y == 0 {
   186  		return z.setWord(r) // result is r
   187  	}
   188  	// m > 0
   189  
   190  	z = z.make(m + 1)
   191  	z[m] = mulAddVWW(z[0:m], x, y, r)
   192  
   193  	return z.norm()
   194  }
   195  
   196  // basicMul multiplies x and y and leaves the result in z.
   197  // The (non-normalized) result is placed in z[0 : len(x) + len(y)].
   198  func basicMul(z, x, y nat) {
   199  	z[0 : len(x)+len(y)].clear() // initialize z
   200  	for i, d := range y {
   201  		if d != 0 {
   202  			z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
   203  		}
   204  	}
   205  }
   206  
   207  // montgomery computes z mod m = x*y*2**(-n*_W) mod m,
   208  // assuming k = -1/m mod 2**_W.
   209  // z is used for storing the result which is returned;
   210  // z must not alias x, y or m.
   211  // See Gueron, "Efficient Software Implementations of Modular Exponentiation".
   212  // https://eprint.iacr.org/2011/239.pdf
   213  // In the terminology of that paper, this is an "Almost Montgomery Multiplication":
   214  // x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
   215  // z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
   216  func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
   217  	// This code assumes x, y, m are all the same length, n.
   218  	// (required by addMulVVW and the for loop).
   219  	// It also assumes that x, y are already reduced mod m,
   220  	// or else the result will not be properly reduced.
   221  	if len(x) != n || len(y) != n || len(m) != n {
   222  		panic("math/big: mismatched montgomery number lengths")
   223  	}
   224  	z = z.make(n * 2)
   225  	z.clear()
   226  	var c Word
   227  	for i := 0; i < n; i++ {
   228  		d := y[i]
   229  		c2 := addMulVVW(z[i:n+i], x, d)
   230  		t := z[i] * k
   231  		c3 := addMulVVW(z[i:n+i], m, t)
   232  		cx := c + c2
   233  		cy := cx + c3
   234  		z[n+i] = cy
   235  		if cx < c2 || cy < c3 {
   236  			c = 1
   237  		} else {
   238  			c = 0
   239  		}
   240  	}
   241  	if c != 0 {
   242  		subVV(z[:n], z[n:], m)
   243  	} else {
   244  		copy(z[:n], z[n:])
   245  	}
   246  	return z[:n]
   247  }
   248  
   249  // Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
   250  // Factored out for readability - do not use outside karatsuba.
   251  func karatsubaAdd(z, x nat, n int) {
   252  	if c := addVV(z[0:n], z, x); c != 0 {
   253  		addVW(z[n:n+n>>1], z[n:], c)
   254  	}
   255  }
   256  
   257  // Like karatsubaAdd, but does subtract.
   258  func karatsubaSub(z, x nat, n int) {
   259  	if c := subVV(z[0:n], z, x); c != 0 {
   260  		subVW(z[n:n+n>>1], z[n:], c)
   261  	}
   262  }
   263  
   264  // Operands that are shorter than karatsubaThreshold are multiplied using
   265  // "grade school" multiplication; for longer operands the Karatsuba algorithm
   266  // is used.
   267  var karatsubaThreshold = 40 // computed by calibrate_test.go
   268  
   269  // karatsuba multiplies x and y and leaves the result in z.
   270  // Both x and y must have the same length n and n must be a
   271  // power of 2. The result vector z must have len(z) >= 6*n.
   272  // The (non-normalized) result is placed in z[0 : 2*n].
   273  func karatsuba(z, x, y nat) {
   274  	n := len(y)
   275  
   276  	// Switch to basic multiplication if numbers are odd or small.
   277  	// (n is always even if karatsubaThreshold is even, but be
   278  	// conservative)
   279  	if n&1 != 0 || n < karatsubaThreshold || n < 2 {
   280  		basicMul(z, x, y)
   281  		return
   282  	}
   283  	// n&1 == 0 && n >= karatsubaThreshold && n >= 2
   284  
   285  	// Karatsuba multiplication is based on the observation that
   286  	// for two numbers x and y with:
   287  	//
   288  	//   x = x1*b + x0
   289  	//   y = y1*b + y0
   290  	//
   291  	// the product x*y can be obtained with 3 products z2, z1, z0
   292  	// instead of 4:
   293  	//
   294  	//   x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
   295  	//       =    z2*b*b +              z1*b +    z0
   296  	//
   297  	// with:
   298  	//
   299  	//   xd = x1 - x0
   300  	//   yd = y0 - y1
   301  	//
   302  	//   z1 =      xd*yd                    + z2 + z0
   303  	//      = (x1-x0)*(y0 - y1)             + z2 + z0
   304  	//      = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
   305  	//      = x1*y0 -    z2 -    z0 + x0*y1 + z2 + z0
   306  	//      = x1*y0                 + x0*y1
   307  
   308  	// split x, y into "digits"
   309  	n2 := n >> 1              // n2 >= 1
   310  	x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
   311  	y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
   312  
   313  	// z is used for the result and temporary storage:
   314  	//
   315  	//   6*n     5*n     4*n     3*n     2*n     1*n     0*n
   316  	// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
   317  	//
   318  	// For each recursive call of karatsuba, an unused slice of
   319  	// z is passed in that has (at least) half the length of the
   320  	// caller's z.
