...

Source file src/regexp/regexp.go

Documentation: regexp

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package regexp implements regular expression search.
     6  //
     7  // The syntax of the regular expressions accepted is the same
     8  // general syntax used by Perl, Python, and other languages.
     9  // More precisely, it is the syntax accepted by RE2 and described at
    10  // https://golang.org/s/re2syntax, except for \C.
    11  // For an overview of the syntax, see the [regexp/syntax] package.
    12  //
    13  // The regexp implementation provided by this package is
    14  // guaranteed to run in time linear in the size of the input.
    15  // (This is a property not guaranteed by most open source
    16  // implementations of regular expressions.) For more information
    17  // about this property, see
    18  //
    19  //	https://swtch.com/~rsc/regexp/regexp1.html
    20  //
    21  // or any book about automata theory.
    22  //
    23  // All characters are UTF-8-encoded code points.
    24  // Following [utf8.DecodeRune], each byte of an invalid UTF-8 sequence
    25  // is treated as if it encoded utf8.RuneError (U+FFFD).
    26  //
    27  // There are 16 methods of [Regexp] that match a regular expression and identify
    28  // the matched text. Their names are matched by this regular expression:
    29  //
    30  //	Find(All)?(String)?(Submatch)?(Index)?
    31  //
    32  // If 'All' is present, the routine matches successive non-overlapping
    33  // matches of the entire expression. Empty matches abutting a preceding
    34  // match are ignored. The return value is a slice containing the successive
    35  // return values of the corresponding non-'All' routine. These routines take
    36  // an extra integer argument, n. If n >= 0, the function returns at most n
    37  // matches/submatches; otherwise, it returns all of them.
    38  //
    39  // If 'String' is present, the argument is a string; otherwise it is a slice
    40  // of bytes; return values are adjusted as appropriate.
    41  //
    42  // If 'Submatch' is present, the return value is a slice identifying the
    43  // successive submatches of the expression. Submatches are matches of
    44  // parenthesized subexpressions (also known as capturing groups) within the
    45  // regular expression, numbered from left to right in order of opening
    46  // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is
    47  // the match of the first parenthesized subexpression, and so on.
    48  //
    49  // If 'Index' is present, matches and submatches are identified by byte index
    50  // pairs within the input string: result[2*n:2*n+2] identifies the indexes of
    51  // the nth submatch. The pair for n==0 identifies the match of the entire
    52  // expression. If 'Index' is not present, the match is identified by the text
    53  // of the match/submatch. If an index is negative or text is nil, it means that
    54  // subexpression did not match any string in the input. For 'String' versions
    55  // an empty string means either no match or an empty match.
    56  //
    57  // There is also a subset of the methods that can be applied to text read
    58  // from a RuneReader:
    59  //
    60  //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
    61  //
    62  // This set may grow. Note that regular expression matches may need to
    63  // examine text beyond the text returned by a match, so the methods that
    64  // match text from a RuneReader may read arbitrarily far into the input
    65  // before returning.
    66  //
    67  // (There are a few other methods that do not match this pattern.)
    68  package regexp
    69  
    70  import (
    71  	"bytes"
    72  	"io"
    73  	"regexp/syntax"
    74  	"strconv"
    75  	"strings"
    76  	"sync"
    77  	"unicode"
    78  	"unicode/utf8"
    79  )
    80  
    81  // Regexp is the representation of a compiled regular expression.
    82  // A Regexp is safe for concurrent use by multiple goroutines,
    83  // except for configuration methods, such as [Regexp.Longest].
    84  type Regexp struct {
    85  	expr           string       // as passed to Compile
    86  	prog           *syntax.Prog // compiled program
    87  	onepass        *onePassProg // onepass program or nil
    88  	numSubexp      int
    89  	maxBitStateLen int
    90  	subexpNames    []string
    91  	prefix         string         // required prefix in unanchored matches
    92  	prefixBytes    []byte         // prefix, as a []byte
    93  	prefixRune     rune           // first rune in prefix
    94  	prefixEnd      uint32         // pc for last rune in prefix
    95  	mpool          int            // pool for machines
    96  	matchcap       int            // size of recorded match lengths
    97  	prefixComplete bool           // prefix is the entire regexp
    98  	cond           syntax.EmptyOp // empty-width conditions required at start of match
    99  	minInputLen    int            // minimum length of the input in bytes
   100  
   101  	// This field can be modified by the Longest method,
   102  	// but it is otherwise read-only.
   103  	longest bool // whether regexp prefers leftmost-longest match
   104  }
   105  
   106  // String returns the source text used to compile the regular expression.
   107  func (re *Regexp) String() string {
   108  	return re.expr
   109  }
   110  
   111  // Copy returns a new [Regexp] object copied from re.
   112  // Calling [Regexp.Longest] on one copy does not affect another.
   113  //
   114  // Deprecated: In earlier releases, when using a [Regexp] in multiple goroutines,
   115  // giving each goroutine its own copy helped to avoid lock contention.
   116  // As of Go 1.12, using Copy is no longer necessary to avoid lock contention.
   117  // Copy may still be appropriate if the reason for its use is to make
   118  // two copies with different [Regexp.Longest] settings.
   119  func (re *Regexp) Copy() *Regexp {
   120  	re2 := *re
   121  	return &re2
   122  }
   123  
   124  // Compile parses a regular expression and returns, if successful,
   125  // a [Regexp] object that can be used to match against text.
   126  //
   127  // When matching against text, the regexp returns a match that
   128  // begins as early as possible in the input (leftmost), and among those
   129  // it chooses the one that a backtracking search would have found first.
   130  // This so-called leftmost-first matching is the same semantics
   131  // that Perl, Python, and other implementations use, although this
   132  // package implements it without the expense of backtracking.
   133  // For POSIX leftmost-longest matching, see [CompilePOSIX].
