...

Source file src/runtime/export_test.go

Documentation: runtime

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Export guts for testing.
     6  
     7  package runtime
     8  
     9  import (
    10  	"internal/abi"
    11  	"internal/goarch"
    12  	"internal/goexperiment"
    13  	"internal/goos"
    14  	"runtime/internal/atomic"
    15  	"runtime/internal/sys"
    16  	"unsafe"
    17  )
    18  
    19  var Fadd64 = fadd64
    20  var Fsub64 = fsub64
    21  var Fmul64 = fmul64
    22  var Fdiv64 = fdiv64
    23  var F64to32 = f64to32
    24  var F32to64 = f32to64
    25  var Fcmp64 = fcmp64
    26  var Fintto64 = fintto64
    27  var F64toint = f64toint
    28  
    29  var Entersyscall = entersyscall
    30  var Exitsyscall = exitsyscall
    31  var LockedOSThread = lockedOSThread
    32  var Xadduintptr = atomic.Xadduintptr
    33  
    34  var ReadRandomFailed = &readRandomFailed
    35  
    36  var Fastlog2 = fastlog2
    37  
    38  var Atoi = atoi
    39  var Atoi32 = atoi32
    40  var ParseByteCount = parseByteCount
    41  
    42  var Nanotime = nanotime
    43  var NetpollBreak = netpollBreak
    44  var Usleep = usleep
    45  
    46  var PhysPageSize = physPageSize
    47  var PhysHugePageSize = physHugePageSize
    48  
    49  var NetpollGenericInit = netpollGenericInit
    50  
    51  var Memmove = memmove
    52  var MemclrNoHeapPointers = memclrNoHeapPointers
    53  
    54  var CgoCheckPointer = cgoCheckPointer
    55  
    56  const CrashStackImplemented = crashStackImplemented
    57  
    58  const TracebackInnerFrames = tracebackInnerFrames
    59  const TracebackOuterFrames = tracebackOuterFrames
    60  
    61  var MapKeys = keys
    62  var MapValues = values
    63  
    64  var LockPartialOrder = lockPartialOrder
    65  
    66  type LockRank lockRank
    67  
    68  func (l LockRank) String() string {
    69  	return lockRank(l).String()
    70  }
    71  
    72  const PreemptMSupported = preemptMSupported
    73  
    74  type LFNode struct {
    75  	Next    uint64
    76  	Pushcnt uintptr
    77  }
    78  
    79  func LFStackPush(head *uint64, node *LFNode) {
    80  	(*lfstack)(head).push((*lfnode)(unsafe.Pointer(node)))
    81  }
    82  
    83  func LFStackPop(head *uint64) *LFNode {
    84  	return (*LFNode)((*lfstack)(head).pop())
    85  }
    86  func LFNodeValidate(node *LFNode) {
    87  	lfnodeValidate((*lfnode)(unsafe.Pointer(node)))
    88  }
    89  
    90  func Netpoll(delta int64) {
    91  	systemstack(func() {
    92  		netpoll(delta)
    93  	})
    94  }
    95  
    96  func GCMask(x any) (ret []byte) {
    97  	systemstack(func() {
    98  		ret = getgcmask(x)
    99  	})
   100  	return
   101  }
   102  
   103  func RunSchedLocalQueueTest() {
   104  	pp := new(p)
   105  	gs := make([]g, len(pp.runq))
   106  	Escape(gs) // Ensure gs doesn't move, since we use guintptrs
   107  	for i := 0; i < len(pp.runq); i++ {
   108  		if g, _ := runqget(pp); g != nil {
   109  			throw("runq is not empty initially")
   110  		}
   111  		for j := 0; j < i; j++ {
   112  			runqput(pp, &gs[i], false)
   113  		}
   114  		for j := 0; j < i; j++ {
   115  			if g, _ := runqget(pp); g != &gs[i] {
   116  				print("bad element at iter ", i, "/", j, "\n")
   117  				throw("bad element")
   118  			}
   119  		}
   120  		if g, _ := runqget(pp); g != nil {