   321  
   322  	// compute z0 and z2 with the result "in place" in z
   323  	karatsuba(z, x0, y0)     // z0 = x0*y0
   324  	karatsuba(z[n:], x1, y1) // z2 = x1*y1
   325  
   326  	// compute xd (or the negative value if underflow occurs)
   327  	s := 1 // sign of product xd*yd
   328  	xd := z[2*n : 2*n+n2]
   329  	if subVV(xd, x1, x0) != 0 { // x1-x0
   330  		s = -s
   331  		subVV(xd, x0, x1) // x0-x1
   332  	}
   333  
   334  	// compute yd (or the negative value if underflow occurs)
   335  	yd := z[2*n+n2 : 3*n]
   336  	if subVV(yd, y0, y1) != 0 { // y0-y1
   337  		s = -s
   338  		subVV(yd, y1, y0) // y1-y0
   339  	}
   340  
   341  	// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
   342  	// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
   343  	p := z[n*3:]
   344  	karatsuba(p, xd, yd)
   345  
   346  	// save original z2:z0
   347  	// (ok to use upper half of z since we're done recurring)
   348  	r := z[n*4:]
   349  	copy(r, z[:n*2])
   350  
   351  	// add up all partial products
   352  	//
   353  	//   2*n     n     0
   354  	// z = [ z2  | z0  ]
   355  	//   +    [ z0  ]
   356  	//   +    [ z2  ]
   357  	//   +    [  p  ]
   358  	//
   359  	karatsubaAdd(z[n2:], r, n)
   360  	karatsubaAdd(z[n2:], r[n:], n)
   361  	if s > 0 {
   362  		karatsubaAdd(z[n2:], p, n)
   363  	} else {
   364  		karatsubaSub(z[n2:], p, n)
   365  	}
   366  }
   367  
   368  // alias reports whether x and y share the same base array.
   369  //
   370  // Note: alias assumes that the capacity of underlying arrays
   371  // is never changed for nat values; i.e. that there are
   372  // no 3-operand slice expressions in this code (or worse,
   373  // reflect-based operations to the same effect).
   374  func alias(x, y nat) bool {
   375  	return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
   376  }
   377  
   378  // addAt implements z += x<<(_W*i); z must be long enough.
   379  // (we don't use nat.add because we need z to stay the same
   380  // slice, and we don't need to normalize z after each addition)
   381  func addAt(z, x nat, i int) {
   382  	if n := len(x); n > 0 {
   383  		if c := addVV(z[i:i+n], z[i:], x); c != 0 {
   384  			j := i + n
   385  			if j < len(z) {
   386  				addVW(z[j:], z[j:], c)
   387  			}
   388  		}
   389  	}
   390  }
   391  
   392  // karatsubaLen computes an approximation to the maximum k <= n such that
   393  // k = p<<i for a number p <= threshold and an i >= 0. Thus, the
   394  // result is the largest number that can be divided repeatedly by 2 before
   395  // becoming about the value of threshold.
   396  func karatsubaLen(n, threshold int) int {
   397  	i := uint(0)
   398  	for n > threshold {
   399  		n >>= 1
   400  		i++
   401  	}
   402  	return n << i
   403  }
   404  
   405  func (z nat) mul(x, y nat) nat {
   406  	m := len(x)
   407  	n := len(y)
   408  
   409  	switch {
   410  	case m < n:
   411  		return z.mul(y, x)
   412  	case m == 0 || n == 0:
   413  		return z[:0]
   414  	case n == 1:
   415  		return z.mulAddWW(x, y[0], 0)
   416  	}
   417  	// m >= n > 1
   418  
   419  	// determine if z can be reused
   420  	if alias(z, x) || alias(z, y) {
   421  		z = nil // z is an alias for x or y - cannot reuse
   422  	}
   423  
   424  	// use basic multiplication if the numbers are small
   425  	if n < karatsubaThreshold {
   426  		z = z.make(m + n)
   427  		basicMul(z, x, y)
   428  		return z.norm()
   429  	}
   430  	// m >= n && n >= karatsubaThreshold && n >= 2
   431  
   432  	// determine Karatsuba length k such that
   433  	//
   434  	//   x = xh*b + x0  (0 <= x0 < b)
   435  	//   y = yh*b + y0  (0 <= y0 < b)
   436  	//   b = 1<<(_W*k)  ("base" of digits xi, yi)
   437  	//
   438  	k := karatsubaLen(n, karatsubaThreshold)
   439  	// k <= n
   440  
   441  	// multiply x0 and y0 via Karatsuba
   442  	x0 := x[0:k]              // x0 is not normalized
   443  	y0 := y[0:k]              // y0 is not normalized
   444  	z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
   445  	karatsuba(z, x0, y0)
   446  	z = z[0 : m+n]  // z has final length but may be incomplete
   447  	z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
   448  
   449  	// If xh != 0 or yh != 0, add the missing terms to z. For
   450  	//
   451  	//   xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
   452  	//   yh =                         y1*b (0 <= y1 < b)
   453  	//
   454  	// the missing terms are
   455  	//
   456  	//   x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
   457  	//
   458  	// since all the yi for i > 1 are 0 by choice of k: If any of them
   459  	// were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
   460  	// be a larger valid threshold contradicting the assumption about k.
   461  	//
   462  	if k < n || m != n {
   463  		tp := getNat(3 * k)
   464  		t := *tp
   465  
   466  		// add x0*y1*b
   467  		x0 := x0.norm()
   468  		y1 := y[k:]       // y1 is normalized because y is
   469  		t = t.mul(x0, y1) // update t so we don't lose t's underlying array
   470  		addAt(z, t, k)
   471  
   472  		// add xi*y0<<i, xi*y1*b<<(i+k)
   473  		y0 := y0.norm()
   474  		for i := k; i < len(x); i += k {
   475  			xi := x[i:]
   476  			if len(xi) > k {
   477  				xi = xi[:k]
   478  			}
   479  			xi = xi.norm()
   480  			t = t.mul(xi, y0)
   481  			addAt(z, t, i)
   482  			t = t.mul(xi, y1)
   483  			addAt(z, t, i+k)
   484  		}
   485  
   486  		putNat(tp)
   487  	}
   488  
   489  	return z.norm()
   490  }
   491  
   492  // basicSqr sets z = x*x and is asymptotically faster than basicMul
   493  // by about a factor of 2, but slower for small arguments due to overhead.