   134  func Compile(expr string) (*Regexp, error) {
   135  	return compile(expr, syntax.Perl, false)
   136  }
   137  
   138  // CompilePOSIX is like [Compile] but restricts the regular expression
   139  // to POSIX ERE (egrep) syntax and changes the match semantics to
   140  // leftmost-longest.
   141  //
   142  // That is, when matching against text, the regexp returns a match that
   143  // begins as early as possible in the input (leftmost), and among those
   144  // it chooses a match that is as long as possible.
   145  // This so-called leftmost-longest matching is the same semantics
   146  // that early regular expression implementations used and that POSIX
   147  // specifies.
   148  //
   149  // However, there can be multiple leftmost-longest matches, with different
   150  // submatch choices, and here this package diverges from POSIX.
   151  // Among the possible leftmost-longest matches, this package chooses
   152  // the one that a backtracking search would have found first, while POSIX
   153  // specifies that the match be chosen to maximize the length of the first
   154  // subexpression, then the second, and so on from left to right.
   155  // The POSIX rule is computationally prohibitive and not even well-defined.
   156  // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details.
   157  func CompilePOSIX(expr string) (*Regexp, error) {
   158  	return compile(expr, syntax.POSIX, true)
   159  }
   160  
   161  // Longest makes future searches prefer the leftmost-longest match.
   162  // That is, when matching against text, the regexp returns a match that
   163  // begins as early as possible in the input (leftmost), and among those
   164  // it chooses a match that is as long as possible.
   165  // This method modifies the [Regexp] and may not be called concurrently
   166  // with any other methods.
   167  func (re *Regexp) Longest() {
   168  	re.longest = true
   169  }
   170  
   171  func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
   172  	re, err := syntax.Parse(expr, mode)
   173  	if err != nil {
   174  		return nil, err
   175  	}
   176  	maxCap := re.MaxCap()
   177  	capNames := re.CapNames()
   178  
   179  	re = re.Simplify()
   180  	prog, err := syntax.Compile(re)
   181  	if err != nil {
   182  		return nil, err
   183  	}
   184  	matchcap := prog.NumCap
   185  	if matchcap < 2 {
   186  		matchcap = 2
   187  	}
   188  	regexp := &Regexp{
   189  		expr:        expr,
   190  		prog:        prog,
   191  		onepass:     compileOnePass(prog),
   192  		numSubexp:   maxCap,
   193  		subexpNames: capNames,
   194  		cond:        prog.StartCond(),
   195  		longest:     longest,
   196  		matchcap:    matchcap,
   197  		minInputLen: minInputLen(re),
   198  	}
   199  	if regexp.onepass == nil {
   200  		regexp.prefix, regexp.prefixComplete = prog.Prefix()
   201  		regexp.maxBitStateLen = maxBitStateLen(prog)
   202  	} else {
   203  		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
   204  	}
   205  	if regexp.prefix != "" {
   206  		// TODO(rsc): Remove this allocation by adding
   207  		// IndexString to package bytes.
   208  		regexp.prefixBytes = []byte(regexp.prefix)
   209  		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
   210  	}
   211  
   212  	n := len(prog.Inst)
   213  	i := 0
   214  	for matchSize[i] != 0 && matchSize[i] < n {
   215  		i++
   216  	}
   217  	regexp.mpool = i
   218  
   219  	return regexp, nil
   220  }
   221  
   222  // Pools of *machine for use during (*Regexp).doExecute,
   223  // split up by the size of the execution queues.
   224  // matchPool[i] machines have queue size matchSize[i].
   225  // On a 64-bit system each queue entry is 16 bytes,
   226  // so matchPool[0] has 16*2*128 = 4kB queues, etc.
   227  // The final matchPool is a catch-all for very large queues.
   228  var (
   229  	matchSize = [...]int{128, 512, 2048, 16384, 0}
   230  	matchPool [len(matchSize)]sync.Pool
   231  )
   232  
   233  // get returns a machine to use for matching re.
   234  // It uses the re's machine cache if possible, to avoid
   235  // unnecessary allocation.
   236  func (re *Regexp) get() *machine {
   237  	m, ok := matchPool[re.mpool].Get().(*machine)
   238  	if !ok {
   239  		m = new(machine)
   240  	}
   241  	m.re = re
   242  	m.p = re.prog
   243  	if cap(m.matchcap) < re.matchcap {
   244  		m.matchcap = make([]int, re.matchcap)
   245  		for _, t := range m.pool {
   246  			t.cap = make([]int, re.matchcap)
   247  		}
   248  	}
   249  
   250  	// Allocate queues if needed.
   251  	// Or reallocate, for "large" match pool.
   252  	n := matchSize[re.mpool]
   253  	if n == 0 { // large pool
   254  		n = len(re.prog.Inst)
   255  	}
   256  	if len(m.q0.sparse) < n {
   257  		m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
   258  		m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
   259  	}
   260  	return m
   261  }
   262  
   263  // put returns a machine to the correct machine pool.
   264  func (re *Regexp) put(m *machine) {
   265  	m.re = nil
   266  	m.p = nil
   267  	m.inputs.clear()
   268  	matchPool[re.mpool].Put(m)
   269  }
   270  
   271  // minInputLen walks the regexp to find the minimum length of any matchable input.
   272  func minInputLen(re *syntax.Regexp) int {
   273  	switch re.Op {
   274  	default:
   275  		return 0
   276  	case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass:
   277  		return 1
   278  	case syntax.OpLiteral:
   279  		l := 0
   280  		for _, r := range re.Rune {
   281  			if r == utf8.RuneError {
   282  				l++
   283  			} else {
   284  				l += utf8.RuneLen(r)
   285  			}
   286  		}
   287  		return l
   288  	case syntax.OpCapture, syntax.OpPlus:
   289  		return minInputLen(re.Sub[0])
   290  	case syntax.OpRepeat:
   291  		return re.Min * minInputLen(re.Sub[0])
   292  	case syntax.OpConcat:
   293  		l := 0
   294  		for _, sub := range re.Sub {
   295  			l += minInputLen(sub)
   296  		}
   297  		return l
   298  	case syntax.OpAlternate:
   299  		l := minInputLen(re.Sub[0])
   300  		var lnext int
   301  		for _, sub := range re.Sub[1:] {
   302  			lnext = minInputLen(sub)
   303  			if lnext < l {
   304  				l = lnext
   305  			}
   306  		}
   307  		return l
   308  	}
   309  }
   310  
   311  // MustCompile is like [Compile] but panics if the expression cannot be parsed.