   121  			throw("runq is not empty afterwards")
   122  		}
   123  	}
   124  }
   125  
   126  func RunSchedLocalQueueStealTest() {
   127  	p1 := new(p)
   128  	p2 := new(p)
   129  	gs := make([]g, len(p1.runq))
   130  	Escape(gs) // Ensure gs doesn't move, since we use guintptrs
   131  	for i := 0; i < len(p1.runq); i++ {
   132  		for j := 0; j < i; j++ {
   133  			gs[j].sig = 0
   134  			runqput(p1, &gs[j], false)
   135  		}
   136  		gp := runqsteal(p2, p1, true)
   137  		s := 0
   138  		if gp != nil {
   139  			s++
   140  			gp.sig++
   141  		}
   142  		for {
   143  			gp, _ = runqget(p2)
   144  			if gp == nil {
   145  				break
   146  			}
   147  			s++
   148  			gp.sig++
   149  		}
   150  		for {
   151  			gp, _ = runqget(p1)
   152  			if gp == nil {
   153  				break
   154  			}
   155  			gp.sig++
   156  		}
   157  		for j := 0; j < i; j++ {
   158  			if gs[j].sig != 1 {
   159  				print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
   160  				throw("bad element")
   161  			}
   162  		}
   163  		if s != i/2 && s != i/2+1 {
   164  			print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
   165  			throw("bad steal")
   166  		}
   167  	}
   168  }
   169  
   170  func RunSchedLocalQueueEmptyTest(iters int) {
   171  	// Test that runq is not spuriously reported as empty.
   172  	// Runq emptiness affects scheduling decisions and spurious emptiness
   173  	// can lead to underutilization (both runnable Gs and idle Ps coexist
   174  	// for arbitrary long time).
   175  	done := make(chan bool, 1)
   176  	p := new(p)
   177  	gs := make([]g, 2)
   178  	Escape(gs) // Ensure gs doesn't move, since we use guintptrs
   179  	ready := new(uint32)
   180  	for i := 0; i < iters; i++ {
   181  		*ready = 0
   182  		next0 := (i & 1) == 0
   183  		next1 := (i & 2) == 0
   184  		runqput(p, &gs[0], next0)
   185  		go func() {
   186  			for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
   187  			}
   188  			if runqempty(p) {
   189  				println("next:", next0, next1)
   190  				throw("queue is empty")
   191  			}
   192  			done <- true
   193  		}()
   194  		for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
   195  		}
   196  		runqput(p, &gs[1], next1)
   197  		runqget(p)
   198  		<-done
   199  		runqget(p)
   200  	}
   201  }
   202  
   203  var (
   204  	StringHash = stringHash
   205  	BytesHash  = bytesHash
   206  	Int32Hash  = int32Hash
   207  	Int64Hash  = int64Hash
   208  	MemHash    = memhash
   209  	MemHash32  = memhash32
   210  	MemHash64  = memhash64
   211  	EfaceHash  = efaceHash
   212  	IfaceHash  = ifaceHash
   213  )
   214  
   215  var UseAeshash = &useAeshash
   216  
   217  func MemclrBytes(b []byte) {
   218  	s := (*slice)(unsafe.Pointer(&b))
   219  	memclrNoHeapPointers(s.array, uintptr(s.len))
   220  }
   221  
   222  const HashLoad = hashLoad
   223  
   224  // entry point for testing
   225  func GostringW(w []uint16) (s string) {
   226  	systemstack(func() {
   227  		s = gostringw(&w[0])
   228  	})
   229  	return
   230  }
   231  
   232  var Open = open
   233  var Close = closefd
   234  var Read = read
   235  var Write = write
   236  
   237  func Envs() []string     { return envs }
   238  func SetEnvs(e []string) { envs = e }
   239  
   240  // For benchmarking.