   494  // Requirements: len(x) > 0, len(z) == 2*len(x)
   495  // The (non-normalized) result is placed in z.
   496  func basicSqr(z, x nat) {
   497  	n := len(x)
   498  	tp := getNat(2 * n)
   499  	t := *tp // temporary variable to hold the products
   500  	t.clear()
   501  	z[1], z[0] = mulWW(x[0], x[0]) // the initial square
   502  	for i := 1; i < n; i++ {
   503  		d := x[i]
   504  		// z collects the squares x[i] * x[i]
   505  		z[2*i+1], z[2*i] = mulWW(d, d)
   506  		// t collects the products x[i] * x[j] where j < i
   507  		t[2*i] = addMulVVW(t[i:2*i], x[0:i], d)
   508  	}
   509  	t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products
   510  	addVV(z, z, t)                              // combine the result
   511  	putNat(tp)
   512  }
   513  
   514  // karatsubaSqr squares x and leaves the result in z.
   515  // len(x) must be a power of 2 and len(z) >= 6*len(x).
   516  // The (non-normalized) result is placed in z[0 : 2*len(x)].
   517  //
   518  // The algorithm and the layout of z are the same as for karatsuba.
   519  func karatsubaSqr(z, x nat) {
   520  	n := len(x)
   521  
   522  	if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 {
   523  		basicSqr(z[:2*n], x)
   524  		return
   525  	}
   526  
   527  	n2 := n >> 1
   528  	x1, x0 := x[n2:], x[0:n2]
   529  
   530  	karatsubaSqr(z, x0)
   531  	karatsubaSqr(z[n:], x1)
   532  
   533  	// s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0
   534  	xd := z[2*n : 2*n+n2]
   535  	if subVV(xd, x1, x0) != 0 {
   536  		subVV(xd, x0, x1)
   537  	}
   538  
   539  	p := z[n*3:]
   540  	karatsubaSqr(p, xd)
   541  
   542  	r := z[n*4:]
   543  	copy(r, z[:n*2])
   544  
   545  	karatsubaAdd(z[n2:], r, n)
   546  	karatsubaAdd(z[n2:], r[n:], n)
   547  	karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0
   548  }
   549  
   550  // Operands that are shorter than basicSqrThreshold are squared using
   551  // "grade school" multiplication; for operands longer than karatsubaSqrThreshold
   552  // we use the Karatsuba algorithm optimized for x == y.
   553  var basicSqrThreshold = 20      // computed by calibrate_test.go
   554  var karatsubaSqrThreshold = 260 // computed by calibrate_test.go
   555  
   556  // z = x*x
   557  func (z nat) sqr(x nat) nat {
   558  	n := len(x)
   559  	switch {
   560  	case n == 0:
   561  		return z[:0]
   562  	case n == 1:
   563  		d := x[0]
   564  		z = z.make(2)
   565  		z[1], z[0] = mulWW(d, d)
   566  		return z.norm()
   567  	}
   568  
   569  	if alias(z, x) {
   570  		z = nil // z is an alias for x - cannot reuse
   571  	}
   572  
   573  	if n < basicSqrThreshold {
   574  		z = z.make(2 * n)
   575  		basicMul(z, x, x)
   576  		return z.norm()
   577  	}
   578  	if n < karatsubaSqrThreshold {
   579  		z = z.make(2 * n)
   580  		basicSqr(z, x)
   581  		return z.norm()
   582  	}
   583  
   584  	// Use Karatsuba multiplication optimized for x == y.
   585  	// The algorithm and layout of z are the same as for mul.
   586  
   587  	// z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2
   588  
   589  	k := karatsubaLen(n, karatsubaSqrThreshold)
   590  
   591  	x0 := x[0:k]
   592  	z = z.make(max(6*k, 2*n))
   593  	karatsubaSqr(z, x0) // z = x0^2
   594  	z = z[0 : 2*n]
   595  	z[2*k:].clear()
   596  
   597  	if k < n {
   598  		tp := getNat(2 * k)
   599  		t := *tp
   600  		x0 := x0.norm()
   601  		x1 := x[k:]
   602  		t = t.mul(x0, x1)
   603  		addAt(z, t, k)
   604  		addAt(z, t, k) // z = 2*x1*x0*b + x0^2
   605  		t = t.sqr(x1)
   606  		addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2
   607  		putNat(tp)
   608  	}
   609  
   610  	return z.norm()
   611  }
   612  
   613  // mulRange computes the product of all the unsigned integers in the
   614  // range [a, b] inclusively. If a > b (empty range), the result is 1.
   615  func (z nat) mulRange(a, b uint64) nat {
   616  	switch {
   617  	case a == 0:
   618  		// cut long ranges short (optimization)
   619  		return z.setUint64(0)
   620  	case a > b:
   621  		return z.setUint64(1)
   622  	case a == b:
   623  		return z.setUint64(a)
   624  	case a+1 == b:
   625  		return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
   626  	}
   627  	m := a + (b-a)/2 // avoid overflow
   628  	return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
   629  }
   630  
   631  // getNat returns a *nat of len n. The contents may not be zero.