   312  // It simplifies safe initialization of global variables holding compiled regular
   313  // expressions.
   314  func MustCompile(str string) *Regexp {
   315  	regexp, err := Compile(str)
   316  	if err != nil {
   317  		panic(`regexp: Compile(` + quote(str) + `): ` + err.Error())
   318  	}
   319  	return regexp
   320  }
   321  
   322  // MustCompilePOSIX is like [CompilePOSIX] but panics if the expression cannot be parsed.
   323  // It simplifies safe initialization of global variables holding compiled regular
   324  // expressions.
   325  func MustCompilePOSIX(str string) *Regexp {
   326  	regexp, err := CompilePOSIX(str)
   327  	if err != nil {
   328  		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error())
   329  	}
   330  	return regexp
   331  }
   332  
   333  func quote(s string) string {
   334  	if strconv.CanBackquote(s) {
   335  		return "`" + s + "`"
   336  	}
   337  	return strconv.Quote(s)
   338  }
   339  
   340  // NumSubexp returns the number of parenthesized subexpressions in this [Regexp].
   341  func (re *Regexp) NumSubexp() int {
   342  	return re.numSubexp
   343  }
   344  
   345  // SubexpNames returns the names of the parenthesized subexpressions
   346  // in this [Regexp]. The name for the first sub-expression is names[1],
   347  // so that if m is a match slice, the name for m[i] is SubexpNames()[i].
   348  // Since the Regexp as a whole cannot be named, names[0] is always
   349  // the empty string. The slice should not be modified.
   350  func (re *Regexp) SubexpNames() []string {
   351  	return re.subexpNames
   352  }
   353  
   354  // SubexpIndex returns the index of the first subexpression with the given name,
   355  // or -1 if there is no subexpression with that name.
   356  //
   357  // Note that multiple subexpressions can be written using the same name, as in
   358  // (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob".
   359  // In this case, SubexpIndex returns the index of the leftmost such subexpression
   360  // in the regular expression.
   361  func (re *Regexp) SubexpIndex(name string) int {
   362  	if name != "" {
   363  		for i, s := range re.subexpNames {
   364  			if name == s {
   365  				return i
   366  			}
   367  		}
   368  	}
   369  	return -1
   370  }
   371  
   372  const endOfText rune = -1
   373  
   374  // input abstracts different representations of the input text. It provides
   375  // one-character lookahead.
   376  type input interface {
   377  	step(pos int) (r rune, width int) // advance one rune
   378  	canCheckPrefix() bool             // can we look ahead without losing info?
   379  	hasPrefix(re *Regexp) bool
   380  	index(re *Regexp, pos int) int
   381  	context(pos int) lazyFlag
   382  }
   383  
   384  // inputString scans a string.
   385  type inputString struct {
   386  	str string
   387  }
   388  
   389  func (i *inputString) step(pos int) (rune, int) {
   390  	if pos < len(i.str) {
   391  		c := i.str[pos]
   392  		if c < utf8.RuneSelf {
   393  			return rune(c), 1
   394  		}
   395  		return utf8.DecodeRuneInString(i.str[pos:])
   396  	}
   397  	return endOfText, 0
   398  }
   399  
   400  func (i *inputString) canCheckPrefix() bool {
   401  	return true
   402  }
   403  
   404  func (i *inputString) hasPrefix(re *Regexp) bool {
   405  	return strings.HasPrefix(i.str, re.prefix)
   406  }
   407  
   408  func (i *inputString) index(re *Regexp, pos int) int {
   409  	return strings.Index(i.str[pos:], re.prefix)
   410  }
   411  
   412  func (i *inputString) context(pos int) lazyFlag {
   413  	r1, r2 := endOfText, endOfText
   414  	// 0 < pos && pos <= len(i.str)
   415  	if uint(pos-1) < uint(len(i.str)) {
   416  		r1 = rune(i.str[pos-1])
   417  		if r1 >= utf8.RuneSelf {
   418  			r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
   419  		}
   420  	}
   421  	// 0 <= pos && pos < len(i.str)
   422  	if uint(pos) < uint(len(i.str)) {
   423  		r2 = rune(i.str[pos])
   424  		if r2 >= utf8.RuneSelf {
   425  			r2, _ = utf8.DecodeRuneInString(i.str[pos:])
   426  		}
   427  	}
   428  	return newLazyFlag(r1, r2)
   429  }
   430  
   431  // inputBytes scans a byte slice.
   432  type inputBytes struct {
   433  	str []byte
   434  }
   435  
   436  func (i *inputBytes) step(pos int) (rune, int) {
   437  	if pos < len(i.str) {
   438  		c := i.str[pos]
   439  		if c < utf8.RuneSelf {
   440  			return rune(c), 1
   441  		}
   442  		return utf8.DecodeRune(i.str[pos:])
   443  	}
   444  	return endOfText, 0
   445  }
   446  
   447  func (i *inputBytes) canCheckPrefix() bool {
   448  	return true
   449  }
   450  
   451  func (i *inputBytes) hasPrefix(re *Regexp) bool {
   452  	return bytes.HasPrefix(i.str, re.prefixBytes)
   453  }
   454  
   455  func (i *inputBytes) index(re *Regexp, pos int) int {
   456  	return bytes.Index(i.str[pos:], re.prefixBytes)
   457  }
   458  
   459  func (i *inputBytes) context(pos int) lazyFlag {
   460  	r1, r2 := endOfText, endOfText
   461  	// 0 < pos && pos <= len(i.str)
   462  	if uint(pos-1) < uint(len(i.str)) {
   463  		r1 = rune(i.str[pos-1])
   464  		if r1 >= utf8.RuneSelf {
   465  			r1, _ = utf8.DecodeLastRune(i.str[:pos])
   466  		}
   467  	}
   468  	// 0 <= pos && pos < len(i.str)
   469  	if uint(pos) < uint(len(i.str)) {
   470  		r2 = rune(i.str[pos])
   471  		if r2 >= utf8.RuneSelf {
   472  			r2, _ = utf8.DecodeRune(i.str[pos:])
   473  		}
   474  	}
   475  	return newLazyFlag(r1, r2)
   476  }
   477  
   478  // inputReader scans a RuneReader.
