...

Text file src/runtime/asm_amd64.s

Documentation: runtime

     1// Copyright 2009 The Go Authors. All rights reserved.
     2// Use of this source code is governed by a BSD-style
     3// license that can be found in the LICENSE file.
     4
     5#include "go_asm.h"
     6#include "go_tls.h"
     7#include "funcdata.h"
     8#include "textflag.h"
     9#include "cgo/abi_amd64.h"
    10
    11// _rt0_amd64 is common startup code for most amd64 systems when using
    12// internal linking. This is the entry point for the program from the
    13// kernel for an ordinary -buildmode=exe program. The stack holds the
    14// number of arguments and the C-style argv.
    15TEXT _rt0_amd64(SB),NOSPLIT,$-8
    16	MOVQ	0(SP), DI	// argc
    17	LEAQ	8(SP), SI	// argv
    18	JMP	runtime·rt0_go(SB)
    19
    20// main is common startup code for most amd64 systems when using
    21// external linking. The C startup code will call the symbol "main"
    22// passing argc and argv in the usual C ABI registers DI and SI.
    23TEXT main(SB),NOSPLIT,$-8
    24	JMP	runtime·rt0_go(SB)
    25
    26// _rt0_amd64_lib is common startup code for most amd64 systems when
    27// using -buildmode=c-archive or -buildmode=c-shared. The linker will
    28// arrange to invoke this function as a global constructor (for
    29// c-archive) or when the shared library is loaded (for c-shared).
    30// We expect argc and argv to be passed in the usual C ABI registers
    31// DI and SI.
    32TEXT _rt0_amd64_lib(SB),NOSPLIT|NOFRAME,$0
    33	// Transition from C ABI to Go ABI.
    34	PUSH_REGS_HOST_TO_ABI0()
    35
    36	MOVQ	DI, _rt0_amd64_lib_argc<>(SB)
    37	MOVQ	SI, _rt0_amd64_lib_argv<>(SB)
    38
    39	// Synchronous initialization.
    40	CALL	runtime·libpreinit(SB)
    41
    42	// Create a new thread to finish Go runtime initialization.
    43	MOVQ	_cgo_sys_thread_create(SB), AX
    44	TESTQ	AX, AX
    45	JZ	nocgo
    46
    47	// We're calling back to C.
    48	// Align stack per ELF ABI requirements.
    49	MOVQ	SP, BX  // Callee-save in C ABI
    50	ANDQ	$~15, SP
    51	MOVQ	$_rt0_amd64_lib_go(SB), DI
    52	MOVQ	$0, SI
    53	CALL	AX
    54	MOVQ	BX, SP
    55	JMP	restore
    56
    57nocgo:
    58	ADJSP	$16
    59	MOVQ	$0x800000, 0(SP)		// stacksize
    60	MOVQ	$_rt0_amd64_lib_go(SB), AX
    61	MOVQ	AX, 8(SP)			// fn
    62	CALL	runtime·newosproc0(SB)
    63	ADJSP	$-16
    64
    65restore:
    66	POP_REGS_HOST_TO_ABI0()
    67	RET
    68
    69// _rt0_amd64_lib_go initializes the Go runtime.
    70// This is started in a separate thread by _rt0_amd64_lib.
    71TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0
    72	MOVQ	_rt0_amd64_lib_argc<>(SB), DI
    73	MOVQ	_rt0_amd64_lib_argv<>(SB), SI
    74	JMP	runtime·rt0_go(SB)
    75
    76DATA _rt0_amd64_lib_argc<>(SB)/8, $0
    77GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8
    78DATA _rt0_amd64_lib_argv<>(SB)/8, $0
    79GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8
    80
    81#ifdef GOAMD64_v2
    82DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n"
    83#endif
    84
    85#ifdef GOAMD64_v3
    86DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n"
    87#endif
    88
    89#ifdef GOAMD64_v4
    90DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n"
    91#endif
    92
    93GLOBL bad_cpu_msg<>(SB), RODATA, $84
    94
    95// Define a list of AMD64 microarchitecture level features
    96// https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
    97
    98                     // SSE3     SSSE3    CMPXCHNG16 SSE4.1    SSE4.2    POPCNT
    99#define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13  | 1 << 19 | 1 << 20 | 1 << 23)
   100                         // LAHF/SAHF
   101#define V2_EXT_FEATURES_CX (1 << 0)
   102                                      // FMA       MOVBE     OSXSAVE   AVX       F16C
   103#define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29)
   104                                              // ABM (FOR LZNCT)
   105#define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5)
   106                         // BMI1     AVX2     BMI2
   107#define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8)
   108                       // XMM      YMM
   109#define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2)
   110
   111#define V4_FEATURES_CX V3_FEATURES_CX
   112
   113#define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   114                                              // AVX512F   AVX512DQ  AVX512CD  AVX512BW  AVX512VL
   115#define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31)
   116                                          // OPMASK   ZMM
   117#define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7))
   118
   119#ifdef GOAMD64_v2
   120#define NEED_MAX_CPUID 0x80000001
   121#define NEED_FEATURES_CX V2_FEATURES_CX
   122#define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX
   123#endif
   124
   125#ifdef GOAMD64_v3
   126#define NEED_MAX_CPUID 0x80000001
   127#define NEED_FEATURES_CX V3_FEATURES_CX
   128#define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   129#define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX
   130#define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   131#endif
   132
   133#ifdef GOAMD64_v4
   134#define NEED_MAX_CPUID 0x80000001
   135#define NEED_FEATURES_CX V4_FEATURES_CX
   136#define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX
   137#define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX
   138
   139// Darwin requires a different approach to check AVX512 support, see CL 285572.
   140#ifdef GOOS_darwin
   141#define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   142// These values are from:
   143// https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h
   144#define commpage64_base_address         0x00007fffffe00000
   145#define commpage64_cpu_capabilities64   (commpage64_base_address+0x010)
   146#define commpage64_version              (commpage64_base_address+0x01E)
   147#define AVX512F                         0x0000004000000000
   148#define AVX512CD                        0x0000008000000000
   149#define AVX512DQ                        0x0000010000000000
   150#define AVX512BW                        0x0000020000000000
   151#define AVX512VL                        0x0000100000000000
   152#define NEED_DARWIN_SUPPORT             (AVX512F | AVX512DQ | AVX512CD | AVX512BW | AVX512VL)
   153#else
   154#define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX
   155#endif
   156
   157#endif
   158
   159TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
   160	// copy arguments forward on an even stack
   161	MOVQ	DI, AX		// argc
   162	MOVQ	SI, BX		// argv
   163	SUBQ	$(5*8), SP		// 3args 2auto
   164	ANDQ	$~15, SP
   165	MOVQ	AX, 24(SP)
   166	MOVQ	BX, 32(SP)
   167
   168	// create istack out of the given (operating system) stack.
   169	// _cgo_init may update stackguard.
   170	MOVQ	$runtime·g0(SB), DI
   171	LEAQ	(-64*1024)(SP), BX
   172	MOVQ	BX, g_stackguard0(DI)
   173	MOVQ	BX, g_stackguard1(DI)
   174	MOVQ	BX, (g_stack+stack_lo)(DI)
   175	MOVQ	SP, (g_stack+stack_hi)(DI)
   176
   177	// find out information about the processor we're on
   178	MOVL	$0, AX
   179	CPUID
   180	CMPL	AX, $0
   181	JE	nocpuinfo
   182
   183	CMPL	BX, $0x756E6547  // "Genu"
   184	JNE	notintel
   185	CMPL	DX, $0x49656E69  // "ineI"
   186	JNE	notintel
   187	CMPL	CX, $0x6C65746E  // "ntel"
   188	JNE	notintel
   189	MOVB	$1, runtime·isIntel(SB)
   190
   191notintel:
   192	// Load EAX=1 cpuid flags
   193	MOVL	$1, AX
   194	CPUID
   195	MOVL	AX, runtime·processorVersionInfo(SB)
   196
   197nocpuinfo:
   198	// if there is an _cgo_init, call it.
   199	MOVQ	_cgo_init(SB), AX
   200	TESTQ	AX, AX
   201	JZ	needtls
   202	// arg 1: g0, already in DI
   203	MOVQ	$setg_gcc<>(SB), SI // arg 2: setg_gcc
   204	MOVQ	$0, DX	// arg 3, 4: not used when using platform's TLS
   205	MOVQ	$0, CX
   206#ifdef GOOS_android
   207	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   208	// arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
   209	// Compensate for tls_g (+16).
   210	MOVQ	-16(TLS), CX
   211#endif
   212#ifdef GOOS_windows
   213	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   214	// Adjust for the Win64 calling convention.
   215	MOVQ	CX, R9 // arg 4
   216	MOVQ	DX, R8 // arg 3
   217	MOVQ	SI, DX // arg 2
   218	MOVQ	DI, CX // arg 1
   219#endif
   220	CALL	AX
   221
   222	// update stackguard after _cgo_init
   223	MOVQ	$runtime·g0(SB), CX
   224	MOVQ	(g_stack+stack_lo)(CX), AX
   225	ADDQ	$const_stackGuard, AX
   226	MOVQ	AX, g_stackguard0(CX)
   227	MOVQ	AX, g_stackguard1(CX)
   228
   229#ifndef GOOS_windows
   230	JMP ok
   231#endif
   232needtls:
   233#ifdef GOOS_plan9
   234	// skip TLS setup on Plan 9
   235	JMP ok
   236#endif
   237#ifdef GOOS_solaris
   238	// skip TLS setup on Solaris
   239	JMP ok
   240#endif
   241#ifdef GOOS_illumos
   242	// skip TLS setup on illumos
   243	JMP ok
   244#endif
   245#ifdef GOOS_darwin
   246	// skip TLS setup on Darwin
   247	JMP ok
   248#endif
   249#ifdef GOOS_openbsd
   250	// skip TLS setup on OpenBSD
   251	JMP ok
   252#endif
   253
   254#ifdef GOOS_windows
   255	CALL	runtime·wintls(SB)
   256#endif
   257
   258	LEAQ	runtime·m0+m_tls(SB), DI
   259	CALL	runtime·settls(SB)
   260
   261	// store through it, to make sure it works
   262	get_tls(BX)
   263	MOVQ	$0x123, g(BX)
   264	MOVQ	runtime·m0+m_tls(SB), AX
   265	CMPQ	AX, $0x123
   266	JEQ 2(PC)
   267	CALL	runtime·abort(SB)
   268ok:
   269	// set the per-goroutine and per-mach "registers"
   270	get_tls(BX)
   271	LEAQ	runtime·g0(SB), CX
   272	MOVQ	CX, g(BX)
   273	LEAQ	runtime·m0(SB), AX
   274
   275	// save m->g0 = g0
   276	MOVQ	CX, m_g0(AX)
   277	// save m0 to g0->m
   278	MOVQ	AX, g_m(CX)
   279
   280	CLD				// convention is D is always left cleared
   281
   282	// Check GOAMD64 requirements
   283	// We need to do this after setting up TLS, so that
   284	// we can report an error if there is a failure. See issue 49586.
