1 // Copyright 2017 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 //go:generate go run make_tables.go 6 7 // Package bits implements bit counting and manipulation 8 // functions for the predeclared unsigned integer types. 9 // 10 // Functions in this package may be implemented directly by 11 // the compiler, for better performance. For those functions 12 // the code in this package will not be used. Which 13 // functions are implemented by the compiler depends on the 14 // architecture and the Go release. 15 package bits 16 17 const uintSize = 32 << (^uint(0) >> 63) // 32 or 64 18 19 // UintSize is the size of a uint in bits. 20 const UintSize = uintSize 21 22 // --- LeadingZeros --- 23 24 // LeadingZeros returns the number of leading zero bits in x; the result is [UintSize] for x == 0. 25 func LeadingZeros(x uint) int { return UintSize - Len(x) } 26 27 // LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0. 28 func LeadingZeros8(x uint8) int { return 8 - Len8(x) } 29 30 // LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0. 31 func LeadingZeros16(x uint16) int { return 16 - Len16(x) } 32 33 // LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0. 34 func LeadingZeros32(x uint32) int { return 32 - Len32(x) } 35 36 // LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0. 37 func LeadingZeros64(x uint64) int { return 64 - Len64(x) } 38 39 // --- TrailingZeros --- 40 41 // See http://supertech.csail.mit.edu/papers/debruijn.pdf 42 const deBruijn32 = 0x077CB531 43 44 var deBruijn32tab = [32]byte{ 45 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 46 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, 47 } 48 49 const deBruijn64 = 0x03f79d71b4ca8b09 50 51 var deBruijn64tab = [64]byte{ 52 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 53 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 54 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, 55 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, 56 } 57 58 // TrailingZeros returns the number of trailing zero bits in x; the result is [UintSize] for x == 0. 59 func TrailingZeros(x uint) int { 60 if UintSize == 32 { 61 return TrailingZeros32(uint32(x)) 62 } 63 return TrailingZeros64(uint64(x)) 64 } 65 66 // TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0. 67 func TrailingZeros8(x uint8) int { 68 return int(ntz8tab[x]) 69 } 70 71 // TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0. 72 func TrailingZeros16(x uint16) int { 73 if x == 0 { 74 return 16 75 } 76 // see comment in TrailingZeros64 77 return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)]) 78 } 79 80 // TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0. 81 func TrailingZeros32(x uint32) int { 82 if x == 0 { 83 return 32 84 } 85 // see comment in TrailingZeros64 86 return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)]) 87 } 88 89 // TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0. 90 func TrailingZeros64(x uint64) int { 91 if x == 0 { 92 return 64 93 } 94 // If popcount is fast, replace code below with return popcount(^x & (x - 1)). 95 // 96 // x & -x leaves only the right-most bit set in the word. Let k be the 97 // index of that bit. Since only a single bit is set, the value is two 98 // to the power of k. Multiplying by a power of two is equivalent to 99 // left shifting, in this case by k bits. The de Bruijn (64 bit) constant 100 // is such that all six bit, consecutive substrings are distinct. 101 // Therefore, if we have a left shifted version of this constant we can 102 // find by how many bits it was shifted by looking at which six bit 103 // substring ended up at the top of the word. 104 // (Knuth, volume 4, section 7.3.1) 105 return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)]) 106 } 107 108 // --- OnesCount --- 109 110 const m0 = 0x5555555555555555 // 01010101 ... 111 const m1 = 0x3333333333333333 // 00110011 ... 