   241  
   242  // blockWrapper is a wrapper type that ensures a T is placed within a
   243  // large object. This is necessary for safely benchmarking things
   244  // that manipulate the heap bitmap, like heapBitsSetType.
   245  //
   246  // More specifically, allocating threads assume they're the sole writers
   247  // to their span's heap bits, which allows those writes to be non-atomic.
   248  // The heap bitmap is written byte-wise, so if one tried to call heapBitsSetType
   249  // on an existing object in a small object span, we might corrupt that
   250  // span's bitmap with a concurrent byte write to the heap bitmap. Large
   251  // object spans contain exactly one object, so we can be sure no other P
   252  // is going to be allocating from it concurrently, hence this wrapper type
   253  // which ensures we have a T in a large object span.
   254  type blockWrapper[T any] struct {
   255  	value T
   256  	_     [_MaxSmallSize]byte // Ensure we're a large object.
   257  }
   258  
   259  func BenchSetType[T any](n int, resetTimer func()) {
   260  	x := new(blockWrapper[T])
   261  
   262  	// Escape x to ensure it is allocated on the heap, as we are
   263  	// working on the heap bits here.
   264  	Escape(x)
   265  
   266  	// Grab the type.
   267  	var i any = *new(T)
   268  	e := *efaceOf(&i)
   269  	t := e._type
   270  
   271  	// Benchmark setting the type bits for just the internal T of the block.
   272  	benchSetType(n, resetTimer, 1, unsafe.Pointer(&x.value), t)
   273  }
   274  
   275  const maxArrayBlockWrapperLen = 32
   276  
   277  // arrayBlockWrapper is like blockWrapper, but the interior value is intended
   278  // to be used as a backing store for a slice.
   279  type arrayBlockWrapper[T any] struct {
   280  	value [maxArrayBlockWrapperLen]T
   281  	_     [_MaxSmallSize]byte // Ensure we're a large object.
   282  }
   283  
   284  // arrayLargeBlockWrapper is like arrayBlockWrapper, but the interior array
   285  // accommodates many more elements.
   286  type arrayLargeBlockWrapper[T any] struct {
   287  	value [1024]T
   288  	_     [_MaxSmallSize]byte // Ensure we're a large object.
   289  }
   290  
   291  func BenchSetTypeSlice[T any](n int, resetTimer func(), len int) {
   292  	// We have two separate cases here because we want to avoid
   293  	// tests on big types but relatively small slices to avoid generating
   294  	// an allocation that's really big. This will likely force a GC which will
   295  	// skew the test results.
   296  	var y unsafe.Pointer
   297  	if len <= maxArrayBlockWrapperLen {
   298  		x := new(arrayBlockWrapper[T])
   299  		// Escape x to ensure it is allocated on the heap, as we are
   300  		// working on the heap bits here.
   301  		Escape(x)
   302  		y = unsafe.Pointer(&x.value[0])
   303  	} else {
   304  		x := new(arrayLargeBlockWrapper[T])
   305  		Escape(x)
   306  		y = unsafe.Pointer(&x.value[0])
   307  	}
   308  
   309  	// Grab the type.
   310  	var i any = *new(T)
   311  	e := *efaceOf(&i)
   312  	t := e._type
   313  
   314  	// Benchmark setting the type for a slice created from the array
   315  	// of T within the arrayBlock.
   316  	benchSetType(n, resetTimer, len, y, t)
   317  }
   318  
   319  // benchSetType is the implementation of the BenchSetType* functions.
   320  // x must be len consecutive Ts allocated within a large object span (to
   321  // avoid a race on the heap bitmap).
   322  //
   323  // Note: this function cannot be generic. It would get its type from one of
   324  // its callers (BenchSetType or BenchSetTypeSlice) whose type parameters are
   325  // set by a call in the runtime_test package. That means this function and its
   326  // callers will get instantiated in the package that provides the type argument,
   327  // i.e. runtime_test. However, we call a function on the system stack. In race
   328  // mode the runtime package is usually left uninstrumented because e.g. g0 has
   329  // no valid racectx, but if we're instantiated in the runtime_test package,
   330  // we might accidentally cause runtime code to be incorrectly instrumented.