   285#ifdef NEED_FEATURES_CX
   286	MOVL	$0, AX
   287	CPUID
   288	CMPL	AX, $0
   289	JE	bad_cpu
   290	MOVL	$1, AX
   291	CPUID
   292	ANDL	$NEED_FEATURES_CX, CX
   293	CMPL	CX, $NEED_FEATURES_CX
   294	JNE	bad_cpu
   295#endif
   296
   297#ifdef NEED_MAX_CPUID
   298	MOVL	$0x80000000, AX
   299	CPUID
   300	CMPL	AX, $NEED_MAX_CPUID
   301	JL	bad_cpu
   302#endif
   303
   304#ifdef NEED_EXT_FEATURES_BX
   305	MOVL	$7, AX
   306	MOVL	$0, CX
   307	CPUID
   308	ANDL	$NEED_EXT_FEATURES_BX, BX
   309	CMPL	BX, $NEED_EXT_FEATURES_BX
   310	JNE	bad_cpu
   311#endif
   312
   313#ifdef NEED_EXT_FEATURES_CX
   314	MOVL	$0x80000001, AX
   315	CPUID
   316	ANDL	$NEED_EXT_FEATURES_CX, CX
   317	CMPL	CX, $NEED_EXT_FEATURES_CX
   318	JNE	bad_cpu
   319#endif
   320
   321#ifdef NEED_OS_SUPPORT_AX
   322	XORL    CX, CX
   323	XGETBV
   324	ANDL	$NEED_OS_SUPPORT_AX, AX
   325	CMPL	AX, $NEED_OS_SUPPORT_AX
   326	JNE	bad_cpu
   327#endif
   328
   329#ifdef NEED_DARWIN_SUPPORT
   330	MOVQ	$commpage64_version, BX
   331	CMPW	(BX), $13  // cpu_capabilities64 undefined in versions < 13
   332	JL	bad_cpu
   333	MOVQ	$commpage64_cpu_capabilities64, BX
   334	MOVQ	(BX), BX
   335	MOVQ	$NEED_DARWIN_SUPPORT, CX
   336	ANDQ	CX, BX
   337	CMPQ	BX, CX
   338	JNE	bad_cpu
   339#endif
   340
   341	CALL	runtime·check(SB)
   342
   343	MOVL	24(SP), AX		// copy argc
   344	MOVL	AX, 0(SP)
   345	MOVQ	32(SP), AX		// copy argv
   346	MOVQ	AX, 8(SP)
   347	CALL	runtime·args(SB)
   348	CALL	runtime·osinit(SB)
   349	CALL	runtime·schedinit(SB)
   350
   351	// create a new goroutine to start program
   352	MOVQ	$runtime·mainPC(SB), AX		// entry
   353	PUSHQ	AX
   354	CALL	runtime·newproc(SB)
   355	POPQ	AX
   356
   357	// start this M
   358	CALL	runtime·mstart(SB)
   359
   360	CALL	runtime·abort(SB)	// mstart should never return
   361	RET
   362
   363bad_cpu: // show that the program requires a certain microarchitecture level.
   364	MOVQ	$2, 0(SP)
   365	MOVQ	$bad_cpu_msg<>(SB), AX
   366	MOVQ	AX, 8(SP)
   367	MOVQ	$84, 16(SP)
   368	CALL	runtime·write(SB)
   369	MOVQ	$1, 0(SP)
   370	CALL	runtime·exit(SB)
   371	CALL	runtime·abort(SB)
   372	RET
   373
   374	// Prevent dead-code elimination of debugCallV2, which is
   375	// intended to be called by debuggers.
   376	MOVQ	$runtime·debugCallV2<ABIInternal>(SB), AX
   377	RET
   378
   379// mainPC is a function value for runtime.main, to be passed to newproc.
   380// The reference to runtime.main is made via ABIInternal, since the
   381// actual function (not the ABI0 wrapper) is needed by newproc.
   382DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
   383GLOBL	runtime·mainPC(SB),RODATA,$8
   384
   385TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
   386	BYTE	$0xcc
   387	RET
   388
   389TEXT runtime·asminit(SB),NOSPLIT,$0-0
   390	// No per-thread init.
   391	RET
   392
   393TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME|NOFRAME,$0
   394	CALL	runtime·mstart0(SB)
   395	RET // not reached
   396
   397/*
   398 *  go-routine
   399 */
   400
   401// func gogo(buf *gobuf)
   402// restore state from Gobuf; longjmp
   403TEXT runtime·gogo(SB), NOSPLIT, $0-8
   404	MOVQ	buf+0(FP), BX		// gobuf
   405	MOVQ	gobuf_g(BX), DX
   406	MOVQ	0(DX), CX		// make sure g != nil
   407	JMP	gogo<>(SB)
   408
   409TEXT gogo<>(SB), NOSPLIT, $0
   410	get_tls(CX)
   411	MOVQ	DX, g(CX)
   412	MOVQ	DX, R14		// set the g register
   413	MOVQ	gobuf_sp(BX), SP	// restore SP
   414	MOVQ	gobuf_ret(BX), AX
   415	MOVQ	gobuf_ctxt(BX), DX
   416	MOVQ	gobuf_bp(BX), BP
   417	MOVQ	$0, gobuf_sp(BX)	// clear to help garbage collector
   418	MOVQ	$0, gobuf_ret(BX)
   419	MOVQ	$0, gobuf_ctxt(BX)
   420	MOVQ	$0, gobuf_bp(BX)
   421	MOVQ	gobuf_pc(BX), BX
   422	JMP	BX
   423
   424// func mcall(fn func(*g))
   425// Switch to m->g0's stack, call fn(g).
   426// Fn must never return. It should gogo(&g->sched)
   427// to keep running g.
   428TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8
   429	MOVQ	AX, DX	// DX = fn
   430
   431	// Save state in g->sched. The caller's SP and PC are restored by gogo to
   432	// resume execution in the caller's frame (implicit return). The caller's BP
   433	// is also restored to support frame pointer unwinding.
   434	MOVQ	SP, BX	// hide (SP) reads from vet
   435	MOVQ	8(BX), BX	// caller's PC
   436	MOVQ	BX, (g_sched+gobuf_pc)(R14)
   437	LEAQ	fn+0(FP), BX	// caller's SP
   438	MOVQ	BX, (g_sched+gobuf_sp)(R14)
   439	// Get the caller's frame pointer by dereferencing BP. Storing BP as it is
   440	// can cause a frame pointer cycle, see CL 476235.
   441	MOVQ	(BP), BX // caller's BP
   442	MOVQ	BX, (g_sched+gobuf_bp)(R14)
   443
   444	// switch to m->g0 & its stack, call fn
   445	MOVQ	g_m(R14), BX
   446	MOVQ	m_g0(BX), SI	// SI = g.m.g0
   447	CMPQ	SI, R14	// if g == m->g0 call badmcall
   448	JNE	goodm
   449	JMP	runtime·badmcall(SB)
   450goodm:
   451	MOVQ	R14, AX		// AX (and arg 0) = g
   452	MOVQ	SI, R14		// g = g.m.g0
   453	get_tls(CX)		// Set G in TLS
   454	MOVQ	R14, g(CX)
   455	MOVQ	(g_sched+gobuf_sp)(R14), SP	// sp = g0.sched.sp
   456	PUSHQ	AX	// open up space for fn's arg spill slot
   457	MOVQ	0(DX), R12
   458	CALL	R12		// fn(g)
   459	POPQ	AX
   460	JMP	runtime·badmcall2(SB)
   461	RET
   462
   463// systemstack_switch is a dummy routine that systemstack leaves at the bottom
   464// of the G stack. We need to distinguish the routine that
   465// lives at the bottom of the G stack from the one that lives
   466// at the top of the system stack because the one at the top of
   467// the system stack terminates the stack walk (see topofstack()).
   468// The frame layout needs to match systemstack
   469// so that it can pretend to be systemstack_switch.
   470TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
   471	UNDEF
   472	// Make sure this function is not leaf,
   473	// so the frame is saved.
   474	CALL	runtime·abort(SB)
   475	RET
   476
   477// func systemstack(fn func())
   478TEXT runtime·systemstack(SB), NOSPLIT, $0-8
   479	MOVQ	fn+0(FP), DI	// DI = fn
   480	get_tls(CX)
   481	MOVQ	g(CX), AX	// AX = g
   482	MOVQ	g_m(AX), BX	// BX = m
   483
   484	CMPQ	AX, m_gsignal(BX)
   485	JEQ	noswitch
   486
   487	MOVQ	m_g0(BX), DX	// DX = g0
   488	CMPQ	AX, DX
   489	JEQ	noswitch
   490
   491	CMPQ	AX, m_curg(BX)
   492	JNE	bad
   493
   494	// Switch stacks.
   495	// The original frame pointer is stored in BP,
   496	// which is useful for stack unwinding.
   497	// Save our state in g->sched. Pretend to
   498	// be systemstack_switch if the G stack is scanned.
   499	CALL	gosave_systemstack_switch<>(SB)
   500
   501	// switch to g0
   502	MOVQ	DX, g(CX)
   503	MOVQ	DX, R14 // set the g register
   504	MOVQ	(g_sched+gobuf_sp)(DX), SP
   505
   506	// call target function
   507	MOVQ	DI, DX
   508	MOVQ	0(DI), DI
   509	CALL	DI
   510
   511	// switch back to g
   512	get_tls(CX)
   513	MOVQ	g(CX), AX
   514	MOVQ	g_m(AX), BX
   515	MOVQ	m_curg(BX), AX
   516	MOVQ	AX, g(CX)
   517	MOVQ	(g_sched+gobuf_sp)(AX), SP
   518	MOVQ	(g_sched+gobuf_bp)(AX), BP
   519	MOVQ	$0, (g_sched+gobuf_sp)(AX)
   520	MOVQ	$0, (g_sched+gobuf_bp)(AX)
   521	RET
   522
   523noswitch:
   524	// already on m stack; tail call the function
   525	// Using a tail call here cleans up tracebacks since we won't stop
   526	// at an intermediate systemstack.
   527	MOVQ	DI, DX
   528	MOVQ	0(DI), DI
   529	// The function epilogue is not called on a tail call.
   530	// Pop BP from the stack to simulate it.
   531	POPQ	BP
   532	JMP	DI
   533
   534bad:
   535	// Bad: g is not gsignal, not g0, not curg. What is it?
   536	MOVQ	$runtime·badsystemstack(SB), AX
   537	CALL	AX
   538	INT	$3
   539
   540// func switchToCrashStack0(fn func())
   541TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
   542	MOVQ	g_m(R14), BX // curm
   543
   544	// set g to gcrash
   545	LEAQ	runtime·gcrash(SB), R14 // g = &gcrash
   546	MOVQ	BX, g_m(R14)            // g.m = curm
   547	MOVQ	R14, m_g0(BX)           // curm.g0 = g
   548	get_tls(CX)
   549	MOVQ	R14, g(CX)
   550
   551	// switch to crashstack
   552	MOVQ	(g_stack+stack_hi)(R14), BX
   553	SUBQ	$(4*8), BX
   554	MOVQ	BX, SP
   555
   556	// call target function
   557	MOVQ	AX, DX
   558	MOVQ	0(AX), AX
   559	CALL	AX
   560
   561	// should never return
   562	CALL	runtime·abort(SB)
   563	UNDEF
   564
   565/*
   566 * support for morestack
   567 */
   568
   569// Called during function prolog when more stack is needed.
   570//
   571// The traceback routines see morestack on a g0 as being
   572// the top of a stack (for example, morestack calling newstack
   573// calling the scheduler calling newm calling gc), so we must
   574// record an argument size. For that purpose, it has no arguments.