112 const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ... 113 const m3 = 0x00ff00ff00ff00ff // etc. 114 const m4 = 0x0000ffff0000ffff 115 116 // OnesCount returns the number of one bits ("population count") in x. 117 func OnesCount(x uint) int { 118 if UintSize == 32 { 119 return OnesCount32(uint32(x)) 120 } 121 return OnesCount64(uint64(x)) 122 } 123 124 // OnesCount8 returns the number of one bits ("population count") in x. 125 func OnesCount8(x uint8) int { 126 return int(pop8tab[x]) 127 } 128 129 // OnesCount16 returns the number of one bits ("population count") in x. 130 func OnesCount16(x uint16) int { 131 return int(pop8tab[x>>8] + pop8tab[x&0xff]) 132 } 133 134 // OnesCount32 returns the number of one bits ("population count") in x. 135 func OnesCount32(x uint32) int { 136 return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff]) 137 } 138 139 // OnesCount64 returns the number of one bits ("population count") in x. 140 func OnesCount64(x uint64) int { 141 // Implementation: Parallel summing of adjacent bits. 142 // See "Hacker's Delight", Chap. 5: Counting Bits. 143 // The following pattern shows the general approach: 144 // 145 // x = x>>1&(m0&m) + x&(m0&m) 146 // x = x>>2&(m1&m) + x&(m1&m) 147 // x = x>>4&(m2&m) + x&(m2&m) 148 // x = x>>8&(m3&m) + x&(m3&m) 149 // x = x>>16&(m4&m) + x&(m4&m) 150 // x = x>>32&(m5&m) + x&(m5&m) 151 // return int(x) 152 // 153 // Masking (& operations) can be left away when there's no 154 // danger that a field's sum will carry over into the next 155 // field: Since the result cannot be > 64, 8 bits is enough 156 // and we can ignore the masks for the shifts by 8 and up. 157 // Per "Hacker's Delight", the first line can be simplified 158 // more, but it saves at best one instruction, so we leave 159 // it alone for clarity. 160 const m = 1<<64 - 1 161 x = x>>1&(m0&m) + x&(m0&m) 162 x = x>>2&(m1&m) + x&(m1&m) 163 x = (x>>4 + x) & (m2 & m) 164 x += x >> 8 165 x += x >> 16 166 x += x >> 32 167 return int(x) & (1<<7 - 1) 168 } 169 170 // --- RotateLeft --- 171 172 // RotateLeft returns the value of x rotated left by (k mod [UintSize]) bits. 173 // To rotate x right by k bits, call RotateLeft(x, -k). 174 // 175 // This function's execution time does not depend on the inputs. 176 func RotateLeft(x uint, k int) uint { 177 if UintSize == 32 { 178 return uint(RotateLeft32(uint32(x), k)) 179 } 180 return uint(RotateLeft64(uint64(x), k)) 181 } 182 183 // RotateLeft8 returns the value of x rotated left by (k mod 8) bits. 184 // To rotate x right by k bits, call RotateLeft8(x, -k). 185 // 186 // This function's execution time does not depend on the inputs. 187 func RotateLeft8(x uint8, k int) uint8 { 188 const n = 8 189 s := uint(k) & (n - 1) 190 return x<<s | x>>(n-s) 191 } 192 193 // RotateLeft16 returns the value of x rotated left by (k mod 16) bits. 194 // To rotate x right by k bits, call RotateLeft16(x, -k). 195 // 196 // This function's execution time does not depend on the inputs. 197 func RotateLeft16(x uint16, k int) uint16 { 198 const n = 16 199 s := uint(k) & (n - 1) 200 return x<<s | x>>(n-s) 201 } 202 203 // RotateLeft32 returns the value of x rotated left by (k mod 32) bits. 204 // To rotate x right by k bits, call RotateLeft32(x, -k). 205 // 206 // This function's execution time does not depend on the inputs. 207 func RotateLeft32(x uint32, k int) uint32 { 208 const n = 32 209 s := uint(k) & (n - 1) 210 return x<<s | x>>(n-s) 211 } 212 213 // RotateLeft64 returns the value of x rotated left by (k mod 64) bits. 214 // To rotate x right by k bits, call RotateLeft64(x, -k). 215 // 216 // This function's execution time does not depend on the inputs. 217 func RotateLeft64(x uint64, k int) uint64 { 218 const n = 64 219 s := uint(k) & (n - 1) 220 return x<<s | x>>(n-s) 221 } 222 223 // --- Reverse --- 224 225 // Reverse returns the value of x with its bits in reversed order. 