   331  func benchSetType(n int, resetTimer func(), len int, x unsafe.Pointer, t *_type) {
   332  	// This benchmark doesn't work with the allocheaders experiment. It sets up
   333  	// an elaborate scenario to be able to benchmark the function safely, but doing
   334  	// this work for the allocheaders' version of the function would be complex.
   335  	// Just fail instead and rely on the test code making sure we never get here.
   336  	if goexperiment.AllocHeaders {
   337  		panic("called benchSetType with allocheaders experiment enabled")
   338  	}
   339  
   340  	// Compute the input sizes.
   341  	size := t.Size() * uintptr(len)
   342  
   343  	// Validate this function's invariant.
   344  	s := spanOfHeap(uintptr(x))
   345  	if s == nil {
   346  		panic("no heap span for input")
   347  	}
   348  	if s.spanclass.sizeclass() != 0 {
   349  		panic("span is not a large object span")
   350  	}
   351  
   352  	// Round up the size to the size class to make the benchmark a little more
   353  	// realistic. However, validate it, to make sure this is safe.
   354  	allocSize := roundupsize(size, t.PtrBytes == 0)
   355  	if s.npages*pageSize < allocSize {
   356  		panic("backing span not large enough for benchmark")
   357  	}
   358  
   359  	// Benchmark heapBitsSetType by calling it in a loop. This is safe because
   360  	// x is in a large object span.
   361  	resetTimer()
   362  	systemstack(func() {
   363  		for i := 0; i < n; i++ {
   364  			heapBitsSetType(uintptr(x), allocSize, size, t)
   365  		}
   366  	})
   367  
   368  	// Make sure x doesn't get freed, since we're taking a uintptr.
   369  	KeepAlive(x)
   370  }
   371  
   372  const PtrSize = goarch.PtrSize
   373  
   374  var ForceGCPeriod = &forcegcperiod
   375  
   376  // SetTracebackEnv is like runtime/debug.SetTraceback, but it raises
   377  // the "environment" traceback level, so later calls to
   378  // debug.SetTraceback (e.g., from testing timeouts) can't lower it.
   379  func SetTracebackEnv(level string) {
   380  	setTraceback(level)
   381  	traceback_env = traceback_cache
   382  }
   383  
   384  var ReadUnaligned32 = readUnaligned32
   385  var ReadUnaligned64 = readUnaligned64
   386  
   387  func CountPagesInUse() (pagesInUse, counted uintptr) {
   388  	stw := stopTheWorld(stwForTestCountPagesInUse)
   389  
   390  	pagesInUse = mheap_.pagesInUse.Load()
   391  
   392  	for _, s := range mheap_.allspans {
   393  		if s.state.get() == mSpanInUse {
   394  			counted += s.npages
   395  		}
   396  	}
   397  
   398  	startTheWorld(stw)
   399  
   400  	return
   401  }
   402  
   403  func Fastrand() uint32          { return uint32(rand()) }
   404  func Fastrand64() uint64        { return rand() }
   405  func Fastrandn(n uint32) uint32 { return randn(n) }
   406  
   407  type ProfBuf profBuf
   408  
   409  func NewProfBuf(hdrsize, bufwords, tags int) *ProfBuf {
   410  	return (*ProfBuf)(newProfBuf(hdrsize, bufwords, tags))
   411  }
   412  
   413  func (p *ProfBuf) Write(tag *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) {
   414  	(*profBuf)(p).write(tag, now, hdr, stk)
   415  }
   416  
   417  const (
   418  	ProfBufBlocking    = profBufBlocking
   419  	ProfBufNonBlocking = profBufNonBlocking
   420  )
   421  
   422  func (p *ProfBuf) Read(mode profBufReadMode) ([]uint64, []unsafe.Pointer, bool) {
   423  	return (*profBuf)(p).read(mode)
   424  }
   425  
   426  func (p *ProfBuf) Close() {
   427  	(*profBuf)(p).close()
   428  }
   429  
   430  func ReadMetricsSlow(memStats *MemStats, samplesp unsafe.Pointer, len, cap int) {
   431  	stw := stopTheWorld(stwForTestReadMetricsSlow)
   432  
   433  	// Initialize the metrics beforehand because this could
   434  	// allocate and skew the stats.