   575TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
   576	// Cannot grow scheduler stack (m->g0).
   577	get_tls(CX)
   578	MOVQ	g(CX), DI     // DI = g
   579	MOVQ	g_m(DI), BX   // BX = m
   580
   581	// Set g->sched to context in f.
   582	MOVQ	0(SP), AX // f's PC
   583	MOVQ	AX, (g_sched+gobuf_pc)(DI)
   584	LEAQ	8(SP), AX // f's SP
   585	MOVQ	AX, (g_sched+gobuf_sp)(DI)
   586	MOVQ	BP, (g_sched+gobuf_bp)(DI)
   587	MOVQ	DX, (g_sched+gobuf_ctxt)(DI)
   588
   589	MOVQ	m_g0(BX), SI  // SI = m.g0
   590	CMPQ	DI, SI
   591	JNE	3(PC)
   592	CALL	runtime·badmorestackg0(SB)
   593	CALL	runtime·abort(SB)
   594
   595	// Cannot grow signal stack (m->gsignal).
   596	MOVQ	m_gsignal(BX), SI
   597	CMPQ	DI, SI
   598	JNE	3(PC)
   599	CALL	runtime·badmorestackgsignal(SB)
   600	CALL	runtime·abort(SB)
   601
   602	// Called from f.
   603	// Set m->morebuf to f's caller.
   604	NOP	SP	// tell vet SP changed - stop checking offsets
   605	MOVQ	8(SP), AX	// f's caller's PC
   606	MOVQ	AX, (m_morebuf+gobuf_pc)(BX)
   607	LEAQ	16(SP), AX	// f's caller's SP
   608	MOVQ	AX, (m_morebuf+gobuf_sp)(BX)
   609	MOVQ	DI, (m_morebuf+gobuf_g)(BX)
   610
   611	// Call newstack on m->g0's stack.
   612	MOVQ	m_g0(BX), BX
   613	MOVQ	BX, g(CX)
   614	MOVQ	(g_sched+gobuf_sp)(BX), SP
   615	MOVQ	(g_sched+gobuf_bp)(BX), BP
   616	CALL	runtime·newstack(SB)
   617	CALL	runtime·abort(SB)	// crash if newstack returns
   618	RET
   619
   620// morestack but not preserving ctxt.
   621TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
   622	MOVL	$0, DX
   623	JMP	runtime·morestack(SB)
   624
   625// spillArgs stores return values from registers to a *internal/abi.RegArgs in R12.
   626TEXT ·spillArgs(SB),NOSPLIT,$0-0
   627	MOVQ AX, 0(R12)
   628	MOVQ BX, 8(R12)
   629	MOVQ CX, 16(R12)
   630	MOVQ DI, 24(R12)
   631	MOVQ SI, 32(R12)
   632	MOVQ R8, 40(R12)
   633	MOVQ R9, 48(R12)
   634	MOVQ R10, 56(R12)
   635	MOVQ R11, 64(R12)
   636	MOVQ X0, 72(R12)
   637	MOVQ X1, 80(R12)
   638	MOVQ X2, 88(R12)
   639	MOVQ X3, 96(R12)
   640	MOVQ X4, 104(R12)
   641	MOVQ X5, 112(R12)
   642	MOVQ X6, 120(R12)
   643	MOVQ X7, 128(R12)
   644	MOVQ X8, 136(R12)
   645	MOVQ X9, 144(R12)
   646	MOVQ X10, 152(R12)
   647	MOVQ X11, 160(R12)
   648	MOVQ X12, 168(R12)
   649	MOVQ X13, 176(R12)
   650	MOVQ X14, 184(R12)
   651	RET
   652
   653// unspillArgs loads args into registers from a *internal/abi.RegArgs in R12.
   654TEXT ·unspillArgs(SB),NOSPLIT,$0-0
   655	MOVQ 0(R12), AX
   656	MOVQ 8(R12), BX
   657	MOVQ 16(R12), CX
   658	MOVQ 24(R12), DI
   659	MOVQ 32(R12), SI
   660	MOVQ 40(R12), R8
   661	MOVQ 48(R12), R9
   662	MOVQ 56(R12), R10
   663	MOVQ 64(R12), R11
   664	MOVQ 72(R12), X0
   665	MOVQ 80(R12), X1
   666	MOVQ 88(R12), X2
   667	MOVQ 96(R12), X3
   668	MOVQ 104(R12), X4
   669	MOVQ 112(R12), X5
   670	MOVQ 120(R12), X6
   671	MOVQ 128(R12), X7
   672	MOVQ 136(R12), X8
   673	MOVQ 144(R12), X9
   674	MOVQ 152(R12), X10
   675	MOVQ 160(R12), X11
   676	MOVQ 168(R12), X12
   677	MOVQ 176(R12), X13
   678	MOVQ 184(R12), X14
   679	RET
   680
   681// reflectcall: call a function with the given argument list
   682// func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
   683// we don't have variable-sized frames, so we use a small number
   684// of constant-sized-frame functions to encode a few bits of size in the pc.
   685// Caution: ugly multiline assembly macros in your future!
   686
   687#define DISPATCH(NAME,MAXSIZE)		\
   688	CMPQ	CX, $MAXSIZE;		\
   689	JA	3(PC);			\
   690	MOVQ	$NAME(SB), AX;		\
   691	JMP	AX
   692// Note: can't just "JMP NAME(SB)" - bad inlining results.
   693
   694TEXT ·reflectcall(SB), NOSPLIT, $0-48
   695	MOVLQZX frameSize+32(FP), CX
   696	DISPATCH(runtime·call16, 16)
   697	DISPATCH(runtime·call32, 32)
   698	DISPATCH(runtime·call64, 64)
   699	DISPATCH(runtime·call128, 128)
   700	DISPATCH(runtime·call256, 256)
   701	DISPATCH(runtime·call512, 512)
   702	DISPATCH(runtime·call1024, 1024)
   703	DISPATCH(runtime·call2048, 2048)
   704	DISPATCH(runtime·call4096, 4096)
   705	DISPATCH(runtime·call8192, 8192)
   706	DISPATCH(runtime·call16384, 16384)
   707	DISPATCH(runtime·call32768, 32768)
   708	DISPATCH(runtime·call65536, 65536)
   709	DISPATCH(runtime·call131072, 131072)
   710	DISPATCH(runtime·call262144, 262144)
   711	DISPATCH(runtime·call524288, 524288)
   712	DISPATCH(runtime·call1048576, 1048576)
   713	DISPATCH(runtime·call2097152, 2097152)
   714	DISPATCH(runtime·call4194304, 4194304)
   715	DISPATCH(runtime·call8388608, 8388608)
   716	DISPATCH(runtime·call16777216, 16777216)
   717	DISPATCH(runtime·call33554432, 33554432)
   718	DISPATCH(runtime·call67108864, 67108864)
   719	DISPATCH(runtime·call134217728, 134217728)
   720	DISPATCH(runtime·call268435456, 268435456)
   721	DISPATCH(runtime·call536870912, 536870912)
   722	DISPATCH(runtime·call1073741824, 1073741824)
   723	MOVQ	$runtime·badreflectcall(SB), AX
   724	JMP	AX
   725
   726#define CALLFN(NAME,MAXSIZE)			\
   727TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
   728	NO_LOCAL_POINTERS;			\
   729	/* copy arguments to stack */		\
   730	MOVQ	stackArgs+16(FP), SI;		\
   731	MOVLQZX stackArgsSize+24(FP), CX;		\
   732	MOVQ	SP, DI;				\
   733	REP;MOVSB;				\
   734	/* set up argument registers */		\
   735	MOVQ    regArgs+40(FP), R12;		\
   736	CALL    ·unspillArgs(SB);		\
   737	/* call function */			\
   738	MOVQ	f+8(FP), DX;			\
   739	PCDATA  $PCDATA_StackMapIndex, $0;	\
   740	MOVQ	(DX), R12;			\
   741	CALL	R12;				\
   742	/* copy register return values back */		\
   743	MOVQ    regArgs+40(FP), R12;		\
   744	CALL    ·spillArgs(SB);		\
   745	MOVLQZX	stackArgsSize+24(FP), CX;		\
   746	MOVLQZX	stackRetOffset+28(FP), BX;		\
   747	MOVQ	stackArgs+16(FP), DI;		\
   748	MOVQ	stackArgsType+0(FP), DX;		\
   749	MOVQ	SP, SI;				\
   750	ADDQ	BX, DI;				\
   751	ADDQ	BX, SI;				\
   752	SUBQ	BX, CX;				\
   753	CALL	callRet<>(SB);			\
   754	RET
   755
   756// callRet copies return values back at the end of call*. This is a
   757// separate function so it can allocate stack space for the arguments
   758// to reflectcallmove. It does not follow the Go ABI; it expects its
   759// arguments in registers.
   760TEXT callRet<>(SB), NOSPLIT, $40-0
   761	NO_LOCAL_POINTERS
   762	MOVQ	DX, 0(SP)
   763	MOVQ	DI, 8(SP)
   764	MOVQ	SI, 16(SP)
   765	MOVQ	CX, 24(SP)
   766	MOVQ	R12, 32(SP)
   767	CALL	runtime·reflectcallmove(SB)
   768	RET
   769
   770CALLFN(·call16, 16)
   771CALLFN(·call32, 32)
   772CALLFN(·call64, 64)
   773CALLFN(·call128, 128)
   774CALLFN(·call256, 256)
   775CALLFN(·call512, 512)
   776CALLFN(·call1024, 1024)
   777CALLFN(·call2048, 2048)
   778CALLFN(·call4096, 4096)
   779CALLFN(·call8192, 8192)
   780CALLFN(·call16384, 16384)
   781CALLFN(·call32768, 32768)
   782CALLFN(·call65536, 65536)
   783CALLFN(·call131072, 131072)
   784CALLFN(·call262144, 262144)
   785CALLFN(·call524288, 524288)
   786CALLFN(·call1048576, 1048576)
   787CALLFN(·call2097152, 2097152)
   788CALLFN(·call4194304, 4194304)
   789CALLFN(·call8388608, 8388608)
   790CALLFN(·call16777216, 16777216)
   791CALLFN(·call33554432, 33554432)
   792CALLFN(·call67108864, 67108864)
   793CALLFN(·call134217728, 134217728)
   794CALLFN(·call268435456, 268435456)
   795CALLFN(·call536870912, 536870912)
   796CALLFN(·call1073741824, 1073741824)
   797
   798TEXT runtime·procyield(SB),NOSPLIT,$0-0
   799	MOVL	cycles+0(FP), AX
   800again:
   801	PAUSE
   802	SUBL	$1, AX
   803	JNZ	again
   804	RET
   805
   806
   807TEXT ·publicationBarrier<ABIInternal>(SB),NOSPLIT,$0-0
   808	// Stores are already ordered on x86, so this is just a
   809	// compile barrier.
   810	RET
   811
   812// Save state of caller into g->sched,
   813// but using fake PC from systemstack_switch.
   814// Must only be called from functions with frame pointer
   815// and without locals ($0) or else unwinding from
   816// systemstack_switch is incorrect.
   817// Smashes R9.
   818TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
   819	// Take systemstack_switch PC and add 8 bytes to skip
   820	// the prologue. The final location does not matter
   821	// as long as we are between the prologue and the epilogue.