   479  type inputReader struct {
   480  	r     io.RuneReader
   481  	atEOT bool
   482  	pos   int
   483  }
   484  
   485  func (i *inputReader) step(pos int) (rune, int) {
   486  	if !i.atEOT && pos != i.pos {
   487  		return endOfText, 0
   488  
   489  	}
   490  	r, w, err := i.r.ReadRune()
   491  	if err != nil {
   492  		i.atEOT = true
   493  		return endOfText, 0
   494  	}
   495  	i.pos += w
   496  	return r, w
   497  }
   498  
   499  func (i *inputReader) canCheckPrefix() bool {
   500  	return false
   501  }
   502  
   503  func (i *inputReader) hasPrefix(re *Regexp) bool {
   504  	return false
   505  }
   506  
   507  func (i *inputReader) index(re *Regexp, pos int) int {
   508  	return -1
   509  }
   510  
   511  func (i *inputReader) context(pos int) lazyFlag {
   512  	return 0 // not used
   513  }
   514  
   515  // LiteralPrefix returns a literal string that must begin any match
   516  // of the regular expression re. It returns the boolean true if the
   517  // literal string comprises the entire regular expression.
   518  func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
   519  	return re.prefix, re.prefixComplete
   520  }
   521  
   522  // MatchReader reports whether the text returned by the [io.RuneReader]
   523  // contains any match of the regular expression re.
   524  func (re *Regexp) MatchReader(r io.RuneReader) bool {
   525  	return re.doMatch(r, nil, "")
   526  }
   527  
   528  // MatchString reports whether the string s
   529  // contains any match of the regular expression re.
   530  func (re *Regexp) MatchString(s string) bool {
   531  	return re.doMatch(nil, nil, s)
   532  }
   533  
   534  // Match reports whether the byte slice b
   535  // contains any match of the regular expression re.
   536  func (re *Regexp) Match(b []byte) bool {
   537  	return re.doMatch(nil, b, "")
   538  }
   539  
   540  // MatchReader reports whether the text returned by the RuneReader
   541  // contains any match of the regular expression pattern.
   542  // More complicated queries need to use [Compile] and the full [Regexp] interface.
   543  func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
   544  	re, err := Compile(pattern)
   545  	if err != nil {
   546  		return false, err
   547  	}
   548  	return re.MatchReader(r), nil
   549  }
   550  
   551  // MatchString reports whether the string s
   552  // contains any match of the regular expression pattern.
   553  // More complicated queries need to use [Compile] and the full [Regexp] interface.
   554  func MatchString(pattern string, s string) (matched bool, err error) {
   555  	re, err := Compile(pattern)
   556  	if err != nil {
   557  		return false, err
   558  	}
   559  	return re.MatchString(s), nil
   560  }
   561  
   562  // Match reports whether the byte slice b
   563  // contains any match of the regular expression pattern.
   564  // More complicated queries need to use [Compile] and the full [Regexp] interface.
   565  func Match(pattern string, b []byte) (matched bool, err error) {
   566  	re, err := Compile(pattern)
   567  	if err != nil {
   568  		return false, err
   569  	}
   570  	return re.Match(b), nil
   571  }
   572  
   573  // ReplaceAllString returns a copy of src, replacing matches of the [Regexp]
   574  // with the replacement string repl.
   575  // Inside repl, $ signs are interpreted as in [Regexp.Expand].
   576  func (re *Regexp) ReplaceAllString(src, repl string) string {
   577  	n := 2
   578  	if strings.Contains(repl, "$") {
   579  		n = 2 * (re.numSubexp + 1)
   580  	}
   581  	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
   582  		return re.expand(dst, repl, nil, src, match)
   583  	})
   584  	return string(b)
   585  }
   586  
   587  // ReplaceAllLiteralString returns a copy of src, replacing matches of the [Regexp]
   588  // with the replacement string repl. The replacement repl is substituted directly,
   589  // without using [Regexp.Expand].
   590  func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
   591  	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   592  		return append(dst, repl...)
   593  	}))
   594  }
   595  
   596  // ReplaceAllStringFunc returns a copy of src in which all matches of the
   597  // [Regexp] have been replaced by the return value of function repl applied
   598  // to the matched substring. The replacement returned by repl is substituted
   599  // directly, without using [Regexp.Expand].
   600  func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
   601  	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   602  		return append(dst, repl(src[match[0]:match[1]])...)
   603  	})
   604  	return string(b)
   605  }
   606  
   607  func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
   608  	lastMatchEnd := 0 // end position of the most recent match
   609  	searchPos := 0    // position where we next look for a match
   610  	var buf []byte
   611  	var endPos int
   612  	if bsrc != nil {
   613  		endPos = len(bsrc)
   614  	} else {
   615  		endPos = len(src)
   616  	}
   617  	if nmatch > re.prog.NumCap {
   618  		nmatch = re.prog.NumCap
   619  	}
   620  
   621  	var dstCap [2]int
   622  	for searchPos <= endPos {
   623  		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
   624  		if len(a) == 0 {
   625  			break // no more matches
   626  		}
   627  
   628  		// Copy the unmatched characters before this match.
   629  		if bsrc != nil {
   630  			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
   631  		} else {
   632  			buf = append(buf, src[lastMatchEnd:a[0]]...)