   435  	metricsLock()
   436  	initMetrics()
   437  
   438  	systemstack(func() {
   439  		// Donate the racectx to g0. readMetricsLocked calls into the race detector
   440  		// via map access.
   441  		getg().racectx = getg().m.curg.racectx
   442  
   443  		// Read the metrics once before in case it allocates and skews the metrics.
   444  		// readMetricsLocked is designed to only allocate the first time it is called
   445  		// with a given slice of samples. In effect, this extra read tests that this
   446  		// remains true, since otherwise the second readMetricsLocked below could
   447  		// allocate before it returns.
   448  		readMetricsLocked(samplesp, len, cap)
   449  
   450  		// Read memstats first. It's going to flush
   451  		// the mcaches which readMetrics does not do, so
   452  		// going the other way around may result in
   453  		// inconsistent statistics.
   454  		readmemstats_m(memStats)
   455  
   456  		// Read metrics again. We need to be sure we're on the
   457  		// system stack with readmemstats_m so that we don't call into
   458  		// the stack allocator and adjust metrics between there and here.
   459  		readMetricsLocked(samplesp, len, cap)
   460  
   461  		// Undo the donation.
   462  		getg().racectx = 0
   463  	})
   464  	metricsUnlock()
   465  
   466  	startTheWorld(stw)
   467  }
   468  
   469  var DoubleCheckReadMemStats = &doubleCheckReadMemStats
   470  
   471  // ReadMemStatsSlow returns both the runtime-computed MemStats and
   472  // MemStats accumulated by scanning the heap.
   473  func ReadMemStatsSlow() (base, slow MemStats) {
   474  	stw := stopTheWorld(stwForTestReadMemStatsSlow)
   475  
   476  	// Run on the system stack to avoid stack growth allocation.
   477  	systemstack(func() {
   478  		// Make sure stats don't change.
   479  		getg().m.mallocing++
   480  
   481  		readmemstats_m(&base)
   482  
   483  		// Initialize slow from base and zero the fields we're
   484  		// recomputing.
   485  		slow = base
   486  		slow.Alloc = 0
   487  		slow.TotalAlloc = 0
   488  		slow.Mallocs = 0
   489  		slow.Frees = 0
   490  		slow.HeapReleased = 0
   491  		var bySize [_NumSizeClasses]struct {
   492  			Mallocs, Frees uint64
   493  		}
   494  
   495  		// Add up current allocations in spans.
   496  		for _, s := range mheap_.allspans {
   497  			if s.state.get() != mSpanInUse {
   498  				continue
   499  			}
   500  			if s.isUnusedUserArenaChunk() {
   501  				continue
   502  			}
   503  			if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 {
   504  				slow.Mallocs++
   505  				slow.Alloc += uint64(s.elemsize)
   506  			} else {
   507  				slow.Mallocs += uint64(s.allocCount)
   508  				slow.Alloc += uint64(s.allocCount) * uint64(s.elemsize)
   509  				bySize[sizeclass].Mallocs += uint64(s.allocCount)
   510  			}
   511  		}
   512  
   513  		// Add in frees by just reading the stats for those directly.
   514  		var m heapStatsDelta
   515  		memstats.heapStats.unsafeRead(&m)
   516  
   517  		// Collect per-sizeclass free stats.