   822	MOVQ	$runtime·systemstack_switch+8(SB), R9
   823	MOVQ	R9, (g_sched+gobuf_pc)(R14)
   824	LEAQ	8(SP), R9
   825	MOVQ	R9, (g_sched+gobuf_sp)(R14)
   826	MOVQ	$0, (g_sched+gobuf_ret)(R14)
   827	MOVQ	BP, (g_sched+gobuf_bp)(R14)
   828	// Assert ctxt is zero. See func save.
   829	MOVQ	(g_sched+gobuf_ctxt)(R14), R9
   830	TESTQ	R9, R9
   831	JZ	2(PC)
   832	CALL	runtime·abort(SB)
   833	RET
   834
   835// func asmcgocall_no_g(fn, arg unsafe.Pointer)
   836// Call fn(arg) aligned appropriately for the gcc ABI.
   837// Called on a system stack, and there may be no g yet (during needm).
   838TEXT ·asmcgocall_no_g(SB),NOSPLIT,$32-16
   839	MOVQ	fn+0(FP), AX
   840	MOVQ	arg+8(FP), BX
   841	MOVQ	SP, DX
   842	ANDQ	$~15, SP	// alignment
   843	MOVQ	DX, 8(SP)
   844	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   845	MOVQ	BX, CX		// CX = first argument in Win64
   846	CALL	AX
   847	MOVQ	8(SP), DX
   848	MOVQ	DX, SP
   849	RET
   850
   851// asmcgocall_landingpad calls AX with BX as argument.
   852// Must be called on the system stack.
   853TEXT ·asmcgocall_landingpad(SB),NOSPLIT,$0-0
   854#ifdef GOOS_windows
   855	// Make sure we have enough room for 4 stack-backed fast-call
   856	// registers as per Windows amd64 calling convention.
   857	ADJSP	$32
   858	// On Windows, asmcgocall_landingpad acts as landing pad for exceptions
   859	// thrown in the cgo call. Exceptions that reach this function will be
   860	// handled by runtime.sehtramp thanks to the SEH metadata added
   861	// by the compiler.
   862	// Note that runtime.sehtramp can't be attached directly to asmcgocall
   863	// because its initial stack pointer can be outside the system stack bounds,
   864	// and Windows stops the stack unwinding without calling the exception handler
   865	// when it reaches that point.
   866	MOVQ	BX, CX		// CX = first argument in Win64
   867	CALL	AX
   868	// The exception handler is not called if the next instruction is part of
   869	// the epilogue, which includes the RET instruction, so we need to add a NOP here.
   870	BYTE	$0x90
   871	ADJSP	$-32
   872	RET
   873#endif
   874	// Tail call AX on non-Windows, as the extra stack frame is not needed.
   875	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   876	JMP	AX
   877
   878// func asmcgocall(fn, arg unsafe.Pointer) int32
   879// Call fn(arg) on the scheduler stack,
   880// aligned appropriately for the gcc ABI.
   881// See cgocall.go for more details.
   882TEXT ·asmcgocall(SB),NOSPLIT,$0-20
   883	MOVQ	fn+0(FP), AX
   884	MOVQ	arg+8(FP), BX
   885
   886	MOVQ	SP, DX
   887
   888	// Figure out if we need to switch to m->g0 stack.
   889	// We get called to create new OS threads too, and those
   890	// come in on the m->g0 stack already. Or we might already
   891	// be on the m->gsignal stack.
   892	get_tls(CX)
   893	MOVQ	g(CX), DI
   894	CMPQ	DI, $0
   895	JEQ	nosave
   896	MOVQ	g_m(DI), R8
   897	MOVQ	m_gsignal(R8), SI
   898	CMPQ	DI, SI
   899	JEQ	nosave
   900	MOVQ	m_g0(R8), SI
   901	CMPQ	DI, SI
   902	JEQ	nosave
   903
   904	// Switch to system stack.
   905	// The original frame pointer is stored in BP,
   906	// which is useful for stack unwinding.
   907	CALL	gosave_systemstack_switch<>(SB)
   908	MOVQ	SI, g(CX)
   909	MOVQ	(g_sched+gobuf_sp)(SI), SP
   910
   911	// Now on a scheduling stack (a pthread-created stack).
   912	SUBQ	$16, SP
   913	ANDQ	$~15, SP	// alignment for gcc ABI
   914	MOVQ	DI, 8(SP)	// save g
   915	MOVQ	(g_stack+stack_hi)(DI), DI
   916	SUBQ	DX, DI
   917	MOVQ	DI, 0(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
   918	CALL	runtime·asmcgocall_landingpad(SB)
   919
   920	// Restore registers, g, stack pointer.
   921	get_tls(CX)
   922	MOVQ	8(SP), DI
   923	MOVQ	(g_stack+stack_hi)(DI), SI
   924	SUBQ	0(SP), SI
   925	MOVQ	DI, g(CX)
   926	MOVQ	SI, SP
   927
   928	MOVL	AX, ret+16(FP)
   929	RET
   930
   931nosave:
   932	// Running on a system stack, perhaps even without a g.
   933	// Having no g can happen during thread creation or thread teardown
   934	// (see needm/dropm on Solaris, for example).
   935	// This code is like the above sequence but without saving/restoring g
   936	// and without worrying about the stack moving out from under us
   937	// (because we're on a system stack, not a goroutine stack).
   938	// The above code could be used directly if already on a system stack,
   939	// but then the only path through this code would be a rare case on Solaris.
   940	// Using this code for all "already on system stack" calls exercises it more,
   941	// which should help keep it correct.
   942	SUBQ	$16, SP
   943	ANDQ	$~15, SP
   944	MOVQ	$0, 8(SP)		// where above code stores g, in case someone looks during debugging
   945	MOVQ	DX, 0(SP)	// save original stack pointer
   946	CALL	runtime·asmcgocall_landingpad(SB)
   947	MOVQ	0(SP), SI	// restore original stack pointer
   948	MOVQ	SI, SP
   949	MOVL	AX, ret+16(FP)
   950	RET
   951
   952#ifdef GOOS_windows
   953// Dummy TLS that's used on Windows so that we don't crash trying
   954// to restore the G register in needm. needm and its callees are
   955// very careful never to actually use the G, the TLS just can't be
   956// unset since we're in Go code.
   957GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize
   958#endif
   959
   960// func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
   961// See cgocall.go for more details.
   962TEXT ·cgocallback(SB),NOSPLIT,$24-24
   963	NO_LOCAL_POINTERS
   964
   965	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
   966	// It is used to dropm while thread is exiting.
   967	MOVQ	fn+0(FP), AX
   968	CMPQ	AX, $0
   969	JNE	loadg
   970	// Restore the g from frame.
   971	get_tls(CX)
   972	MOVQ	frame+8(FP), BX
   973	MOVQ	BX, g(CX)
   974	JMP	dropm
   975
   976loadg:
   977	// If g is nil, Go did not create the current thread,
   978	// or if this thread never called into Go on pthread platforms.
   979	// Call needm to obtain one m for temporary use.
   980	// In this case, we're running on the thread stack, so there's
   981	// lots of space, but the linker doesn't know. Hide the call from
   982	// the linker analysis by using an indirect call through AX.
   983	get_tls(CX)
   984#ifdef GOOS_windows
   985	MOVL	$0, BX
   986	CMPQ	CX, $0
   987	JEQ	2(PC)
   988#endif
   989	MOVQ	g(CX), BX
   990	CMPQ	BX, $0
   991	JEQ	needm
   992	MOVQ	g_m(BX), BX
   993	MOVQ	BX, savedm-8(SP)	// saved copy of oldm
   994	JMP	havem
   995needm:
   996#ifdef GOOS_windows
   997	// Set up a dummy TLS value. needm is careful not to use it,
   998	// but it needs to be there to prevent autogenerated code from
   999	// crashing when it loads from it.
  1000	// We don't need to clear it or anything later because needm
  1001	// will set up TLS properly.
  1002	MOVQ	$zeroTLS<>(SB), DI
  1003	CALL	runtime·settls(SB)
  1004#endif
  1005	// On some platforms (Windows) we cannot call needm through
  1006	// an ABI wrapper because there's no TLS set up, and the ABI
  1007	// wrapper will try to restore the G register (R14) from TLS.
  1008	// Clear X15 because Go expects it and we're not calling
  1009	// through a wrapper, but otherwise avoid setting the G
  1010	// register in the wrapper and call needm directly. It
  1011	// takes no arguments and doesn't return any values so
  1012	// there's no need to handle that. Clear R14 so that there's
  1013	// a bad value in there, in case needm tries to use it.
  1014	XORPS	X15, X15
  1015	XORQ    R14, R14
  1016	MOVQ	$runtime·needAndBindM<ABIInternal>(SB), AX
  1017	CALL	AX
  1018	MOVQ	$0, savedm-8(SP)
  1019	get_tls(CX)
  1020	MOVQ	g(CX), BX
  1021	MOVQ	g_m(BX), BX
  1022
  1023	// Set m->sched.sp = SP, so that if a panic happens
  1024	// during the function we are about to execute, it will
  1025	// have a valid SP to run on the g0 stack.
  1026	// The next few lines (after the havem label)
  1027	// will save this SP onto the stack and then write
  1028	// the same SP back to m->sched.sp. That seems redundant,
  1029	// but if an unrecovered panic happens, unwindm will
  1030	// restore the g->sched.sp from the stack location
  1031	// and then systemstack will try to use it. If we don't set it here,
  1032	// that restored SP will be uninitialized (typically 0) and
  1033	// will not be usable.
  1034	MOVQ	m_g0(BX), SI
  1035	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1036
  1037havem:
  1038	// Now there's a valid m, and we're running on its m->g0.
  1039	// Save current m->g0->sched.sp on stack and then set it to SP.
  1040	// Save current sp in m->g0->sched.sp in preparation for
  1041	// switch back to m->curg stack.
  1042	// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
  1043	MOVQ	m_g0(BX), SI
  1044	MOVQ	(g_sched+gobuf_sp)(SI), AX
  1045	MOVQ	AX, 0(SP)
  1046	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1047
  1048	// Switch to m->curg stack and call runtime.cgocallbackg.
  1049	// Because we are taking over the execution of m->curg
  1050	// but *not* resuming what had been running, we need to
  1051	// save that information (m->curg->sched) so we can restore it.
  1052	// We can restore m->curg->sched.sp easily, because calling
  1053	// runtime.cgocallbackg leaves SP unchanged upon return.
  1054	// To save m->curg->sched.pc, we push it onto the curg stack and
  1055	// open a frame the same size as cgocallback's g0 frame.
  1056	// Once we switch to the curg stack, the pushed PC will appear
  1057	// to be the return PC of cgocallback, so that the traceback
  1058	// will seamlessly trace back into the earlier calls.
  1059	MOVQ	m_curg(BX), SI
  1060	MOVQ	SI, g(CX)
  1061	MOVQ	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI
  1062	MOVQ	(g_sched+gobuf_pc)(SI), BX
  1063	MOVQ	BX, -8(DI)  // "push" return PC on the g stack
  1064	// Gather our arguments into registers.