   632  // The pool holds *nat to avoid allocation when converting to interface{}.
   633  func getNat(n int) *nat {
   634  	var z *nat
   635  	if v := natPool.Get(); v != nil {
   636  		z = v.(*nat)
   637  	}
   638  	if z == nil {
   639  		z = new(nat)
   640  	}
   641  	*z = z.make(n)
   642  	if n > 0 {
   643  		(*z)[0] = 0xfedcb // break code expecting zero
   644  	}
   645  	return z
   646  }
   647  
   648  func putNat(x *nat) {
   649  	natPool.Put(x)
   650  }
   651  
   652  var natPool sync.Pool
   653  
   654  // bitLen returns the length of x in bits.
   655  // Unlike most methods, it works even if x is not normalized.
   656  func (x nat) bitLen() int {
   657  	// This function is used in cryptographic operations. It must not leak
   658  	// anything but the Int's sign and bit size through side-channels. Any
   659  	// changes must be reviewed by a security expert.
   660  	if i := len(x) - 1; i >= 0 {
   661  		// bits.Len uses a lookup table for the low-order bits on some
   662  		// architectures. Neutralize any input-dependent behavior by setting all
   663  		// bits after the first one bit.
   664  		top := uint(x[i])
   665  		top |= top >> 1
   666  		top |= top >> 2
   667  		top |= top >> 4
   668  		top |= top >> 8
   669  		top |= top >> 16
   670  		top |= top >> 16 >> 16 // ">> 32" doesn't compile on 32-bit architectures
   671  		return i*_W + bits.Len(top)
   672  	}
   673  	return 0
   674  }
   675  
   676  // trailingZeroBits returns the number of consecutive least significant zero
   677  // bits of x.
   678  func (x nat) trailingZeroBits() uint {
   679  	if len(x) == 0 {
   680  		return 0
   681  	}
   682  	var i uint
   683  	for x[i] == 0 {
   684  		i++
   685  	}
   686  	// x[i] != 0
   687  	return i*_W + uint(bits.TrailingZeros(uint(x[i])))
   688  }
   689  
   690  // isPow2 returns i, true when x == 2**i and 0, false otherwise.
   691  func (x nat) isPow2() (uint, bool) {
   692  	var i uint
   693  	for x[i] == 0 {
   694  		i++
   695  	}
   696  	if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 {
   697  		return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true
   698  	}
   699  	return 0, false
   700  }
   701  
   702  func same(x, y nat) bool {
   703  	return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0]
   704  }
   705  
   706  // z = x << s
   707  func (z nat) shl(x nat, s uint) nat {
   708  	if s == 0 {
   709  		if same(z, x) {
   710  			return z
   711  		}
   712  		if !alias(z, x) {
   713  			return z.set(x)
   714  		}
   715  	}
   716  
   717  	m := len(x)
   718  	if m == 0 {
   719  		return z[:0]
   720  	}
   721  	// m > 0
   722  
   723  	n := m + int(s/_W)
   724  	z = z.make(n + 1)
   725  	z[n] = shlVU(z[n-m:n], x, s%_W)
   726  	z[0 : n-m].clear()
   727  
   728  	return z.norm()
   729  }
   730  
   731  // z = x >> s
   732  func (z nat) shr(x nat, s uint) nat {
   733  	if s == 0 {
   734  		if same(z, x) {
   735  			return z
   736  		}
   737  		if !alias(z, x) {
   738  			return z.set(x)
   739  		}
   740  	}
   741  
   742  	m := len(x)
   743  	n := m - int(s/_W)
   744  	if n <= 0 {
   745  		return z[:0]
   746  	}
   747  	// n > 0
   748  
   749  	z = z.make(n)
   750  	shrVU(z, x[m-n:], s%_W)
   751  
   752  	return z.norm()
   753  }
   754  
   755  func (z nat) setBit(x nat, i uint, b uint) nat {
   756  	j := int(i / _W)
   757  	m := Word(1) << (i % _W)
   758  	n := len(x)
   759  	switch b {
   760  	case 0:
   761  		z = z.make(n)
   762  		copy(z, x)
   763  		if j >= n {
   764  			// no need to grow
   765  			return z
   766  		}
   767  		z[j] &^= m
   768  		return z.norm()
   769  	case 1:
   770  		if j >= n {
   771  			z = z.make(j + 1)
   772  			z[n:].clear()
   773  		} else {
   774  			z = z.make(n)
   775  		}
   776  		copy(z, x)
   777  		z[j] |= m
   778  		// no need to normalize
   779  		return z
   780  	}
   781  	panic("set bit is not 0 or 1")
   782  }
   783  
   784  // bit returns the value of the i'th bit, with lsb == bit 0.
   785  func (x nat) bit(i uint) uint {
   786  	j := i / _W
   787  	if j >= uint(len(x)) {
   788  		return 0
   789  	}
   790  	// 0 <= j < len(x)
   791  	return uint(x[j] >> (i % _W) & 1)
   792  }
   793  
   794  // sticky returns 1 if there's a 1 bit within the
   795  // i least significant bits, otherwise it returns 0.
   796  func (x nat) sticky(i uint) uint {
   797  	j := i / _W
   798  	if j >= uint(len(x)) {
   799  		if len(x) == 0 {
   800  			return 0
   801  		}
   802  		return 1
   803  	}
   804  	// 0 <= j < len(x)
   805  	for _, x := range x[:j] {
   806  		if x != 0 {
   807  			return 1
   808  		}
   809  	}
   810  	if x[j]<<(_W-i%_W) != 0 {
   811  		return 1
   812  	}
   813  	return 0
   814  }
   815  
   816  func (z nat) and(x, y nat) nat {
   817  	m := len(x)
   818  	n := len(y)
   819  	if m > n {
   820  		m = n
   821  	}
   822  	// m <= n
   823  
   824  	z = z.make(m)
   825  	for i := 0; i < m; i++ {
   826  		z[i] = x[i] & y[i]
   827  	}
   828  
   829  	return z.norm()
   830  }
   831  
   832  // trunc returns z = x mod 2ⁿ.