226 func Reverse(x uint) uint { 227 if UintSize == 32 { 228 return uint(Reverse32(uint32(x))) 229 } 230 return uint(Reverse64(uint64(x))) 231 } 232 233 // Reverse8 returns the value of x with its bits in reversed order. 234 func Reverse8(x uint8) uint8 { 235 return rev8tab[x] 236 } 237 238 // Reverse16 returns the value of x with its bits in reversed order. 239 func Reverse16(x uint16) uint16 { 240 return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8 241 } 242 243 // Reverse32 returns the value of x with its bits in reversed order. 244 func Reverse32(x uint32) uint32 { 245 const m = 1<<32 - 1 246 x = x>>1&(m0&m) | x&(m0&m)<<1 247 x = x>>2&(m1&m) | x&(m1&m)<<2 248 x = x>>4&(m2&m) | x&(m2&m)<<4 249 return ReverseBytes32(x) 250 } 251 252 // Reverse64 returns the value of x with its bits in reversed order. 253 func Reverse64(x uint64) uint64 { 254 const m = 1<<64 - 1 255 x = x>>1&(m0&m) | x&(m0&m)<<1 256 x = x>>2&(m1&m) | x&(m1&m)<<2 257 x = x>>4&(m2&m) | x&(m2&m)<<4 258 return ReverseBytes64(x) 259 } 260 261 // --- ReverseBytes --- 262 263 // ReverseBytes returns the value of x with its bytes in reversed order. 264 // 265 // This function's execution time does not depend on the inputs. 266 func ReverseBytes(x uint) uint { 267 if UintSize == 32 { 268 return uint(ReverseBytes32(uint32(x))) 269 } 270 return uint(ReverseBytes64(uint64(x))) 271 } 272 273 // ReverseBytes16 returns the value of x with its bytes in reversed order. 274 // 275 // This function's execution time does not depend on the inputs. 276 func ReverseBytes16(x uint16) uint16 { 277 return x>>8 | x<<8 278 } 279 280 // ReverseBytes32 returns the value of x with its bytes in reversed order. 281 // 282 // This function's execution time does not depend on the inputs. 283 func ReverseBytes32(x uint32) uint32 { 284 const m = 1<<32 - 1 285 x = x>>8&(m3&m) | x&(m3&m)<<8 286 return x>>16 | x<<16 287 } 288 289 // ReverseBytes64 returns the value of x with its bytes in reversed order. 290 // 291 // This function's execution time does not depend on the inputs. 292 func ReverseBytes64(x uint64) uint64 { 293 const m = 1<<64 - 1 294 x = x>>8&(m3&m) | x&(m3&m)<<8 295 x = x>>16&(m4&m) | x&(m4&m)<<16 296 return x>>32 | x<<32 297 } 298 299 // --- Len --- 300 301 // Len returns the minimum number of bits required to represent x; the result is 0 for x == 0. 302 func Len(x uint) int { 303 if UintSize == 32 { 304 return Len32(uint32(x)) 305 } 306 return Len64(uint64(x)) 307 } 308 309 // Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. 310 func Len8(x uint8) int { 311 return int(len8tab[x]) 312 } 313 314 // Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0. 315 func Len16(x uint16) (n int) { 316 if x >= 1<<8 { 317 x >>= 8 318 n = 8 319 } 320 return n + int(len8tab[x]) 321 } 322 323 // Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0. 324 func Len32(x uint32) (n int) { 325 if x >= 1<<16 { 326 x >>= 16 327 n = 16 328 } 329 if x >= 1<<8 { 330 x >>= 8 331 n += 8 332 } 333 return n + int(len8tab[x]) 334 } 335 336 // Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. 337 func Len64(x uint64) (n int) { 338 if x >= 1<<32 { 339 x >>= 32 340 n = 32 341 } 342 if x >= 1<<16 { 343 x >>= 16 344 n += 16 345 } 346 if x >= 1<<8 { 347 x >>= 8 348 n += 8 349 } 350 return n + int(len8tab[x]) 351 } 352 353 // --- Add with carry --- 354 355 // Add returns the sum with carry of x, y and carry: sum = x + y + carry. 356 // The carry input must be 0 or 1; otherwise the behavior is undefined. 357 // The carryOut output is guaranteed to be 0 or 1. 358 // 359 // This function's execution time does not depend on the inputs. 360 func Add(x, y, carry uint) (sum, carryOut uint) { 361 if UintSize == 32 { 362 s32, c32 := Add32(uint32(x), uint32(y), uint32(carry)) 363 return uint(s32), uint(c32) 364 } 365 s64, c64 := Add64(uint64(x), uint64(y), uint64(carry)) 366 return uint(s64), uint(c64) 367 } 368 369 // Add32 returns the sum with carry of x, y and carry: sum = x + y + carry. 