  1065	MOVQ	fn+0(FP), BX
  1066	MOVQ	frame+8(FP), CX
  1067	MOVQ	ctxt+16(FP), DX
  1068	// Compute the size of the frame, including return PC and, if
  1069	// GOEXPERIMENT=framepointer, the saved base pointer
  1070	LEAQ	fn+0(FP), AX
  1071	SUBQ	SP, AX   // AX is our actual frame size
  1072	SUBQ	AX, DI   // Allocate the same frame size on the g stack
  1073	MOVQ	DI, SP
  1074
  1075	MOVQ	BX, 0(SP)
  1076	MOVQ	CX, 8(SP)
  1077	MOVQ	DX, 16(SP)
  1078	MOVQ	$runtime·cgocallbackg(SB), AX
  1079	CALL	AX	// indirect call to bypass nosplit check. We're on a different stack now.
  1080
  1081	// Compute the size of the frame again. FP and SP have
  1082	// completely different values here than they did above,
  1083	// but only their difference matters.
  1084	LEAQ	fn+0(FP), AX
  1085	SUBQ	SP, AX
  1086
  1087	// Restore g->sched (== m->curg->sched) from saved values.
  1088	get_tls(CX)
  1089	MOVQ	g(CX), SI
  1090	MOVQ	SP, DI
  1091	ADDQ	AX, DI
  1092	MOVQ	-8(DI), BX
  1093	MOVQ	BX, (g_sched+gobuf_pc)(SI)
  1094	MOVQ	DI, (g_sched+gobuf_sp)(SI)
  1095
  1096	// Switch back to m->g0's stack and restore m->g0->sched.sp.
  1097	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
  1098	// so we do not have to restore it.)
  1099	MOVQ	g(CX), BX
  1100	MOVQ	g_m(BX), BX
  1101	MOVQ	m_g0(BX), SI
  1102	MOVQ	SI, g(CX)
  1103	MOVQ	(g_sched+gobuf_sp)(SI), SP
  1104	MOVQ	0(SP), AX
  1105	MOVQ	AX, (g_sched+gobuf_sp)(SI)
  1106
  1107	// If the m on entry was nil, we called needm above to borrow an m,
  1108	// 1. for the duration of the call on non-pthread platforms,
  1109	// 2. or the duration of the C thread alive on pthread platforms.
  1110	// If the m on entry wasn't nil,
  1111	// 1. the thread might be a Go thread,
  1112	// 2. or it wasn't the first call from a C thread on pthread platforms,
  1113	//    since then we skip dropm to reuse the m in the first call.
  1114	MOVQ	savedm-8(SP), BX
  1115	CMPQ	BX, $0
  1116	JNE	done
  1117
  1118	// Skip dropm to reuse it in the next call, when a pthread key has been created.
  1119	MOVQ	_cgo_pthread_key_created(SB), AX
  1120	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
  1121	CMPQ	AX, $0
  1122	JEQ	dropm
  1123	CMPQ	(AX), $0
  1124	JNE	done
  1125
  1126dropm:
  1127	MOVQ	$runtime·dropm(SB), AX
  1128	CALL	AX
  1129#ifdef GOOS_windows
  1130	// We need to clear the TLS pointer in case the next
  1131	// thread that comes into Go tries to reuse that space
  1132	// but uses the same M.
  1133	XORQ	DI, DI
  1134	CALL	runtime·settls(SB)
  1135#endif
  1136done:
  1137
  1138	// Done!
  1139	RET
  1140
  1141// func setg(gg *g)
  1142// set g. for use by needm.
  1143TEXT runtime·setg(SB), NOSPLIT, $0-8
  1144	MOVQ	gg+0(FP), BX
  1145	get_tls(CX)
  1146	MOVQ	BX, g(CX)
  1147	RET
  1148
  1149// void setg_gcc(G*); set g called from gcc.
  1150TEXT setg_gcc<>(SB),NOSPLIT,$0
  1151	get_tls(AX)
  1152	MOVQ	DI, g(AX)
  1153	MOVQ	DI, R14 // set the g register
  1154	RET
  1155
  1156TEXT runtime·abort(SB),NOSPLIT,$0-0
  1157	INT	$3
  1158loop:
  1159	JMP	loop
  1160
  1161// check that SP is in range [g->stack.lo, g->stack.hi)
  1162TEXT runtime·stackcheck(SB), NOSPLIT|NOFRAME, $0-0
  1163	get_tls(CX)
  1164	MOVQ	g(CX), AX
  1165	CMPQ	(g_stack+stack_hi)(AX), SP
  1166	JHI	2(PC)
  1167	CALL	runtime·abort(SB)
  1168	CMPQ	SP, (g_stack+stack_lo)(AX)
  1169	JHI	2(PC)
  1170	CALL	runtime·abort(SB)
  1171	RET
  1172
  1173// func cputicks() int64
  1174TEXT runtime·cputicks(SB),NOSPLIT,$0-0
  1175	CMPB	internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1
  1176	JNE	fences
  1177	// Instruction stream serializing RDTSCP is supported.
  1178	// RDTSCP is supported by Intel Nehalem (2008) and
  1179	// AMD K8 Rev. F (2006) and newer.
  1180	RDTSCP
  1181done:
  1182	SHLQ	$32, DX
  1183	ADDQ	DX, AX
  1184	MOVQ	AX, ret+0(FP)
  1185	RET
  1186fences:
  1187	// MFENCE is instruction stream serializing and flushes the
  1188	// store buffers on AMD. The serialization semantics of LFENCE on AMD
  1189	// are dependent on MSR C001_1029 and CPU generation.
  1190	// LFENCE on Intel does wait for all previous instructions to have executed.
  1191	// Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all
  1192	// previous instructions executed and all previous loads and stores to globally visible.
  1193	// Using MFENCE;LFENCE here aligns the serializing properties without
  1194	// runtime detection of CPU manufacturer.
  1195	MFENCE
  1196	LFENCE
  1197	RDTSC
  1198	JMP done
  1199
  1200// func memhash(p unsafe.Pointer, h, s uintptr) uintptr
  1201// hash function using AES hardware instructions
  1202TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32
  1203	// AX = ptr to data
  1204	// BX = seed
  1205	// CX = size
  1206	CMPB	runtime·useAeshash(SB), $0
  1207	JEQ	noaes
  1208	JMP	aeshashbody<>(SB)
  1209noaes:
  1210	JMP	runtime·memhashFallback<ABIInternal>(SB)
  1211
  1212// func strhash(p unsafe.Pointer, h uintptr) uintptr
  1213TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24
  1214	// AX = ptr to string struct
  1215	// BX = seed
  1216	CMPB	runtime·useAeshash(SB), $0
  1217	JEQ	noaes
  1218	MOVQ	8(AX), CX	// length of string
  1219	MOVQ	(AX), AX	// string data
  1220	JMP	aeshashbody<>(SB)
  1221noaes:
  1222	JMP	runtime·strhashFallback<ABIInternal>(SB)
  1223
  1224// AX: data
  1225// BX: hash seed
  1226// CX: length
  1227// At return: AX = return value
  1228TEXT aeshashbody<>(SB),NOSPLIT,$0-0
  1229	// Fill an SSE register with our seeds.
  1230	MOVQ	BX, X0				// 64 bits of per-table hash seed
  1231	PINSRW	$4, CX, X0			// 16 bits of length
  1232	PSHUFHW $0, X0, X0			// repeat length 4 times total
  1233	MOVO	X0, X1				// save unscrambled seed
  1234	PXOR	runtime·aeskeysched(SB), X0	// xor in per-process seed
  1235	AESENC	X0, X0				// scramble seed
  1236
  1237	CMPQ	CX, $16
  1238	JB	aes0to15
  1239	JE	aes16
  1240	CMPQ	CX, $32
  1241	JBE	aes17to32
  1242	CMPQ	CX, $64
  1243	JBE	aes33to64
  1244	CMPQ	CX, $128
  1245	JBE	aes65to128
  1246	JMP	aes129plus
  1247
  1248aes0to15:
  1249	TESTQ	CX, CX
  1250	JE	aes0
  1251
  1252	ADDQ	$16, AX
  1253	TESTW	$0xff0, AX
  1254	JE	endofpage
  1255
  1256	// 16 bytes loaded at this address won't cross
  1257	// a page boundary, so we can load it directly.
  1258	MOVOU	-16(AX), X1
  1259	ADDQ	CX, CX
  1260	MOVQ	$masks<>(SB), AX
  1261	PAND	(AX)(CX*8), X1
  1262final1:
  1263	PXOR	X0, X1	// xor data with seed
  1264	AESENC	X1, X1	// scramble combo 3 times
  1265	AESENC	X1, X1
  1266	AESENC	X1, X1
  1267	MOVQ	X1, AX	// return X1
  1268	RET
  1269
  1270endofpage:
  1271	// address ends in 1111xxxx. Might be up against
  1272	// a page boundary, so load ending at last byte.
  1273	// Then shift bytes down using pshufb.