   833  func (z nat) trunc(x nat, n uint) nat {
   834  	w := (n + _W - 1) / _W
   835  	if uint(len(x)) < w {
   836  		return z.set(x)
   837  	}
   838  	z = z.make(int(w))
   839  	copy(z, x)
   840  	if n%_W != 0 {
   841  		z[len(z)-1] &= 1<<(n%_W) - 1
   842  	}
   843  	return z.norm()
   844  }
   845  
   846  func (z nat) andNot(x, y nat) nat {
   847  	m := len(x)
   848  	n := len(y)
   849  	if n > m {
   850  		n = m
   851  	}
   852  	// m >= n
   853  
   854  	z = z.make(m)
   855  	for i := 0; i < n; i++ {
   856  		z[i] = x[i] &^ y[i]
   857  	}
   858  	copy(z[n:m], x[n:m])
   859  
   860  	return z.norm()
   861  }
   862  
   863  func (z nat) or(x, y nat) nat {
   864  	m := len(x)
   865  	n := len(y)
   866  	s := x
   867  	if m < n {
   868  		n, m = m, n
   869  		s = y
   870  	}
   871  	// m >= n
   872  
   873  	z = z.make(m)
   874  	for i := 0; i < n; i++ {
   875  		z[i] = x[i] | y[i]
   876  	}
   877  	copy(z[n:m], s[n:m])
   878  
   879  	return z.norm()
   880  }
   881  
   882  func (z nat) xor(x, y nat) nat {
   883  	m := len(x)
   884  	n := len(y)
   885  	s := x
   886  	if m < n {
   887  		n, m = m, n
   888  		s = y
   889  	}
   890  	// m >= n
   891  
   892  	z = z.make(m)
   893  	for i := 0; i < n; i++ {
   894  		z[i] = x[i] ^ y[i]
   895  	}
   896  	copy(z[n:m], s[n:m])
   897  
   898  	return z.norm()
   899  }
   900  
   901  // random creates a random integer in [0..limit), using the space in z if
   902  // possible. n is the bit length of limit.
   903  func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
   904  	if alias(z, limit) {
   905  		z = nil // z is an alias for limit - cannot reuse
   906  	}
   907  	z = z.make(len(limit))
   908  
   909  	bitLengthOfMSW := uint(n % _W)
   910  	if bitLengthOfMSW == 0 {
   911  		bitLengthOfMSW = _W
   912  	}
   913  	mask := Word((1 << bitLengthOfMSW) - 1)
   914  
   915  	for {
   916  		switch _W {
   917  		case 32:
   918  			for i := range z {
   919  				z[i] = Word(rand.Uint32())
   920  			}
   921  		case 64:
   922  			for i := range z {
   923  				z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
   924  			}
   925  		default:
   926  			panic("unknown word size")
   927  		}
   928  		z[len(limit)-1] &= mask
   929  		if z.cmp(limit) < 0 {
   930  			break
   931  		}
   932  	}
   933  
   934  	return z.norm()
   935  }
   936  
   937  // If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
   938  // otherwise it sets z to x**y. The result is the value of z.
   939  func (z nat) expNN(x, y, m nat, slow bool) nat {
   940  	if alias(z, x) || alias(z, y) {
   941  		// We cannot allow in-place modification of x or y.
   942  		z = nil
   943  	}
   944  
   945  	// x**y mod 1 == 0
   946  	if len(m) == 1 && m[0] == 1 {
   947  		return z.setWord(0)
   948  	}
   949  	// m == 0 || m > 1
   950  
   951  	// x**0 == 1
   952  	if len(y) == 0 {
   953  		return z.setWord(1)
   954  	}
   955  	// y > 0
   956  
   957  	// 0**y = 0
   958  	if len(x) == 0 {
   959  		return z.setWord(0)
   960  	}
   961  	// x > 0
   962  
   963  	// 1**y = 1
   964  	if len(x) == 1 && x[0] == 1 {
   965  		return z.setWord(1)
   966  	}
   967  	// x > 1
   968  
   969  	// x**1 == x
   970  	if len(y) == 1 && y[0] == 1 {
   971  		if len(m) != 0 {
   972  			return z.rem(x, m)
   973  		}
   974  		return z.set(x)
   975  	}
   976  	// y > 1
   977  
   978  	if len(m) != 0 {
   979  		// We likely end up being as long as the modulus.
   980  		z = z.make(len(m))
   981  
   982  		// If the exponent is large, we use the Montgomery method for odd values,
   983  		// and a 4-bit, windowed exponentiation for powers of two,
   984  		// and a CRT-decomposed Montgomery method for the remaining values
   985  		// (even values times non-trivial odd values, which decompose into one
   986  		// instance of each of the first two cases).
   987  		if len(y) > 1 && !slow {
   988  			if m[0]&1 == 1 {
   989  				return z.expNNMontgomery(x, y, m)
   990  			}
   991  			if logM, ok := m.isPow2(); ok {
   992  				return z.expNNWindowed(x, y, logM)
   993  			}
   994  			return z.expNNMontgomeryEven(x, y, m)
   995  		}
   996  	}
   997  
   998  	z = z.set(x)
   999  	v := y[len(y)-1] // v > 0 because y is normalized and y > 0
  1000  	shift := nlz(v) + 1
  1001  	v <<= shift
  1002  	var q nat
  1003  
  1004  	const mask = 1 << (_W - 1)
  1005  
  1006  	// We walk through the bits of the exponent one by one. Each time we
  1007  	// see a bit, we square, thus doubling the power. If the bit is a one,
  1008  	// we also multiply by x, thus adding one to the power.