   518  		var smallFree uint64
   519  		for i := 0; i < _NumSizeClasses; i++ {
   520  			slow.Frees += m.smallFreeCount[i]
   521  			bySize[i].Frees += m.smallFreeCount[i]
   522  			bySize[i].Mallocs += m.smallFreeCount[i]
   523  			smallFree += m.smallFreeCount[i] * uint64(class_to_size[i])
   524  		}
   525  		slow.Frees += m.tinyAllocCount + m.largeFreeCount
   526  		slow.Mallocs += slow.Frees
   527  
   528  		slow.TotalAlloc = slow.Alloc + m.largeFree + smallFree
   529  
   530  		for i := range slow.BySize {
   531  			slow.BySize[i].Mallocs = bySize[i].Mallocs
   532  			slow.BySize[i].Frees = bySize[i].Frees
   533  		}
   534  
   535  		for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
   536  			chunk := mheap_.pages.tryChunkOf(i)
   537  			if chunk == nil {
   538  				continue
   539  			}
   540  			pg := chunk.scavenged.popcntRange(0, pallocChunkPages)
   541  			slow.HeapReleased += uint64(pg) * pageSize
   542  		}
   543  		for _, p := range allp {
   544  			pg := sys.OnesCount64(p.pcache.scav)
   545  			slow.HeapReleased += uint64(pg) * pageSize
   546  		}
   547  
   548  		getg().m.mallocing--
   549  	})
   550  
   551  	startTheWorld(stw)
   552  	return
   553  }
   554  
   555  // ShrinkStackAndVerifyFramePointers attempts to shrink the stack of the current goroutine
   556  // and verifies that unwinding the new stack doesn't crash, even if the old
   557  // stack has been freed or reused (simulated via poisoning).
   558  func ShrinkStackAndVerifyFramePointers() {
   559  	before := stackPoisonCopy
   560  	defer func() { stackPoisonCopy = before }()
   561  	stackPoisonCopy = 1
   562  
   563  	gp := getg()
   564  	systemstack(func() {
   565  		shrinkstack(gp)
   566  	})
   567  	// If our new stack contains frame pointers into the old stack, this will
   568  	// crash because the old stack has been poisoned.
   569  	FPCallers(make([]uintptr, 1024))
   570  }
   571  
   572  // BlockOnSystemStack switches to the system stack, prints "x\n" to
   573  // stderr, and blocks in a stack containing
   574  // "runtime.blockOnSystemStackInternal".
   575  func BlockOnSystemStack() {
   576  	systemstack(blockOnSystemStackInternal)
   577  }
   578  
   579  func blockOnSystemStackInternal() {
   580  	print("x\n")
   581  	lock(&deadlock)
   582  	lock(&deadlock)
   583  }
   584  
   585  type RWMutex struct {
   586  	rw rwmutex
   587  }
   588  
   589  func (rw *RWMutex) Init() {
   590  	rw.rw.init(lockRankTestR, lockRankTestRInternal, lockRankTestW)
   591  }
   592  
   593  func (rw *RWMutex) RLock() {
   594  	rw.rw.rlock()
   595  }
   596  
   597  func (rw *RWMutex) RUnlock() {
   598  	rw.rw.runlock()
   599  }
   600  
   601  func (rw *RWMutex) Lock() {
   602  	rw.rw.lock()
   603  }
   604  
   605  func (rw *RWMutex) Unlock() {
   606  	rw.rw.unlock()
   607  }
   608  
   609  const RuntimeHmapSize = unsafe.Sizeof(hmap{})
   610  
   611  func MapBucketsCount(m map[int]int) int {
   612  	h := *(**hmap)(unsafe.Pointer(&m))
   613  	return 1 << h.B
   614  }
   615  
   616  func MapBucketsPointerIsNil(m map[int]int) bool {
   617  	h := *(**hmap)(unsafe.Pointer(&m))
   618  	return h.buckets == nil
   619  }
   620  
   621  func OverLoadFactor(count int, B uint8) bool {
   622  	return overLoadFactor(count, B)
   623  }
   624  
   625  func LockOSCounts() (external, internal uint32) {
   626  	gp := getg()
   627  	if gp.m.lockedExt+gp.m.lockedInt == 0 {