370 // The carry input must be 0 or 1; otherwise the behavior is undefined. 371 // The carryOut output is guaranteed to be 0 or 1. 372 // 373 // This function's execution time does not depend on the inputs. 374 func Add32(x, y, carry uint32) (sum, carryOut uint32) { 375 sum64 := uint64(x) + uint64(y) + uint64(carry) 376 sum = uint32(sum64) 377 carryOut = uint32(sum64 >> 32) 378 return 379 } 380 381 // Add64 returns the sum with carry of x, y and carry: sum = x + y + carry. 382 // The carry input must be 0 or 1; otherwise the behavior is undefined. 383 // The carryOut output is guaranteed to be 0 or 1. 384 // 385 // This function's execution time does not depend on the inputs. 386 func Add64(x, y, carry uint64) (sum, carryOut uint64) { 387 sum = x + y + carry 388 // The sum will overflow if both top bits are set (x & y) or if one of them 389 // is (x | y), and a carry from the lower place happened. If such a carry 390 // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum). 391 carryOut = ((x & y) | ((x | y) &^ sum)) >> 63 392 return 393 } 394 395 // --- Subtract with borrow --- 396 397 // Sub returns the difference of x, y and borrow: diff = x - y - borrow. 398 // The borrow input must be 0 or 1; otherwise the behavior is undefined. 399 // The borrowOut output is guaranteed to be 0 or 1. 400 // 401 // This function's execution time does not depend on the inputs. 402 func Sub(x, y, borrow uint) (diff, borrowOut uint) { 403 if UintSize == 32 { 404 d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow)) 405 return uint(d32), uint(b32) 406 } 407 d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow)) 408 return uint(d64), uint(b64) 409 } 410 411 // Sub32 returns the difference of x, y and borrow, diff = x - y - borrow. 412 // The borrow input must be 0 or 1; otherwise the behavior is undefined. 413 // The borrowOut output is guaranteed to be 0 or 1. 414 // 415 // This function's execution time does not depend on the inputs. 416 func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) { 417 diff = x - y - borrow 418 // The difference will underflow if the top bit of x is not set and the top 419 // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow 420 // from the lower place happens. If that borrow happens, the result will be 421 // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff). 422 borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31 423 return 424 } 425 426 // Sub64 returns the difference of x, y and borrow: diff = x - y - borrow. 427 // The borrow input must be 0 or 1; otherwise the behavior is undefined. 428 // The borrowOut output is guaranteed to be 0 or 1. 429 // 430 // This function's execution time does not depend on the inputs. 431 func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) { 432 diff = x - y - borrow 433 // See Sub32 for the bit logic. 434 borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63 435 return 436 } 437 438 // --- Full-width multiply --- 439 440 // Mul returns the full-width product of x and y: (hi, lo) = x * y 441 // with the product bits' upper half returned in hi and the lower 442 // half returned in lo. 443 // 444 // This function's execution time does not depend on the inputs. 445 func Mul(x, y uint) (hi, lo uint) { 446 if UintSize == 32 { 447 h, l := Mul32(uint32(x), uint32(y)) 448 return uint(h), uint(l) 449 } 450 h, l := Mul64(uint64(x), uint64(y)) 451 return uint(h), uint(l) 452 } 453 454 // Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y 455 // with the product bits' upper half returned in hi and the lower 456 // half returned in lo. 457 // 458 // This function's execution time does not depend on the inputs. 459 func Mul32(x, y uint32) (hi, lo uint32) { 460 tmp := uint64(x) * uint64(y) 461 hi, lo = uint32(tmp>>32), uint32(tmp) 462 return 463 } 464 465 // Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y 466 // with the product bits' upper half returned in hi and the lower 467 // half returned in lo. 468 // 469 // This function's execution time does not depend on the inputs. 