   633  		}
   634  
   635  		// Now insert a copy of the replacement string, but not for a
   636  		// match of the empty string immediately after another match.
   637  		// (Otherwise, we get double replacement for patterns that
   638  		// match both empty and nonempty strings.)
   639  		if a[1] > lastMatchEnd || a[0] == 0 {
   640  			buf = repl(buf, a)
   641  		}
   642  		lastMatchEnd = a[1]
   643  
   644  		// Advance past this match; always advance at least one character.
   645  		var width int
   646  		if bsrc != nil {
   647  			_, width = utf8.DecodeRune(bsrc[searchPos:])
   648  		} else {
   649  			_, width = utf8.DecodeRuneInString(src[searchPos:])
   650  		}
   651  		if searchPos+width > a[1] {
   652  			searchPos += width
   653  		} else if searchPos+1 > a[1] {
   654  			// This clause is only needed at the end of the input
   655  			// string. In that case, DecodeRuneInString returns width=0.
   656  			searchPos++
   657  		} else {
   658  			searchPos = a[1]
   659  		}
   660  	}
   661  
   662  	// Copy the unmatched characters after the last match.
   663  	if bsrc != nil {
   664  		buf = append(buf, bsrc[lastMatchEnd:]...)
   665  	} else {
   666  		buf = append(buf, src[lastMatchEnd:]...)
   667  	}
   668  
   669  	return buf
   670  }
   671  
   672  // ReplaceAll returns a copy of src, replacing matches of the [Regexp]
   673  // with the replacement text repl.
   674  // Inside repl, $ signs are interpreted as in [Regexp.Expand].
   675  func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
   676  	n := 2
   677  	if bytes.IndexByte(repl, '$') >= 0 {
   678  		n = 2 * (re.numSubexp + 1)
   679  	}
   680  	srepl := ""
   681  	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
   682  		if len(srepl) != len(repl) {
   683  			srepl = string(repl)
   684  		}
   685  		return re.expand(dst, srepl, src, "", match)
   686  	})
   687  	return b
   688  }
   689  
   690  // ReplaceAllLiteral returns a copy of src, replacing matches of the [Regexp]
   691  // with the replacement bytes repl. The replacement repl is substituted directly,
   692  // without using [Regexp.Expand].
   693  func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
   694  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   695  		return append(dst, repl...)
   696  	})
   697  }
   698  
   699  // ReplaceAllFunc returns a copy of src in which all matches of the
   700  // [Regexp] have been replaced by the return value of function repl applied
   701  // to the matched byte slice. The replacement returned by repl is substituted
   702  // directly, without using [Regexp.Expand].
   703  func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
   704  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   705  		return append(dst, repl(src[match[0]:match[1]])...)
   706  	})
   707  }
   708  
   709  // Bitmap used by func special to check whether a character needs to be escaped.
   710  var specialBytes [16]byte
   711  
   712  // special reports whether byte b needs to be escaped by QuoteMeta.
   713  func special(b byte) bool {
   714  	return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0
   715  }
   716  
   717  func init() {
   718  	for _, b := range []byte(`\.+*?()|[]{}^$`) {
   719  		specialBytes[b%16] |= 1 << (b / 16)
   720  	}
   721  }
   722  
   723  // QuoteMeta returns a string that escapes all regular expression metacharacters
   724  // inside the argument text; the returned string is a regular expression matching
   725  // the literal text.
   726  func QuoteMeta(s string) string {
   727  	// A byte loop is correct because all metacharacters are ASCII.
   728  	var i int
   729  	for i = 0; i < len(s); i++ {
   730  		if special(s[i]) {
   731  			break
   732  		}
   733  	}
   734  	// No meta characters found, so return original string.
   735  	if i >= len(s) {
   736  		return s
   737  	}
   738  
   739  	b := make([]byte, 2*len(s)-i)
   740  	copy(b, s[:i])
   741  	j := i
   742  	for ; i < len(s); i++ {
   743  		if special(s[i]) {
   744  			b[j] = '\\'
   745  			j++
   746  		}
   747  		b[j] = s[i]
   748  		j++
   749  	}
   750  	return string(b[:j])
   751  }
   752  
   753  // The number of capture values in the program may correspond
   754  // to fewer capturing expressions than are in the regexp.
   755  // For example, "(a){0}" turns into an empty program, so the
   756  // maximum capture in the program is 0 but we need to return
   757  // an expression for \1.  Pad appends -1s to the slice a as needed.
   758  func (re *Regexp) pad(a []int) []int {
   759  	if a == nil {
   760  		// No match.
   761  		return nil
   762  	}
   763  	n := (1 + re.numSubexp) * 2
   764  	for len(a) < n {
   765  		a = append(a, -1)
   766  	}
   767  	return a
   768  }
   769  
   770  // allMatches calls deliver at most n times
   771  // with the location of successive matches in the input text.
   772  // The input text is b if non-nil, otherwise s.
   773  func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
   774  	var end int
   775  	if b == nil {
   776  		end = len(s)
   777  	} else {
   778  		end = len(b)
   779  	}
   780  
   781  	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
   782  		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
   783  		if len(matches) == 0 {
   784  			break
   785  		}
   786  
   787  		accept := true
   788  		if matches[1] == pos {
   789  			// We've found an empty match.
   790  			if matches[0] == prevMatchEnd {
   791  				// We don't allow an empty match right
   792  				// after a previous match, so ignore it.
   793  				accept = false
   794  			}
   795  			var width int
   796  			if b == nil {
   797  				is := inputString{str: s}
   798  				_, width = is.step(pos)
   799  			} else {
   800  				ib := inputBytes{str: b}
   801  				_, width = ib.step(pos)
   802  			}
   803  			if width > 0 {
   804  				pos += width
   805  			} else {
   806  				pos = end + 1
   807  			}
   808  		} else {
   809  			pos = matches[1]
   810  		}
   811  		prevMatchEnd = matches[1]
   812  
   813  		if accept {
   814  			deliver(re.pad(matches))
   815  			i++
   816  		}
   817  	}
   818  }
   819  
   820  // Find returns a slice holding the text of the leftmost match in b of the regular expression.