  1274	MOVOU	-32(AX)(CX*1), X1
  1275	ADDQ	CX, CX
  1276	MOVQ	$shifts<>(SB), AX
  1277	PSHUFB	(AX)(CX*8), X1
  1278	JMP	final1
  1279
  1280aes0:
  1281	// Return scrambled input seed
  1282	AESENC	X0, X0
  1283	MOVQ	X0, AX	// return X0
  1284	RET
  1285
  1286aes16:
  1287	MOVOU	(AX), X1
  1288	JMP	final1
  1289
  1290aes17to32:
  1291	// make second starting seed
  1292	PXOR	runtime·aeskeysched+16(SB), X1
  1293	AESENC	X1, X1
  1294
  1295	// load data to be hashed
  1296	MOVOU	(AX), X2
  1297	MOVOU	-16(AX)(CX*1), X3
  1298
  1299	// xor with seed
  1300	PXOR	X0, X2
  1301	PXOR	X1, X3
  1302
  1303	// scramble 3 times
  1304	AESENC	X2, X2
  1305	AESENC	X3, X3
  1306	AESENC	X2, X2
  1307	AESENC	X3, X3
  1308	AESENC	X2, X2
  1309	AESENC	X3, X3
  1310
  1311	// combine results
  1312	PXOR	X3, X2
  1313	MOVQ	X2, AX	// return X2
  1314	RET
  1315
  1316aes33to64:
  1317	// make 3 more starting seeds
  1318	MOVO	X1, X2
  1319	MOVO	X1, X3
  1320	PXOR	runtime·aeskeysched+16(SB), X1
  1321	PXOR	runtime·aeskeysched+32(SB), X2
  1322	PXOR	runtime·aeskeysched+48(SB), X3
  1323	AESENC	X1, X1
  1324	AESENC	X2, X2
  1325	AESENC	X3, X3
  1326
  1327	MOVOU	(AX), X4
  1328	MOVOU	16(AX), X5
  1329	MOVOU	-32(AX)(CX*1), X6
  1330	MOVOU	-16(AX)(CX*1), X7
  1331
  1332	PXOR	X0, X4
  1333	PXOR	X1, X5
  1334	PXOR	X2, X6
  1335	PXOR	X3, X7
  1336
  1337	AESENC	X4, X4
  1338	AESENC	X5, X5
  1339	AESENC	X6, X6
  1340	AESENC	X7, X7
  1341
  1342	AESENC	X4, X4
  1343	AESENC	X5, X5
  1344	AESENC	X6, X6
  1345	AESENC	X7, X7
  1346
  1347	AESENC	X4, X4
  1348	AESENC	X5, X5
  1349	AESENC	X6, X6
  1350	AESENC	X7, X7
  1351
  1352	PXOR	X6, X4
  1353	PXOR	X7, X5
  1354	PXOR	X5, X4
  1355	MOVQ	X4, AX	// return X4
  1356	RET
  1357
  1358aes65to128:
  1359	// make 7 more starting seeds
  1360	MOVO	X1, X2
  1361	MOVO	X1, X3
  1362	MOVO	X1, X4
  1363	MOVO	X1, X5
  1364	MOVO	X1, X6
  1365	MOVO	X1, X7
  1366	PXOR	runtime·aeskeysched+16(SB), X1
  1367	PXOR	runtime·aeskeysched+32(SB), X2
  1368	PXOR	runtime·aeskeysched+48(SB), X3
  1369	PXOR	runtime·aeskeysched+64(SB), X4
  1370	PXOR	runtime·aeskeysched+80(SB), X5
  1371	PXOR	runtime·aeskeysched+96(SB), X6
  1372	PXOR	runtime·aeskeysched+112(SB), X7
  1373	AESENC	X1, X1
  1374	AESENC	X2, X2
  1375	AESENC	X3, X3
  1376	AESENC	X4, X4
  1377	AESENC	X5, X5
  1378	AESENC	X6, X6
  1379	AESENC	X7, X7
  1380
  1381	// load data
  1382	MOVOU	(AX), X8
  1383	MOVOU	16(AX), X9
  1384	MOVOU	32(AX), X10
  1385	MOVOU	48(AX), X11
  1386	MOVOU	-64(AX)(CX*1), X12
  1387	MOVOU	-48(AX)(CX*1), X13
  1388	MOVOU	-32(AX)(CX*1), X14
  1389	MOVOU	-16(AX)(CX*1), X15
  1390
  1391	// xor with seed
  1392	PXOR	X0, X8
  1393	PXOR	X1, X9
  1394	PXOR	X2, X10
  1395	PXOR	X3, X11
  1396	PXOR	X4, X12
  1397	PXOR	X5, X13
  1398	PXOR	X6, X14
  1399	PXOR	X7, X15
  1400
  1401	// scramble 3 times
  1402	AESENC	X8, X8
  1403	AESENC	X9, X9
  1404	AESENC	X10, X10
  1405	AESENC	X11, X11
  1406	AESENC	X12, X12
  1407	AESENC	X13, X13
  1408	AESENC	X14, X14
  1409	AESENC	X15, X15
  1410
  1411	AESENC	X8, X8
  1412	AESENC	X9, X9
  1413	AESENC	X10, X10
  1414	AESENC	X11, X11
  1415	AESENC	X12, X12
  1416	AESENC	X13, X13
  1417	AESENC	X14, X14
  1418	AESENC	X15, X15
  1419
  1420	AESENC	X8, X8
  1421	AESENC	X9, X9
  1422	AESENC	X10, X10
  1423	AESENC	X11, X11
  1424	AESENC	X12, X12
  1425	AESENC	X13, X13
  1426	AESENC	X14, X14
  1427	AESENC	X15, X15
  1428
  1429	// combine results
  1430	PXOR	X12, X8
  1431	PXOR	X13, X9
  1432	PXOR	X14, X10
  1433	PXOR	X15, X11
  1434	PXOR	X10, X8
  1435	PXOR	X11, X9
  1436	PXOR	X9, X8
  1437	// X15 must be zero on return
  1438	PXOR	X15, X15
  1439	MOVQ	X8, AX	// return X8
  1440	RET
  1441
  1442aes129plus:
  1443	// make 7 more starting seeds
  1444	MOVO	X1, X2
  1445	MOVO	X1, X3
  1446	MOVO	X1, X4
  1447	MOVO	X1, X5
  1448	MOVO	X1, X6
  1449	MOVO	X1, X7
  1450	PXOR	runtime·aeskeysched+16(SB), X1
  1451	PXOR	runtime·aeskeysched+32(SB), X2
  1452	PXOR	runtime·aeskeysched+48(SB), X3
  1453	PXOR	runtime·aeskeysched+64(SB), X4
  1454	PXOR	runtime·aeskeysched+80(SB), X5
  1455	PXOR	runtime·aeskeysched+96(SB), X6
  1456	PXOR	runtime·aeskeysched+112(SB), X7
  1457	AESENC	X1, X1
  1458	AESENC	X2, X2
  1459	AESENC	X3, X3
  1460	AESENC	X4, X4
  1461	AESENC	X5, X5
  1462	AESENC	X6, X6
  1463	AESENC	X7, X7
  1464
  1465	// start with last (possibly overlapping) block
  1466	MOVOU	-128(AX)(CX*1), X8
  1467	MOVOU	-112(AX)(CX*1), X9
  1468	MOVOU	-96(AX)(CX*1), X10
  1469	MOVOU	-80(AX)(CX*1), X11
  1470	MOVOU	-64(AX)(CX*1), X12
  1471	MOVOU	-48(AX)(CX*1), X13
  1472	MOVOU	-32(AX)(CX*1), X14
  1473	MOVOU	-16(AX)(CX*1), X15
  1474
  1475	// xor in seed
  1476	PXOR	X0, X8
  1477	PXOR	X1, X9
  1478	PXOR	X2, X10
  1479	PXOR	X3, X11
  1480	PXOR	X4, X12
  1481	PXOR	X5, X13
  1482	PXOR	X6, X14
  1483	PXOR	X7, X15
  1484
  1485	// compute number of remaining 128-byte blocks
  1486	DECQ	CX
  1487	SHRQ	$7, CX
  1488
  1489	PCALIGN $16
  1490aesloop:
  1491	// scramble state
  1492	AESENC	X8, X8
  1493	AESENC	X9, X9
  1494	AESENC	X10, X10
  1495	AESENC	X11, X11
  1496	AESENC	X12, X12
  1497	AESENC	X13, X13
  1498	AESENC	X14, X14
  1499	AESENC	X15, X15
  1500
  1501	// scramble state, xor in a block
  1502	MOVOU	(AX), X0
  1503	MOVOU	16(AX), X1
  1504	MOVOU	32(AX), X2
  1505	MOVOU	48(AX), X3
  1506	AESENC	X0, X8
  1507	AESENC	X1, X9
  1508	AESENC	X2, X10
  1509	AESENC	X3, X11
  1510	MOVOU	64(AX), X4
  1511	MOVOU	80(AX), X5
  1512	MOVOU	96(AX), X6
  1513	MOVOU	112(AX), X7
  1514	AESENC	X4, X12
  1515	AESENC	X5, X13
  1516	AESENC	X6, X14
  1517	AESENC	X7, X15
  1518
  1519	ADDQ	$128, AX
  1520	DECQ	CX
  1521	JNE	aesloop
  1522
  1523	// 3 more scrambles to finish
  1524	AESENC	X8, X8
  1525	AESENC	X9, X9
  1526	AESENC	X10, X10
  1527	AESENC	X11, X11
  1528	AESENC	X12, X12
  1529	AESENC	X13, X13
  1530	AESENC	X14, X14
  1531	AESENC	X15, X15
  1532	AESENC	X8, X8
  1533	AESENC	X9, X9
  1534	AESENC	X10, X10
  1535	AESENC	X11, X11
  1536	AESENC	X12, X12
  1537	AESENC	X13, X13
  1538	AESENC	X14, X14
  1539	AESENC	X15, X15
  1540	AESENC	X8, X8
  1541	AESENC	X9, X9
  1542	AESENC	X10, X10
  1543	AESENC	X11, X11
  1544	AESENC	X12, X12
  1545	AESENC	X13, X13
  1546	AESENC	X14, X14
  1547	AESENC	X15, X15
  1548
  1549	PXOR	X12, X8
  1550	PXOR	X13, X9
  1551	PXOR	X14, X10
  1552	PXOR	X15, X11
  1553	PXOR	X10, X8
  1554	PXOR	X11, X9
  1555	PXOR	X9, X8
  1556	// X15 must be zero on return
  1557	PXOR	X15, X15
  1558	MOVQ	X8, AX	// return X8
  1559	RET
  1560
  1561// func memhash32(p unsafe.Pointer, h uintptr) uintptr
  1562// ABIInternal for performance.
  1563TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24
  1564	// AX = ptr to data
  1565	// BX = seed
  1566	CMPB	runtime·useAeshash(SB), $0
  1567	JEQ	noaes
  1568	MOVQ	BX, X0	// X0 = seed
  1569	PINSRD	$2, (AX), X0	// data
  1570	AESENC	runtime·aeskeysched+0(SB), X0
  1571	AESENC	runtime·aeskeysched+16(SB), X0
  1572	AESENC	runtime·aeskeysched+32(SB), X0
  1573	MOVQ	X0, AX	// return X0
  1574	RET
  1575noaes:
  1576	JMP	runtime·memhash32Fallback<ABIInternal>(SB)
  1577
  1578// func memhash64(p unsafe.Pointer, h uintptr) uintptr
  1579// ABIInternal for performance.
  1580TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24
  1581	// AX = ptr to data
  1582	// BX = seed
  1583	CMPB	runtime·useAeshash(SB), $0
  1584	JEQ	noaes
  1585	MOVQ	BX, X0	// X0 = seed
  1586	PINSRQ	$1, (AX), X0	// data
  1587	AESENC	runtime·aeskeysched+0(SB), X0
  1588	AESENC	runtime·aeskeysched+16(SB), X0
  1589	AESENC	runtime·aeskeysched+32(SB), X0
  1590	MOVQ	X0, AX	// return X0
  1591	RET
  1592noaes:
  1593	JMP	runtime·memhash64Fallback<ABIInternal>(SB)
  1594
  1595// simple mask to get rid of data in the high part of the register.
  1596DATA masks<>+0x00(SB)/8, $0x0000000000000000
  1597DATA masks<>+0x08(SB)/8, $0x0000000000000000
  1598DATA masks<>+0x10(SB)/8, $0x00000000000000ff
  1599DATA masks<>+0x18(SB)/8, $0x0000000000000000
  1600DATA masks<>+0x20(SB)/8, $0x000000000000ffff
  1601DATA masks<>+0x28(SB)/8, $0x0000000000000000
  1602DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
  1603DATA masks<>+0x38(SB)/8, $0x0000000000000000
  1604DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
  1605DATA masks<>+0x48(SB)/8, $0x0000000000000000
  1606DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
  1607DATA masks<>+0x58(SB)/8, $0x0000000000000000
  1608DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
  1609DATA masks<>+0x68(SB)/8, $0x0000000000000000
  1610DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
  1611DATA masks<>+0x78(SB)/8, $0x0000000000000000
  1612DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
  1613DATA masks<>+0x88(SB)/8, $0x0000000000000000
  1614DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
  1615DATA masks<>+0x98(SB)/8, $0x00000000000000ff
  1616DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
  1617DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
  1618DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
  1619DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
  1620DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
  1621DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
  1622DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
  1623DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
  1624DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
  1625DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
  1626DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
  1627DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
  1628GLOBL masks<>(SB),RODATA,$256
  1629
  1630// func checkASM() bool
  1631TEXT ·checkASM(SB),NOSPLIT,$0-1
  1632	// check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
  1633	MOVQ	$masks<>(SB), AX
  1634	MOVQ	$shifts<>(SB), BX
  1635	ORQ	BX, AX
  1636	TESTQ	$15, AX
  1637	SETEQ	ret+0(FP)
  1638	RET
  1639
  1640// these are arguments to pshufb. They move data down from
  1641// the high bytes of the register to the low bytes of the register.