  1009  
  1010  	w := _W - int(shift)
  1011  	// zz and r are used to avoid allocating in mul and div as
  1012  	// otherwise the arguments would alias.
  1013  	var zz, r nat
  1014  	for j := 0; j < w; j++ {
  1015  		zz = zz.sqr(z)
  1016  		zz, z = z, zz
  1017  
  1018  		if v&mask != 0 {
  1019  			zz = zz.mul(z, x)
  1020  			zz, z = z, zz
  1021  		}
  1022  
  1023  		if len(m) != 0 {
  1024  			zz, r = zz.div(r, z, m)
  1025  			zz, r, q, z = q, z, zz, r
  1026  		}
  1027  
  1028  		v <<= 1
  1029  	}
  1030  
  1031  	for i := len(y) - 2; i >= 0; i-- {
  1032  		v = y[i]
  1033  
  1034  		for j := 0; j < _W; j++ {
  1035  			zz = zz.sqr(z)
  1036  			zz, z = z, zz
  1037  
  1038  			if v&mask != 0 {
  1039  				zz = zz.mul(z, x)
  1040  				zz, z = z, zz
  1041  			}
  1042  
  1043  			if len(m) != 0 {
  1044  				zz, r = zz.div(r, z, m)
  1045  				zz, r, q, z = q, z, zz, r
  1046  			}
  1047  
  1048  			v <<= 1
  1049  		}
  1050  	}
  1051  
  1052  	return z.norm()
  1053  }
  1054  
  1055  // expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd.
  1056  // It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2
  1057  // and then uses the Chinese Remainder Theorem to combine the results.
  1058  // The recursive call using m1 will use expNNWindowed,
  1059  // while the recursive call using m2 will use expNNMontgomery.
  1060  // For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”,
  1061  // IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994.
  1062  // http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf
  1063  func (z nat) expNNMontgomeryEven(x, y, m nat) nat {
  1064  	// Split m = m₁ × m₂ where m₁ = 2ⁿ
  1065  	n := m.trailingZeroBits()
  1066  	m1 := nat(nil).shl(natOne, n)
  1067  	m2 := nat(nil).shr(m, n)
  1068  
  1069  	// We want z = x**y mod m.
  1070  	// z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1
  1071  	// z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2
  1072  	// (We are using the math/big convention for names here,
  1073  	// where the computation is z = x**y mod m, so its parts are z1 and z2.
  1074  	// The paper is computing x = a**e mod n; it refers to these as x2 and z1.)
  1075  	z1 := nat(nil).expNN(x, y, m1, false)
  1076  	z2 := nat(nil).expNN(x, y, m2, false)
  1077  
  1078  	// Reconstruct z from z₁, z₂ using CRT, using algorithm from paper,
  1079  	// which uses only a single modInverse (and an easy one at that).
  1080  	//	p = (z₁ - z₂) × m₂⁻¹ (mod m₁)
  1081  	//	z = z₂ + p × m₂
  1082  	// The final addition is in range because:
  1083  	//	z = z₂ + p × m₂
  1084  	//	  ≤ z₂ + (m₁-1) × m₂
  1085  	//	  < m₂ + (m₁-1) × m₂
  1086  	//	  = m₁ × m₂
  1087  	//	  = m.
  1088  	z = z.set(z2)
  1089  
  1090  	// Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1.
  1091  	z1 = z1.subMod2N(z1, z2, n)
  1092  
  1093  	// Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]).
  1094  	m2inv := nat(nil).modInverse(m2, m1)
  1095  	z2 = z2.mul(z1, m2inv)
  1096  	z2 = z2.trunc(z2, n)
  1097  
  1098  	// Reuse z1 for p * m2.
  1099  	z = z.add(z, z1.mul(z2, m2))
  1100  
  1101  	return z
  1102  }
  1103  
  1104  // expNNWindowed calculates x**y mod m using a fixed, 4-bit window,
  1105  // where m = 2**logM.
  1106  func (z nat) expNNWindowed(x, y nat, logM uint) nat {
  1107  	if len(y) <= 1 {
  1108  		panic("big: misuse of expNNWindowed")
  1109  	}
  1110  	if x[0]&1 == 0 {
  1111  		// len(y) > 1, so y  > logM.
  1112  		// x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM.
  1113  		return z.setWord(0)
  1114  	}
  1115  	if logM == 1 {
  1116  		return z.setWord(1)
  1117  	}
  1118  
  1119  	// zz is used to avoid allocating in mul as otherwise
  1120  	// the arguments would alias.
  1121  	w := int((logM + _W - 1) / _W)
  1122  	zzp := getNat(w)
  1123  	zz := *zzp
  1124  
  1125  	const n = 4
  1126  	// powers[i] contains x^i.
  1127  	var powers [1 << n]*nat
  1128  	for i := range powers {
  1129  		powers[i] = getNat(w)
  1130  	}
  1131  	*powers[0] = powers[0].set(natOne)
  1132  	*powers[1] = powers[1].trunc(x, logM)
  1133  	for i := 2; i < 1<<n; i += 2 {
  1134  		p2, p, p1 := powers[i/2], powers[i], powers[i+1]
  1135  		*p = p.sqr(*p2)
  1136  		*p = p.trunc(*p, logM)
  1137  		*p1 = p1.mul(*p, x)
  1138  		*p1 = p1.trunc(*p1, logM)
  1139  	}
  1140  
  1141  	// Because phi(2**logM) = 2**(logM-1), x**(2**(logM-1)) = 1,
  1142  	// so we can compute x**(y mod 2**(logM-1)) instead of x**y.