   821  // A return value of nil indicates no match.
   822  func (re *Regexp) Find(b []byte) []byte {
   823  	var dstCap [2]int
   824  	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
   825  	if a == nil {
   826  		return nil
   827  	}
   828  	return b[a[0]:a[1]:a[1]]
   829  }
   830  
   831  // FindIndex returns a two-element slice of integers defining the location of
   832  // the leftmost match in b of the regular expression. The match itself is at
   833  // b[loc[0]:loc[1]].
   834  // A return value of nil indicates no match.
   835  func (re *Regexp) FindIndex(b []byte) (loc []int) {
   836  	a := re.doExecute(nil, b, "", 0, 2, nil)
   837  	if a == nil {
   838  		return nil
   839  	}
   840  	return a[0:2]
   841  }
   842  
   843  // FindString returns a string holding the text of the leftmost match in s of the regular
   844  // expression. If there is no match, the return value is an empty string,
   845  // but it will also be empty if the regular expression successfully matches
   846  // an empty string. Use [Regexp.FindStringIndex] or [Regexp.FindStringSubmatch] if it is
   847  // necessary to distinguish these cases.
   848  func (re *Regexp) FindString(s string) string {
   849  	var dstCap [2]int
   850  	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
   851  	if a == nil {
   852  		return ""
   853  	}
   854  	return s[a[0]:a[1]]
   855  }
   856  
   857  // FindStringIndex returns a two-element slice of integers defining the
   858  // location of the leftmost match in s of the regular expression. The match
   859  // itself is at s[loc[0]:loc[1]].
   860  // A return value of nil indicates no match.
   861  func (re *Regexp) FindStringIndex(s string) (loc []int) {
   862  	a := re.doExecute(nil, nil, s, 0, 2, nil)
   863  	if a == nil {
   864  		return nil
   865  	}
   866  	return a[0:2]
   867  }
   868  
   869  // FindReaderIndex returns a two-element slice of integers defining the
   870  // location of the leftmost match of the regular expression in text read from
   871  // the [io.RuneReader]. The match text was found in the input stream at
   872  // byte offset loc[0] through loc[1]-1.
   873  // A return value of nil indicates no match.
   874  func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
   875  	a := re.doExecute(r, nil, "", 0, 2, nil)
   876  	if a == nil {
   877  		return nil
   878  	}
   879  	return a[0:2]
   880  }
   881  
   882  // FindSubmatch returns a slice of slices holding the text of the leftmost
   883  // match of the regular expression in b and the matches, if any, of its
   884  // subexpressions, as defined by the 'Submatch' descriptions in the package
   885  // comment.
   886  // A return value of nil indicates no match.
   887  func (re *Regexp) FindSubmatch(b []byte) [][]byte {
   888  	var dstCap [4]int
   889  	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
   890  	if a == nil {
   891  		return nil
   892  	}
   893  	ret := make([][]byte, 1+re.numSubexp)
   894  	for i := range ret {
   895  		if 2*i < len(a) && a[2*i] >= 0 {
   896  			ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]]
   897  		}
   898  	}
   899  	return ret
   900  }
   901  
   902  // Expand appends template to dst and returns the result; during the
   903  // append, Expand replaces variables in the template with corresponding
   904  // matches drawn from src. The match slice should have been returned by
   905  // [Regexp.FindSubmatchIndex].
   906  //
   907  // In the template, a variable is denoted by a substring of the form
   908  // $name or ${name}, where name is a non-empty sequence of letters,
   909  // digits, and underscores. A purely numeric name like $1 refers to
   910  // the submatch with the corresponding index; other names refer to
   911  // capturing parentheses named with the (?P<name>...) syntax. A
   912  // reference to an out of range or unmatched index or a name that is not
   913  // present in the regular expression is replaced with an empty slice.
   914  //
   915  // In the $name form, name is taken to be as long as possible: $1x is
   916  // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
   917  //
   918  // To insert a literal $ in the output, use $$ in the template.
   919  func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
   920  	return re.expand(dst, string(template), src, "", match)
   921  }
   922  
   923  // ExpandString is like [Regexp.Expand] but the template and source are strings.
   924  // It appends to and returns a byte slice in order to give the calling
   925  // code control over allocation.
   926  func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
   927  	return re.expand(dst, template, nil, src, match)
   928  }
   929  
   930  func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
   931  	for len(template) > 0 {
   932  		before, after, ok := strings.Cut(template, "$")
   933  		if !ok {
   934  			break
   935  		}
   936  		dst = append(dst, before...)
   937  		template = after
   938  		if template != "" && template[0] == '$' {
   939  			// Treat $$ as $.
   940  			dst = append(dst, '$')
   941  			template = template[1:]
   942  			continue
   943  		}
   944  		name, num, rest, ok := extract(template)
   945  		if !ok {
   946  			// Malformed; treat $ as raw text.
   947  			dst = append(dst, '$')
   948  			continue
   949  		}
   950  		template = rest
   951  		if num >= 0 {
   952  			if 2*num+1 < len(match) && match[2*num] >= 0 {
   953  				if bsrc != nil {
   954  					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
   955  				} else {
   956  					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
   957  				}
   958  			}
   959  		} else {
   960  			for i, namei := range re.subexpNames {
   961  				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
   962  					if bsrc != nil {
   963  						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
   964  					} else {
   965  						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
   966  					}
   967  					break
   968  				}
   969  			}
   970  		}
   971  	}
   972  	dst = append(dst, template...)
   973  	return dst
   974  }
   975  
   976  // extract returns the name from a leading "name" or "{name}" in str.
   977  // (The $ has already been removed by the caller.)
   978  // If it is a number, extract returns num set to that number; otherwise num = -1.