  1642// index is how many bytes to move.
  1643DATA shifts<>+0x00(SB)/8, $0x0000000000000000
  1644DATA shifts<>+0x08(SB)/8, $0x0000000000000000
  1645DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
  1646DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
  1647DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
  1648DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
  1649DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
  1650DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
  1651DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
  1652DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
  1653DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
  1654DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
  1655DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
  1656DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
  1657DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
  1658DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
  1659DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
  1660DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
  1661DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
  1662DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
  1663DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
  1664DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
  1665DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
  1666DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
  1667DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
  1668DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
  1669DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
  1670DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
  1671DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
  1672DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
  1673DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
  1674DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
  1675GLOBL shifts<>(SB),RODATA,$256
  1676
  1677TEXT runtime·return0(SB), NOSPLIT, $0
  1678	MOVL	$0, AX
  1679	RET
  1680
  1681
  1682// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
  1683// Must obey the gcc calling convention.
  1684TEXT _cgo_topofstack(SB),NOSPLIT,$0
  1685	get_tls(CX)
  1686	MOVQ	g(CX), AX
  1687	MOVQ	g_m(AX), AX
  1688	MOVQ	m_curg(AX), AX
  1689	MOVQ	(g_stack+stack_hi)(AX), AX
  1690	RET
  1691
  1692// The top-most function running on a goroutine
  1693// returns to goexit+PCQuantum.
  1694TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME|NOFRAME,$0-0
  1695	BYTE	$0x90	// NOP
  1696	CALL	runtime·goexit1(SB)	// does not return
  1697	// traceback from goexit1 must hit code range of goexit
  1698	BYTE	$0x90	// NOP
  1699
  1700// This is called from .init_array and follows the platform, not Go, ABI.
  1701TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
  1702	PUSHQ	R15 // The access to global variables below implicitly uses R15, which is callee-save
  1703	MOVQ	runtime·lastmoduledatap(SB), AX
  1704	MOVQ	DI, moduledata_next(AX)
  1705	MOVQ	DI, runtime·lastmoduledatap(SB)
  1706	POPQ	R15
  1707	RET
  1708
  1709// Initialize special registers then jump to sigpanic.
  1710// This function is injected from the signal handler for panicking
  1711// signals. It is quite painful to set X15 in the signal context,
  1712// so we do it here.
  1713TEXT ·sigpanic0(SB),NOSPLIT,$0-0
  1714	get_tls(R14)
  1715	MOVQ	g(R14), R14
  1716#ifndef GOOS_plan9
  1717	XORPS	X15, X15
  1718#endif
  1719	JMP	·sigpanic<ABIInternal>(SB)
  1720
  1721// gcWriteBarrier informs the GC about heap pointer writes.
  1722//
  1723// gcWriteBarrier returns space in a write barrier buffer which
  1724// should be filled in by the caller.
  1725// gcWriteBarrier does NOT follow the Go ABI. It accepts the
  1726// number of bytes of buffer needed in R11, and returns a pointer
  1727// to the buffer space in R11.
  1728// It clobbers FLAGS. It does not clobber any general-purpose registers,
  1729// but may clobber others (e.g., SSE registers).
  1730// Typical use would be, when doing *(CX+88) = AX
  1731//     CMPL    $0, runtime.writeBarrier(SB)
  1732//     JEQ     dowrite
  1733//     CALL    runtime.gcBatchBarrier2(SB)
  1734//     MOVQ    AX, (R11)
  1735//     MOVQ    88(CX), DX
  1736//     MOVQ    DX, 8(R11)
  1737// dowrite:
  1738//     MOVQ    AX, 88(CX)
  1739TEXT gcWriteBarrier<>(SB),NOSPLIT,$112
  1740	// Save the registers clobbered by the fast path. This is slightly
  1741	// faster than having the caller spill these.
  1742	MOVQ	R12, 96(SP)
  1743	MOVQ	R13, 104(SP)
  1744retry:
  1745	// TODO: Consider passing g.m.p in as an argument so they can be shared
  1746	// across a sequence of write barriers.
  1747	MOVQ	g_m(R14), R13
  1748	MOVQ	m_p(R13), R13
  1749	// Get current buffer write position.
  1750	MOVQ	(p_wbBuf+wbBuf_next)(R13), R12	// original next position
  1751	ADDQ	R11, R12			// new next position
  1752	// Is the buffer full?
  1753	CMPQ	R12, (p_wbBuf+wbBuf_end)(R13)
  1754	JA	flush
  1755	// Commit to the larger buffer.
  1756	MOVQ	R12, (p_wbBuf+wbBuf_next)(R13)
  1757	// Make return value (the original next position)
  1758	SUBQ	R11, R12
  1759	MOVQ	R12, R11
  1760	// Restore registers.
  1761	MOVQ	96(SP), R12
  1762	MOVQ	104(SP), R13
  1763	RET
  1764
  1765flush:
  1766	// Save all general purpose registers since these could be
  1767	// clobbered by wbBufFlush and were not saved by the caller.
  1768	// It is possible for wbBufFlush to clobber other registers
  1769	// (e.g., SSE registers), but the compiler takes care of saving
  1770	// those in the caller if necessary. This strikes a balance
  1771	// with registers that are likely to be used.
  1772	//
  1773	// We don't have type information for these, but all code under
  1774	// here is NOSPLIT, so nothing will observe these.
  1775	//
  1776	// TODO: We could strike a different balance; e.g., saving X0
  1777	// and not saving GP registers that are less likely to be used.
  1778	MOVQ	DI, 0(SP)
  1779	MOVQ	AX, 8(SP)
  1780	MOVQ	BX, 16(SP)
  1781	MOVQ	CX, 24(SP)
  1782	MOVQ	DX, 32(SP)
  1783	// DI already saved
  1784	MOVQ	SI, 40(SP)
  1785	MOVQ	BP, 48(SP)
  1786	MOVQ	R8, 56(SP)
  1787	MOVQ	R9, 64(SP)
  1788	MOVQ	R10, 72(SP)
  1789	MOVQ	R11, 80(SP)
  1790	// R12 already saved
  1791	// R13 already saved
  1792	// R14 is g
  1793	MOVQ	R15, 88(SP)
  1794
  1795	CALL	runtime·wbBufFlush(SB)
  1796
  1797	MOVQ	0(SP), DI
  1798	MOVQ	8(SP), AX
  1799	MOVQ	16(SP), BX
  1800	MOVQ	24(SP), CX
  1801	MOVQ	32(SP), DX
  1802	MOVQ	40(SP), SI
  1803	MOVQ	48(SP), BP
  1804	MOVQ	56(SP), R8
  1805	MOVQ	64(SP), R9
  1806	MOVQ	72(SP), R10
  1807	MOVQ	80(SP), R11
  1808	MOVQ	88(SP), R15
  1809	JMP	retry
  1810
  1811TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1812	MOVL   $8, R11
  1813	JMP     gcWriteBarrier<>(SB)
  1814TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1815	MOVL   $16, R11
  1816	JMP     gcWriteBarrier<>(SB)
  1817TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1818	MOVL   $24, R11
  1819	JMP     gcWriteBarrier<>(SB)
  1820TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1821	MOVL   $32, R11
  1822	JMP     gcWriteBarrier<>(SB)
  1823TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1824	MOVL   $40, R11
  1825	JMP     gcWriteBarrier<>(SB)
  1826TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1827	MOVL   $48, R11
  1828	JMP     gcWriteBarrier<>(SB)
  1829TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1830	MOVL   $56, R11
  1831	JMP     gcWriteBarrier<>(SB)
  1832TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1833	MOVL   $64, R11
  1834	JMP     gcWriteBarrier<>(SB)
  1835
  1836DATA	debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
  1837GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $20	// Size duplicated below
  1838
  1839// debugCallV2 is the entry point for debugger-injected function
  1840// calls on running goroutines. It informs the runtime that a
  1841// debug call has been injected and creates a call frame for the
  1842// debugger to fill in.
  1843//
  1844// To inject a function call, a debugger should:
  1845// 1. Check that the goroutine is in state _Grunning and that
  1846//    there are at least 256 bytes free on the stack.
  1847// 2. Push the current PC on the stack (updating SP).
  1848// 3. Write the desired argument frame size at SP-16 (using the SP
  1849//    after step 2).
  1850// 4. Save all machine registers (including flags and XMM registers)
  1851//    so they can be restored later by the debugger.
  1852// 5. Set the PC to debugCallV2 and resume execution.
  1853//
  1854// If the goroutine is in state _Grunnable, then it's not generally
  1855// safe to inject a call because it may return out via other runtime
  1856// operations. Instead, the debugger should unwind the stack to find
  1857// the return to non-runtime code, add a temporary breakpoint there,
  1858// and inject the call once that breakpoint is hit.
  1859//
  1860// If the goroutine is in any other state, it's not safe to inject a call.
  1861//
  1862// This function communicates back to the debugger by setting R12 and
  1863// invoking INT3 to raise a breakpoint signal. See the comments in the
  1864// implementation for the protocol the debugger is expected to
  1865// follow. InjectDebugCall in the runtime tests demonstrates this protocol.
  1866//
  1867// The debugger must ensure that any pointers passed to the function
  1868// obey escape analysis requirements. Specifically, it must not pass
  1869// a stack pointer to an escaping argument. debugCallV2 cannot check
  1870// this invariant.
  1871//
  1872// This is ABIInternal because Go code injects its PC directly into new
  1873// goroutine stacks.
  1874TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0
  1875	// Save all registers that may contain pointers so they can be
  1876	// conservatively scanned.
  1877	//
  1878	// We can't do anything that might clobber any of these
  1879	// registers before this.
  1880	MOVQ	R15, r15-(14*8+8)(SP)
  1881	MOVQ	R14, r14-(13*8+8)(SP)
  1882	MOVQ	R13, r13-(12*8+8)(SP)
  1883	MOVQ	R12, r12-(11*8+8)(SP)
  1884	MOVQ	R11, r11-(10*8+8)(SP)
  1885	MOVQ	R10, r10-(9*8+8)(SP)
  1886	MOVQ	R9, r9-(8*8+8)(SP)
  1887	MOVQ	R8, r8-(7*8+8)(SP)
  1888	MOVQ	DI, di-(6*8+8)(SP)
  1889	MOVQ	SI, si-(5*8+8)(SP)
  1890	MOVQ	BP, bp-(4*8+8)(SP)
  1891	MOVQ	BX, bx-(3*8+8)(SP)
  1892	MOVQ	DX, dx-(2*8+8)(SP)
  1893	// Save the frame size before we clobber it. Either of the last
  1894	// saves could clobber this depending on whether there's a saved BP.
  1895	MOVQ	frameSize-24(FP), DX	// aka -16(RSP) before prologue
  1896	MOVQ	CX, cx-(1*8+8)(SP)
  1897	MOVQ	AX, ax-(0*8+8)(SP)
  1898
  1899	// Save the argument frame size.
  1900	MOVQ	DX, frameSize-128(SP)
  1901
  1902	// Perform a safe-point check.