   628  		if gp.lockedm != 0 {
   629  			panic("lockedm on non-locked goroutine")
   630  		}
   631  	} else {
   632  		if gp.lockedm == 0 {
   633  			panic("nil lockedm on locked goroutine")
   634  		}
   635  	}
   636  	return gp.m.lockedExt, gp.m.lockedInt
   637  }
   638  
   639  //go:noinline
   640  func TracebackSystemstack(stk []uintptr, i int) int {
   641  	if i == 0 {
   642  		pc, sp := getcallerpc(), getcallersp()
   643  		var u unwinder
   644  		u.initAt(pc, sp, 0, getg(), unwindJumpStack) // Don't ignore errors, for testing
   645  		return tracebackPCs(&u, 0, stk)
   646  	}
   647  	n := 0
   648  	systemstack(func() {
   649  		n = TracebackSystemstack(stk, i-1)
   650  	})
   651  	return n
   652  }
   653  
   654  func KeepNArenaHints(n int) {
   655  	hint := mheap_.arenaHints
   656  	for i := 1; i < n; i++ {
   657  		hint = hint.next
   658  		if hint == nil {
   659  			return
   660  		}
   661  	}
   662  	hint.next = nil
   663  }
   664  
   665  // MapNextArenaHint reserves a page at the next arena growth hint,
   666  // preventing the arena from growing there, and returns the range of
   667  // addresses that are no longer viable.
   668  //
   669  // This may fail to reserve memory. If it fails, it still returns the
   670  // address range it attempted to reserve.
   671  func MapNextArenaHint() (start, end uintptr, ok bool) {
   672  	hint := mheap_.arenaHints
   673  	addr := hint.addr
   674  	if hint.down {
   675  		start, end = addr-heapArenaBytes, addr
   676  		addr -= physPageSize
   677  	} else {
   678  		start, end = addr, addr+heapArenaBytes
   679  	}
   680  	got := sysReserve(unsafe.Pointer(addr), physPageSize)
   681  	ok = (addr == uintptr(got))
   682  	if !ok {
   683  		// We were unable to get the requested reservation.
   684  		// Release what we did get and fail.
   685  		sysFreeOS(got, physPageSize)
   686  	}
   687  	return
   688  }
   689  
   690  func GetNextArenaHint() uintptr {
   691  	return mheap_.arenaHints.addr
   692  }
   693  
   694  type G = g
   695  
   696  type Sudog = sudog
   697  
   698  func Getg() *G {
   699  	return getg()
   700  }
   701  
   702  func Goid() uint64 {
   703  	return getg().goid
   704  }
   705  
   706  func GIsWaitingOnMutex(gp *G) bool {
   707  	return readgstatus(gp) == _Gwaiting && gp.waitreason.isMutexWait()
   708  }
   709  
   710  var CasGStatusAlwaysTrack = &casgstatusAlwaysTrack
   711  
   712  //go:noinline
   713  func PanicForTesting(b []byte, i int) byte {
   714  	return unexportedPanicForTesting(b, i)
   715  }
   716  
   717  //go:noinline
   718  func unexportedPanicForTesting(b []byte, i int) byte {
   719  	return b[i]
   720  }
   721  
   722  func G0StackOverflow() {
   723  	systemstack(func() {
   724  		g0 := getg()
   725  		sp := getcallersp()
   726  		// The stack bounds for g0 stack is not always precise.
   727  		// Use an artificially small stack, to trigger a stack overflow
   728  		// without actually run out of the system stack (which may seg fault).
   729  		g0.stack.lo = sp - 4096 - stackSystem
   730  		g0.stackguard0 = g0.stack.lo + stackGuard
   731  		g0.stackguard1 = g0.stackguard0
   732  
   733  		stackOverflow(nil)
   734  	})
   735  }
   736  
   737  func stackOverflow(x *byte) {
   738  	var buf [256]byte
   739  	stackOverflow(&buf[0])
   740  }
   741  
   742  func MapTombstoneCheck(m map[int]int) {
   743  	// Make sure emptyOne and emptyRest are distributed correctly.