  1143  	// That is, we can throw away all but the bottom logM-1 bits of y.
  1144  	// Instead of allocating a new y, we start reading y at the right word
  1145  	// and truncate it appropriately at the start of the loop.
  1146  	i := len(y) - 1
  1147  	mtop := int((logM - 2) / _W) // -2 because the top word of N bits is the (N-1)/W'th word.
  1148  	mmask := ^Word(0)
  1149  	if mbits := (logM - 1) & (_W - 1); mbits != 0 {
  1150  		mmask = (1 << mbits) - 1
  1151  	}
  1152  	if i > mtop {
  1153  		i = mtop
  1154  	}
  1155  	advance := false
  1156  	z = z.setWord(1)
  1157  	for ; i >= 0; i-- {
  1158  		yi := y[i]
  1159  		if i == mtop {
  1160  			yi &= mmask
  1161  		}
  1162  		for j := 0; j < _W; j += n {
  1163  			if advance {
  1164  				// Account for use of 4 bits in previous iteration.
  1165  				// Unrolled loop for significant performance
  1166  				// gain. Use go test -bench=".*" in crypto/rsa
  1167  				// to check performance before making changes.
  1168  				zz = zz.sqr(z)
  1169  				zz, z = z, zz
  1170  				z = z.trunc(z, logM)
  1171  
  1172  				zz = zz.sqr(z)
  1173  				zz, z = z, zz
  1174  				z = z.trunc(z, logM)
  1175  
  1176  				zz = zz.sqr(z)
  1177  				zz, z = z, zz
  1178  				z = z.trunc(z, logM)
  1179  
  1180  				zz = zz.sqr(z)
  1181  				zz, z = z, zz
  1182  				z = z.trunc(z, logM)
  1183  			}
  1184  
  1185  			zz = zz.mul(z, *powers[yi>>(_W-n)])
  1186  			zz, z = z, zz
  1187  			z = z.trunc(z, logM)
  1188  
  1189  			yi <<= n
  1190  			advance = true
  1191  		}
  1192  	}
  1193  
  1194  	*zzp = zz
  1195  	putNat(zzp)
  1196  	for i := range powers {
  1197  		putNat(powers[i])
  1198  	}
  1199  
  1200  	return z.norm()
  1201  }
  1202  
  1203  // expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
  1204  // Uses Montgomery representation.
  1205  func (z nat) expNNMontgomery(x, y, m nat) nat {
  1206  	numWords := len(m)
  1207  
  1208  	// We want the lengths of x and m to be equal.
  1209  	// It is OK if x >= m as long as len(x) == len(m).
  1210  	if len(x) > numWords {
  1211  		_, x = nat(nil).div(nil, x, m)
  1212  		// Note: now len(x) <= numWords, not guaranteed ==.
  1213  	}
  1214  	if len(x) < numWords {
  1215  		rr := make(nat, numWords)
  1216  		copy(rr, x)
  1217  		x = rr
  1218  	}
  1219  
  1220  	// Ideally the precomputations would be performed outside, and reused
  1221  	// k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson
  1222  	// Iteration for Multiplicative Inverses Modulo Prime Powers".
  1223  	k0 := 2 - m[0]
  1224  	t := m[0] - 1
  1225  	for i := 1; i < _W; i <<= 1 {
  1226  		t *= t
  1227  		k0 *= (t + 1)
  1228  	}
  1229  	k0 = -k0
  1230  
  1231  	// RR = 2**(2*_W*len(m)) mod m
  1232  	RR := nat(nil).setWord(1)
  1233  	zz := nat(nil).shl(RR, uint(2*numWords*_W))
  1234  	_, RR = nat(nil).div(RR, zz, m)
  1235  	if len(RR) < numWords {
  1236  		zz = zz.make(numWords)
  1237  		copy(zz, RR)
  1238  		RR = zz
  1239  	}
  1240  	// one = 1, with equal length to that of m
  1241  	one := make(nat, numWords)
  1242  	one[0] = 1
  1243  
  1244  	const n = 4
  1245  	// powers[i] contains x^i
  1246  	var powers [1 << n]nat
  1247  	powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
  1248  	powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
  1249  	for i := 2; i < 1<<n; i++ {
  1250  		powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
  1251  	}
  1252  
  1253  	// initialize z = 1 (Montgomery 1)
  1254  	z = z.make(numWords)
  1255  	copy(z, powers[0])
  1256  
  1257  	zz = zz.make(numWords)
  1258  
  1259  	// same windowed exponent, but with Montgomery multiplications
  1260  	for i := len(y) - 1; i >= 0; i-- {
  1261  		yi := y[i]
  1262  		for j := 0; j < _W; j += n {
  1263  			if i != len(y)-1 || j != 0 {
  1264  				zz = zz.montgomery(z, z, m, k0, numWords)
  1265  				z = z.montgomery(zz, zz, m, k0, numWords)
  1266  				zz = zz.montgomery(z, z, m, k0, numWords)
  1267  				z = z.montgomery(zz, zz, m, k0, numWords)
  1268  			}
  1269  			zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
  1270  			z, zz = zz, z
  1271  			yi <<= n
  1272  		}
  1273  	}
  1274  	// convert to regular number
  1275  	zz = zz.montgomery(z, one, m, k0, numWords)
  1276  
  1277  	// One last reduction, just in case.