  1903	MOVQ	retpc-8(FP), AX	// Caller's PC
  1904	MOVQ	AX, 0(SP)
  1905	CALL	runtime·debugCallCheck(SB)
  1906	MOVQ	8(SP), AX
  1907	TESTQ	AX, AX
  1908	JZ	good
  1909	// The safety check failed. Put the reason string at the top
  1910	// of the stack.
  1911	MOVQ	AX, 0(SP)
  1912	MOVQ	16(SP), AX
  1913	MOVQ	AX, 8(SP)
  1914	// Set R12 to 8 and invoke INT3. The debugger should get the
  1915	// reason a call can't be injected from the top of the stack
  1916	// and resume execution.
  1917	MOVQ	$8, R12
  1918	BYTE	$0xcc
  1919	JMP	restore
  1920
  1921good:
  1922	// Registers are saved and it's safe to make a call.
  1923	// Open up a call frame, moving the stack if necessary.
  1924	//
  1925	// Once the frame is allocated, this will set R12 to 0 and
  1926	// invoke INT3. The debugger should write the argument
  1927	// frame for the call at SP, set up argument registers, push
  1928	// the trapping PC on the stack, set the PC to the function to
  1929	// call, set RDX to point to the closure (if a closure call),
  1930	// and resume execution.
  1931	//
  1932	// If the function returns, this will set R12 to 1 and invoke
  1933	// INT3. The debugger can then inspect any return value saved
  1934	// on the stack at SP and in registers and resume execution again.
  1935	//
  1936	// If the function panics, this will set R12 to 2 and invoke INT3.
  1937	// The interface{} value of the panic will be at SP. The debugger
  1938	// can inspect the panic value and resume execution again.
  1939#define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\
  1940	CMPQ	AX, $MAXSIZE;			\
  1941	JA	5(PC);				\
  1942	MOVQ	$NAME(SB), AX;			\
  1943	MOVQ	AX, 0(SP);			\
  1944	CALL	runtime·debugCallWrap(SB);	\
  1945	JMP	restore
  1946
  1947	MOVQ	frameSize-128(SP), AX
  1948	DEBUG_CALL_DISPATCH(debugCall32<>, 32)
  1949	DEBUG_CALL_DISPATCH(debugCall64<>, 64)
  1950	DEBUG_CALL_DISPATCH(debugCall128<>, 128)
  1951	DEBUG_CALL_DISPATCH(debugCall256<>, 256)
  1952	DEBUG_CALL_DISPATCH(debugCall512<>, 512)
  1953	DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
  1954	DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
  1955	DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
  1956	DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
  1957	DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
  1958	DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
  1959	DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
  1960	// The frame size is too large. Report the error.
  1961	MOVQ	$debugCallFrameTooLarge<>(SB), AX
  1962	MOVQ	AX, 0(SP)
  1963	MOVQ	$20, 8(SP) // length of debugCallFrameTooLarge string
  1964	MOVQ	$8, R12
  1965	BYTE	$0xcc
  1966	JMP	restore
  1967
  1968restore:
  1969	// Calls and failures resume here.
  1970	//
  1971	// Set R12 to 16 and invoke INT3. The debugger should restore
  1972	// all registers except RIP and RSP and resume execution.
  1973	MOVQ	$16, R12
  1974	BYTE	$0xcc
  1975	// We must not modify flags after this point.
  1976
  1977	// Restore pointer-containing registers, which may have been
  1978	// modified from the debugger's copy by stack copying.
  1979	MOVQ	ax-(0*8+8)(SP), AX
  1980	MOVQ	cx-(1*8+8)(SP), CX
  1981	MOVQ	dx-(2*8+8)(SP), DX
  1982	MOVQ	bx-(3*8+8)(SP), BX
  1983	MOVQ	bp-(4*8+8)(SP), BP
  1984	MOVQ	si-(5*8+8)(SP), SI
  1985	MOVQ	di-(6*8+8)(SP), DI
  1986	MOVQ	r8-(7*8+8)(SP), R8
  1987	MOVQ	r9-(8*8+8)(SP), R9
  1988	MOVQ	r10-(9*8+8)(SP), R10
  1989	MOVQ	r11-(10*8+8)(SP), R11
  1990	MOVQ	r12-(11*8+8)(SP), R12
  1991	MOVQ	r13-(12*8+8)(SP), R13
  1992	MOVQ	r14-(13*8+8)(SP), R14
  1993	MOVQ	r15-(14*8+8)(SP), R15
  1994
  1995	RET
  1996
  1997// runtime.debugCallCheck assumes that functions defined with the
  1998// DEBUG_CALL_FN macro are safe points to inject calls.
  1999#define DEBUG_CALL_FN(NAME,MAXSIZE)		\
  2000TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\
  2001	NO_LOCAL_POINTERS;			\
  2002	MOVQ	$0, R12;				\
  2003	BYTE	$0xcc;				\
  2004	MOVQ	$1, R12;				\
  2005	BYTE	$0xcc;				\
  2006	RET
  2007DEBUG_CALL_FN(debugCall32<>, 32)
  2008DEBUG_CALL_FN(debugCall64<>, 64)
  2009DEBUG_CALL_FN(debugCall128<>, 128)
  2010DEBUG_CALL_FN(debugCall256<>, 256)
  2011DEBUG_CALL_FN(debugCall512<>, 512)
  2012DEBUG_CALL_FN(debugCall1024<>, 1024)
  2013DEBUG_CALL_FN(debugCall2048<>, 2048)
  2014DEBUG_CALL_FN(debugCall4096<>, 4096)
  2015DEBUG_CALL_FN(debugCall8192<>, 8192)
  2016DEBUG_CALL_FN(debugCall16384<>, 16384)
  2017DEBUG_CALL_FN(debugCall32768<>, 32768)
  2018DEBUG_CALL_FN(debugCall65536<>, 65536)
  2019
  2020// func debugCallPanicked(val interface{})
  2021TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
  2022	// Copy the panic value to the top of stack.
  2023	MOVQ	val_type+0(FP), AX
  2024	MOVQ	AX, 0(SP)
  2025	MOVQ	val_data+8(FP), AX
  2026	MOVQ	AX, 8(SP)
  2027	MOVQ	$2, R12
  2028	BYTE	$0xcc
  2029	RET
  2030
  2031// Note: these functions use a special calling convention to save generated code space.
  2032// Arguments are passed in registers, but the space for those arguments are allocated
  2033// in the caller's stack frame. These stubs write the args into that stack space and
  2034// then tail call to the corresponding runtime handler.
  2035// The tail call makes these stubs disappear in backtraces.
  2036// Defined as ABIInternal since they do not use the stack-based Go ABI.
  2037TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
  2038	MOVQ	CX, BX
  2039	JMP	runtime·goPanicIndex<ABIInternal>(SB)
  2040TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
  2041	MOVQ	CX, BX
  2042	JMP	runtime·goPanicIndexU<ABIInternal>(SB)
  2043TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
  2044	MOVQ	CX, AX
  2045	MOVQ	DX, BX
  2046	JMP	runtime·goPanicSliceAlen<ABIInternal>(SB)
  2047TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2048	MOVQ	CX, AX
  2049	MOVQ	DX, BX
  2050	JMP	runtime·goPanicSliceAlenU<ABIInternal>(SB)
  2051TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
  2052	MOVQ	CX, AX
  2053	MOVQ	DX, BX
  2054	JMP	runtime·goPanicSliceAcap<ABIInternal>(SB)
  2055TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2056	MOVQ	CX, AX
  2057	MOVQ	DX, BX
  2058	JMP	runtime·goPanicSliceAcapU<ABIInternal>(SB)
  2059TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
  2060	MOVQ	CX, BX
  2061	JMP	runtime·goPanicSliceB<ABIInternal>(SB)
  2062TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
  2063	MOVQ	CX, BX
  2064	JMP	runtime·goPanicSliceBU<ABIInternal>(SB)
  2065TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
  2066	MOVQ	DX, AX
  2067	JMP	runtime·goPanicSlice3Alen<ABIInternal>(SB)
  2068TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2069	MOVQ	DX, AX
  2070	JMP	runtime·goPanicSlice3AlenU<ABIInternal>(SB)
  2071TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
  2072	MOVQ	DX, AX
  2073	JMP	runtime·goPanicSlice3Acap<ABIInternal>(SB)
  2074TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2075	MOVQ	DX, AX
  2076	JMP	runtime·goPanicSlice3AcapU<ABIInternal>(SB)
  2077TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
  2078	MOVQ	CX, AX
  2079	MOVQ	DX, BX
  2080	JMP	runtime·goPanicSlice3B<ABIInternal>(SB)
  2081TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
  2082	MOVQ	CX, AX
  2083	MOVQ	DX, BX
  2084	JMP	runtime·goPanicSlice3BU<ABIInternal>(SB)
  2085TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
  2086	MOVQ	CX, BX
  2087	JMP	runtime·goPanicSlice3C<ABIInternal>(SB)
  2088TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
  2089	MOVQ	CX, BX
  2090	JMP	runtime·goPanicSlice3CU<ABIInternal>(SB)
  2091TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
  2092	MOVQ	DX, AX
  2093	JMP	runtime·goPanicSliceConvert<ABIInternal>(SB)
  2094
  2095#ifdef GOOS_android
  2096// Use the free TLS_SLOT_APP slot #2 on Android Q.
  2097// Earlier androids are set up in gcc_android.c.
  2098DATA runtime·tls_g+0(SB)/8, $16
  2099GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2100#endif
  2101#ifdef GOOS_windows
  2102GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2103#endif
  2104
  2105// The compiler and assembler's -spectre=ret mode rewrites
  2106// all indirect CALL AX / JMP AX instructions to be
  2107// CALL retpolineAX / JMP retpolineAX.
  2108// See https://support.google.com/faqs/answer/7625886.
  2109#define RETPOLINE(reg) \
  2110	/*   CALL setup */     BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0;	\
  2111	/* nospec: */									\
  2112	/*   PAUSE */           BYTE $0xF3; BYTE $0x90;					\
  2113	/*   JMP nospec */      BYTE $0xEB; BYTE $-(2+2);				\
  2114	/* setup: */									\
  2115	/*   MOVQ AX, 0(SP) */  BYTE $0x48|((reg&8)>>1); BYTE $0x89;			\
  2116	                        BYTE $0x04|((reg&7)<<3); BYTE $0x24;			\
  2117	/*   RET */             BYTE $0xC3
  2118
  2119TEXT runtime·retpolineAX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(0)
  2120TEXT runtime·retpolineCX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(1)
  2121TEXT runtime·retpolineDX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(2)
  2122TEXT runtime·retpolineBX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(3)
  2123/* SP is 4, can't happen / magic encodings */
  2124TEXT runtime·retpolineBP(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(5)
  2125TEXT runtime·retpolineSI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(6)
  2126TEXT runtime·retpolineDI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(7)
  2127TEXT runtime·retpolineR8(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(8)
  2128TEXT runtime·retpolineR9(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(9)
  2129TEXT runtime·retpolineR10(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(10)
  2130TEXT runtime·retpolineR11(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(11)
  2131TEXT runtime·retpolineR12(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(12)
  2132TEXT runtime·retpolineR13(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(13)
  2133TEXT runtime·retpolineR14(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(14)
  2134TEXT runtime·retpolineR15(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(15)
  2135
  2136TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  2137	MOVQ BP, AX
  2138	RET

View as plain text