470 func Mul64(x, y uint64) (hi, lo uint64) { 471 const mask32 = 1<<32 - 1 472 x0 := x & mask32 473 x1 := x >> 32 474 y0 := y & mask32 475 y1 := y >> 32 476 w0 := x0 * y0 477 t := x1*y0 + w0>>32 478 w1 := t & mask32 479 w2 := t >> 32 480 w1 += x0 * y1 481 hi = x1*y1 + w2 + w1>>32 482 lo = x * y 483 return 484 } 485 486 // --- Full-width divide --- 487 488 // Div returns the quotient and remainder of (hi, lo) divided by y: 489 // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper 490 // half in parameter hi and the lower half in parameter lo. 491 // Div panics for y == 0 (division by zero) or y <= hi (quotient overflow). 492 func Div(hi, lo, y uint) (quo, rem uint) { 493 if UintSize == 32 { 494 q, r := Div32(uint32(hi), uint32(lo), uint32(y)) 495 return uint(q), uint(r) 496 } 497 q, r := Div64(uint64(hi), uint64(lo), uint64(y)) 498 return uint(q), uint(r) 499 } 500 501 // Div32 returns the quotient and remainder of (hi, lo) divided by y: 502 // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper 503 // half in parameter hi and the lower half in parameter lo. 504 // Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow). 505 func Div32(hi, lo, y uint32) (quo, rem uint32) { 506 if y != 0 && y <= hi { 507 panic(overflowError) 508 } 509 z := uint64(hi)<<32 | uint64(lo) 510 quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y)) 511 return 512 } 513 514 // Div64 returns the quotient and remainder of (hi, lo) divided by y: 515 // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper 516 // half in parameter hi and the lower half in parameter lo. 517 // Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow). 518 func Div64(hi, lo, y uint64) (quo, rem uint64) { 519 if y == 0 { 520 panic(divideError) 521 } 522 if y <= hi { 523 panic(overflowError) 524 } 525 526 // If high part is zero, we can directly return the results. 527 if hi == 0 { 528 return lo / y, lo % y 529 } 530 531 s := uint(LeadingZeros64(y)) 532 y <<= s 533 534 const ( 535 two32 = 1 << 32 536 mask32 = two32 - 1 537 ) 538 yn1 := y >> 32 539 yn0 := y & mask32 540 un32 := hi<<s | lo>>(64-s) 541 un10 := lo << s 542 un1 := un10 >> 32 543 un0 := un10 & mask32 544 q1 := un32 / yn1 545 rhat := un32 - q1*yn1 546 547 for q1 >= two32 || q1*yn0 > two32*rhat+un1 { 548 q1-- 549 rhat += yn1 550 if rhat >= two32 { 551 break 552 } 553 } 554 555 un21 := un32*two32 + un1 - q1*y 556 q0 := un21 / yn1 557 rhat = un21 - q0*yn1 558 559 for q0 >= two32 || q0*yn0 > two32*rhat+un0 { 560 q0-- 561 rhat += yn1 562 if rhat >= two32 { 563 break 564 } 565 } 566 567 return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s 568 } 569 570 // Rem returns the remainder of (hi, lo) divided by y. Rem panics for 571 // y == 0 (division by zero) but, unlike Div, it doesn't panic on a 572 // quotient overflow. 573 func Rem(hi, lo, y uint) uint { 574 if UintSize == 32 { 575 return uint(Rem32(uint32(hi), uint32(lo), uint32(y))) 576 } 577 return uint(Rem64(uint64(hi), uint64(lo), uint64(y))) 578 } 579 580 // Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics 581 // for y == 0 (division by zero) but, unlike [Div32], it doesn't panic 582 // on a quotient overflow. 583 func Rem32(hi, lo, y uint32) uint32 { 584 return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y)) 585 } 586 587 // Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics 588 // for y == 0 (division by zero) but, unlike [Div64], it doesn't panic 589 // on a quotient overflow. 590 func Rem64(hi, lo, y uint64) uint64 { 591 // We scale down hi so that hi < y, then use Div64 to compute the 592 // rem with the guarantee that it won't panic on quotient overflow. 593 // Given that 594 // hi ≡ hi%y (mod y) 595 // we have 596 // hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y) 597 _, rem := Div64(hi%y, lo, y) 598 return rem 599 } 600