   979  func extract(str string) (name string, num int, rest string, ok bool) {
   980  	if str == "" {
   981  		return
   982  	}
   983  	brace := false
   984  	if str[0] == '{' {
   985  		brace = true
   986  		str = str[1:]
   987  	}
   988  	i := 0
   989  	for i < len(str) {
   990  		rune, size := utf8.DecodeRuneInString(str[i:])
   991  		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
   992  			break
   993  		}
   994  		i += size
   995  	}
   996  	if i == 0 {
   997  		// empty name is not okay
   998  		return
   999  	}
  1000  	name = str[:i]
  1001  	if brace {
  1002  		if i >= len(str) || str[i] != '}' {
  1003  			// missing closing brace
  1004  			return
  1005  		}
  1006  		i++
  1007  	}
  1008  
  1009  	// Parse number.
  1010  	num = 0
  1011  	for i := 0; i < len(name); i++ {
  1012  		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
  1013  			num = -1
  1014  			break
  1015  		}
  1016  		num = num*10 + int(name[i]) - '0'
  1017  	}
  1018  	// Disallow leading zeros.
  1019  	if name[0] == '0' && len(name) > 1 {
  1020  		num = -1
  1021  	}
  1022  
  1023  	rest = str[i:]
  1024  	ok = true
  1025  	return
  1026  }
  1027  
  1028  // FindSubmatchIndex returns a slice holding the index pairs identifying the
  1029  // leftmost match of the regular expression in b and the matches, if any, of
  1030  // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
  1031  // in the package comment.
  1032  // A return value of nil indicates no match.
  1033  func (re *Regexp) FindSubmatchIndex(b []byte) []int {
  1034  	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
  1035  }
  1036  
  1037  // FindStringSubmatch returns a slice of strings holding the text of the
  1038  // leftmost match of the regular expression in s and the matches, if any, of
  1039  // its subexpressions, as defined by the 'Submatch' description in the
  1040  // package comment.
  1041  // A return value of nil indicates no match.
  1042  func (re *Regexp) FindStringSubmatch(s string) []string {
  1043  	var dstCap [4]int
  1044  	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
  1045  	if a == nil {
  1046  		return nil
  1047  	}
  1048  	ret := make([]string, 1+re.numSubexp)
  1049  	for i := range ret {
  1050  		if 2*i < len(a) && a[2*i] >= 0 {
  1051  			ret[i] = s[a[2*i]:a[2*i+1]]
  1052  		}
  1053  	}
  1054  	return ret
  1055  }
  1056  
  1057  // FindStringSubmatchIndex returns a slice holding the index pairs
  1058  // identifying the leftmost match of the regular expression in s and the
  1059  // matches, if any, of its subexpressions, as defined by the 'Submatch' and
  1060  // 'Index' descriptions in the package comment.
  1061  // A return value of nil indicates no match.
  1062  func (re *Regexp) FindStringSubmatchIndex(s string) []int {
  1063  	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
  1064  }
  1065  
  1066  // FindReaderSubmatchIndex returns a slice holding the index pairs
  1067  // identifying the leftmost match of the regular expression of text read by
  1068  // the [io.RuneReader], and the matches, if any, of its subexpressions, as defined
  1069  // by the 'Submatch' and 'Index' descriptions in the package comment. A
  1070  // return value of nil indicates no match.
  1071  func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
  1072  	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
  1073  }
  1074  
  1075  const startSize = 10 // The size at which to start a slice in the 'All' routines.
  1076  
  1077  // FindAll is the 'All' version of Find; it returns a slice of all successive
  1078  // matches of the expression, as defined by the 'All' description in the
  1079  // package comment.
  1080  // A return value of nil indicates no match.
  1081  func (re *Regexp) FindAll(b []byte, n int) [][]byte {
  1082  	if n < 0 {
  1083  		n = len(b) + 1
  1084  	}
  1085  	var result [][]byte
  1086  	re.allMatches("", b, n, func(match []int) {
  1087  		if result == nil {
  1088  			result = make([][]byte, 0, startSize)
  1089  		}
  1090  		result = append(result, b[match[0]:match[1]:match[1]])
  1091  	})
  1092  	return result
  1093  }
  1094  
  1095  // FindAllIndex is the 'All' version of [Regexp.FindIndex]; it returns a slice of all
  1096  // successive matches of the expression, as defined by the 'All' description
  1097  // in the package comment.
  1098  // A return value of nil indicates no match.
  1099  func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
  1100  	if n < 0 {
  1101  		n = len(b) + 1
  1102  	}
  1103  	var result [][]int
  1104  	re.allMatches("", b, n, func(match []int) {
  1105  		if result == nil {
  1106  			result = make([][]int, 0, startSize)
  1107  		}
  1108  		result = append(result, match[0:2])
  1109  	})
  1110  	return result
  1111  }
  1112  
  1113  // FindAllString is the 'All' version of [Regexp.FindString]; it returns a slice of all
  1114  // successive matches of the expression, as defined by the 'All' description
  1115  // in the package comment.
  1116  // A return value of nil indicates no match.
  1117  func (re *Regexp) FindAllString(s string, n int) []string {
  1118  	if n < 0 {
  1119  		n = len(s) + 1
  1120  	}
  1121  	var result []string
  1122  	re.allMatches(s, nil, n, func(match []int) {
  1123  		if result == nil {
  1124  			result = make([]string, 0, startSize)
  1125  		}
  1126  		result = append(result, s[match[0]:match[1]])
  1127  	})
  1128  	return result
  1129  }
  1130  
  1131  // FindAllStringIndex is the 'All' version of [Regexp.FindStringIndex]; it returns a
  1132  // slice of all successive matches of the expression, as defined by the 'All'
  1133  // description in the package comment.
  1134  // A return value of nil indicates no match.