  1278  	// See golang.org/issue/13907.
  1279  	if zz.cmp(m) >= 0 {
  1280  		// Common case is m has high bit set; in that case,
  1281  		// since zz is the same length as m, there can be just
  1282  		// one multiple of m to remove. Just subtract.
  1283  		// We think that the subtract should be sufficient in general,
  1284  		// so do that unconditionally, but double-check,
  1285  		// in case our beliefs are wrong.
  1286  		// The div is not expected to be reached.
  1287  		zz = zz.sub(zz, m)
  1288  		if zz.cmp(m) >= 0 {
  1289  			_, zz = nat(nil).div(nil, zz, m)
  1290  		}
  1291  	}
  1292  
  1293  	return zz.norm()
  1294  }
  1295  
  1296  // bytes writes the value of z into buf using big-endian encoding.
  1297  // The value of z is encoded in the slice buf[i:]. If the value of z
  1298  // cannot be represented in buf, bytes panics. The number i of unused
  1299  // bytes at the beginning of buf is returned as result.
  1300  func (z nat) bytes(buf []byte) (i int) {
  1301  	// This function is used in cryptographic operations. It must not leak
  1302  	// anything but the Int's sign and bit size through side-channels. Any
  1303  	// changes must be reviewed by a security expert.
  1304  	i = len(buf)
  1305  	for _, d := range z {
  1306  		for j := 0; j < _S; j++ {
  1307  			i--
  1308  			if i >= 0 {
  1309  				buf[i] = byte(d)
  1310  			} else if byte(d) != 0 {
  1311  				panic("math/big: buffer too small to fit value")
  1312  			}
  1313  			d >>= 8
  1314  		}
  1315  	}
  1316  
  1317  	if i < 0 {
  1318  		i = 0
  1319  	}
  1320  	for i < len(buf) && buf[i] == 0 {
  1321  		i++
  1322  	}
  1323  
  1324  	return
  1325  }
  1326  
  1327  // bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value.
  1328  func bigEndianWord(buf []byte) Word {
  1329  	if _W == 64 {
  1330  		return Word(binary.BigEndian.Uint64(buf))
  1331  	}
  1332  	return Word(binary.BigEndian.Uint32(buf))
  1333  }
  1334  
  1335  // setBytes interprets buf as the bytes of a big-endian unsigned
  1336  // integer, sets z to that value, and returns z.
  1337  func (z nat) setBytes(buf []byte) nat {
  1338  	z = z.make((len(buf) + _S - 1) / _S)
  1339  
  1340  	i := len(buf)
  1341  	for k := 0; i >= _S; k++ {
  1342  		z[k] = bigEndianWord(buf[i-_S : i])
  1343  		i -= _S
  1344  	}
  1345  	if i > 0 {
  1346  		var d Word
  1347  		for s := uint(0); i > 0; s += 8 {
  1348  			d |= Word(buf[i-1]) << s
  1349  			i--
  1350  		}
  1351  		z[len(z)-1] = d
  1352  	}
  1353  
  1354  	return z.norm()
  1355  }
  1356  
  1357  // sqrt sets z = ⌊√x⌋
  1358  func (z nat) sqrt(x nat) nat {
  1359  	if x.cmp(natOne) <= 0 {
  1360  		return z.set(x)
  1361  	}
  1362  	if alias(z, x) {
  1363  		z = nil
  1364  	}
  1365  
  1366  	// Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
  1367  	// See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
  1368  	// https://members.loria.fr/PZimmermann/mca/pub226.html
  1369  	// If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
  1370  	// otherwise it converges to the correct z and stays there.
  1371  	var z1, z2 nat
  1372  	z1 = z
  1373  	z1 = z1.setUint64(1)
  1374  	z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x
  1375  	for n := 0; ; n++ {
  1376  		z2, _ = z2.div(nil, x, z1)
  1377  		z2 = z2.add(z2, z1)
  1378  		z2 = z2.shr(z2, 1)
  1379  		if z2.cmp(z1) >= 0 {
  1380  			// z1 is answer.
  1381  			// Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
  1382  			if n&1 == 0 {
  1383  				return z1
  1384  			}
  1385  			return z.set(z1)
  1386  		}
  1387  		z1, z2 = z2, z1
  1388  	}
  1389  }
  1390  
  1391  // subMod2N returns z = (x - y) mod 2ⁿ.
  1392  func (z nat) subMod2N(x, y nat, n uint) nat {
  1393  	if uint(x.bitLen()) > n {
  1394  		if alias(z, x) {
  1395  			// ok to overwrite x in place
  1396  			x = x.trunc(x, n)
  1397  		} else {
  1398  			x = nat(nil).trunc(x, n)
  1399  		}
  1400  	}
  1401  	if uint(y.bitLen()) > n {
  1402  		if alias(z, y) {
  1403  			// ok to overwrite y in place
  1404  			y = y.trunc(y, n)
  1405  		} else {
  1406  			y = nat(nil).trunc(y, n)
  1407  		}
  1408  	}
  1409  	if x.cmp(y) >= 0 {
  1410  		return z.sub(x, y)
  1411  	}
  1412  	// x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x).
  1413  	z = z.sub(y, x)
  1414  	for uint(len(z))*_W < n {
  1415  		z = append(z, 0)
  1416  	}
  1417  	for i := range z {
  1418  		z[i] = ^z[i]
  1419  	}
  1420  	z = z.trunc(z, n)
  1421  	return z.add(z, natOne)
  1422  }
  1423  

View as plain text