  1135  func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
  1136  	if n < 0 {
  1137  		n = len(s) + 1
  1138  	}
  1139  	var result [][]int
  1140  	re.allMatches(s, nil, n, func(match []int) {
  1141  		if result == nil {
  1142  			result = make([][]int, 0, startSize)
  1143  		}
  1144  		result = append(result, match[0:2])
  1145  	})
  1146  	return result
  1147  }
  1148  
  1149  // FindAllSubmatch is the 'All' version of [Regexp.FindSubmatch]; it returns a slice
  1150  // of all successive matches of the expression, as defined by the 'All'
  1151  // description in the package comment.
  1152  // A return value of nil indicates no match.
  1153  func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
  1154  	if n < 0 {
  1155  		n = len(b) + 1
  1156  	}
  1157  	var result [][][]byte
  1158  	re.allMatches("", b, n, func(match []int) {
  1159  		if result == nil {
  1160  			result = make([][][]byte, 0, startSize)
  1161  		}
  1162  		slice := make([][]byte, len(match)/2)
  1163  		for j := range slice {
  1164  			if match[2*j] >= 0 {
  1165  				slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]]
  1166  			}
  1167  		}
  1168  		result = append(result, slice)
  1169  	})
  1170  	return result
  1171  }
  1172  
  1173  // FindAllSubmatchIndex is the 'All' version of [Regexp.FindSubmatchIndex]; it returns
  1174  // a slice of all successive matches of the expression, as defined by the
  1175  // 'All' description in the package comment.
  1176  // A return value of nil indicates no match.
  1177  func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
  1178  	if n < 0 {
  1179  		n = len(b) + 1
  1180  	}
  1181  	var result [][]int
  1182  	re.allMatches("", b, n, func(match []int) {
  1183  		if result == nil {
  1184  			result = make([][]int, 0, startSize)
  1185  		}
  1186  		result = append(result, match)
  1187  	})
  1188  	return result
  1189  }
  1190  
  1191  // FindAllStringSubmatch is the 'All' version of [Regexp.FindStringSubmatch]; it
  1192  // returns a slice of all successive matches of the expression, as defined by
  1193  // the 'All' description in the package comment.
  1194  // A return value of nil indicates no match.
  1195  func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
  1196  	if n < 0 {
  1197  		n = len(s) + 1
  1198  	}
  1199  	var result [][]string
  1200  	re.allMatches(s, nil, n, func(match []int) {
  1201  		if result == nil {
  1202  			result = make([][]string, 0, startSize)
  1203  		}
  1204  		slice := make([]string, len(match)/2)
  1205  		for j := range slice {
  1206  			if match[2*j] >= 0 {
  1207  				slice[j] = s[match[2*j]:match[2*j+1]]
  1208  			}
  1209  		}
  1210  		result = append(result, slice)
  1211  	})
  1212  	return result
  1213  }
  1214  
  1215  // FindAllStringSubmatchIndex is the 'All' version of
  1216  // [Regexp.FindStringSubmatchIndex]; it returns a slice of all successive matches of
  1217  // the expression, as defined by the 'All' description in the package
  1218  // comment.
  1219  // A return value of nil indicates no match.
  1220  func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
  1221  	if n < 0 {
  1222  		n = len(s) + 1
  1223  	}
  1224  	var result [][]int
  1225  	re.allMatches(s, nil, n, func(match []int) {
  1226  		if result == nil {
  1227  			result = make([][]int, 0, startSize)
  1228  		}
  1229  		result = append(result, match)
  1230  	})
  1231  	return result
  1232  }
  1233  
  1234  // Split slices s into substrings separated by the expression and returns a slice of
  1235  // the substrings between those expression matches.
  1236  //
  1237  // The slice returned by this method consists of all the substrings of s
  1238  // not contained in the slice returned by [Regexp.FindAllString]. When called on an expression
  1239  // that contains no metacharacters, it is equivalent to [strings.SplitN].
  1240  //
  1241  // Example:
  1242  //
  1243  //	s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
  1244  //	// s: ["", "b", "b", "c", "cadaaae"]
  1245  //
  1246  // The count determines the number of substrings to return:
  1247  //
  1248  //	n > 0: at most n substrings; the last substring will be the unsplit remainder.
  1249  //	n == 0: the result is nil (zero substrings)
  1250  //	n < 0: all substrings
  1251  func (re *Regexp) Split(s string, n int) []string {
  1252  
  1253  	if n == 0 {
  1254  		return nil
  1255  	}
  1256  
  1257  	if len(re.expr) > 0 && len(s) == 0 {
  1258  		return []string{""}
  1259  	}
  1260  
  1261  	matches := re.FindAllStringIndex(s, n)
  1262  	strings := make([]string, 0, len(matches))
  1263  
  1264  	beg := 0
  1265  	end := 0
  1266  	for _, match := range matches {
  1267  		if n > 0 && len(strings) >= n-1 {
  1268  			break
  1269  		}
  1270  
  1271  		end = match[0]
  1272  		if match[1] != 0 {
  1273  			strings = append(strings, s[beg:end])
  1274  		}
  1275  		beg = match[1]
  1276  	}
  1277  
  1278  	if end != len(s) {
  1279  		strings = append(strings, s[beg:])
  1280  	}
  1281  
  1282  	return strings
  1283  }
  1284  
  1285  // MarshalText implements [encoding.TextMarshaler]. The output
  1286  // matches that of calling the [Regexp.String] method.
  1287  //
  1288  // Note that the output is lossy in some cases: This method does not indicate
  1289  // POSIX regular expressions (i.e. those compiled by calling [CompilePOSIX]), or
  1290  // those for which the [Regexp.Longest] method has been called.
  1291  func (re *Regexp) MarshalText() ([]byte, error) {
  1292  	return []byte(re.String()), nil
  1293  }
  1294  
  1295  // UnmarshalText implements [encoding.TextUnmarshaler] by calling
  1296  // [Compile] on the encoded value.
  1297  func (re *Regexp) UnmarshalText(text []byte) error {
  1298  	newRE, err := Compile(string(text))
  1299  	if err != nil {
  1300  		return err
  1301  	}
  1302  	*re = *newRE
  1303  	return nil
  1304  }
  1305  

View as plain text