   744  	// We should have a series of filled and emptyOne cells, followed by
   745  	// a series of emptyRest cells.
   746  	h := *(**hmap)(unsafe.Pointer(&m))
   747  	i := any(m)
   748  	t := *(**maptype)(unsafe.Pointer(&i))
   749  
   750  	for x := 0; x < 1<<h.B; x++ {
   751  		b0 := (*bmap)(add(h.buckets, uintptr(x)*uintptr(t.BucketSize)))
   752  		n := 0
   753  		for b := b0; b != nil; b = b.overflow(t) {
   754  			for i := 0; i < bucketCnt; i++ {
   755  				if b.tophash[i] != emptyRest {
   756  					n++
   757  				}
   758  			}
   759  		}
   760  		k := 0
   761  		for b := b0; b != nil; b = b.overflow(t) {
   762  			for i := 0; i < bucketCnt; i++ {
   763  				if k < n && b.tophash[i] == emptyRest {
   764  					panic("early emptyRest")
   765  				}
   766  				if k >= n && b.tophash[i] != emptyRest {
   767  					panic("late non-emptyRest")
   768  				}
   769  				if k == n-1 && b.tophash[i] == emptyOne {
   770  					panic("last non-emptyRest entry is emptyOne")
   771  				}
   772  				k++
   773  			}
   774  		}
   775  	}
   776  }
   777  
   778  func RunGetgThreadSwitchTest() {
   779  	// Test that getg works correctly with thread switch.
   780  	// With gccgo, if we generate getg inlined, the backend
   781  	// may cache the address of the TLS variable, which
   782  	// will become invalid after a thread switch. This test
   783  	// checks that the bad caching doesn't happen.
   784  
   785  	ch := make(chan int)
   786  	go func(ch chan int) {
   787  		ch <- 5
   788  		LockOSThread()
   789  	}(ch)
   790  
   791  	g1 := getg()
   792  
   793  	// Block on a receive. This is likely to get us a thread
   794  	// switch. If we yield to the sender goroutine, it will
   795  	// lock the thread, forcing us to resume on a different
   796  	// thread.
   797  	<-ch
   798  
   799  	g2 := getg()
   800  	if g1 != g2 {
   801  		panic("g1 != g2")
   802  	}
   803  
   804  	// Also test getg after some control flow, as the
   805  	// backend is sensitive to control flow.
   806  	g3 := getg()
   807  	if g1 != g3 {
   808  		panic("g1 != g3")
   809  	}
   810  }
   811  
   812  const (
   813  	PageSize         = pageSize
   814  	PallocChunkPages = pallocChunkPages
   815  	PageAlloc64Bit   = pageAlloc64Bit
   816  	PallocSumBytes   = pallocSumBytes
   817  )
   818  
   819  // Expose pallocSum for testing.
   820  type PallocSum pallocSum
   821  
   822  func PackPallocSum(start, max, end uint) PallocSum { return PallocSum(packPallocSum(start, max, end)) }
   823  func (m PallocSum) Start() uint                    { return pallocSum(m).start() }
   824  func (m PallocSum) Max() uint                      { return pallocSum(m).max() }
   825  func (m PallocSum) End() uint                      { return pallocSum(m).end() }
   826  
   827  // Expose pallocBits for testing.
   828  type PallocBits pallocBits
   829  
   830  func (b *PallocBits) Find(npages uintptr, searchIdx uint) (uint, uint) {
   831  	return (*pallocBits)(b).find(npages, searchIdx)
   832  }
   833  func (b *PallocBits) AllocRange(i, n uint)       { (*pallocBits)(b).allocRange(i, n) }
   834  func (b *PallocBits) Free(i, n uint)             { (*pallocBits)(b).free(i, n) }
   835  func (b *PallocBits) Summarize() PallocSum       { return PallocSum((*pallocBits)(b).summarize()) }
   836  func (b *PallocBits) PopcntRange(i, n uint) uint { return (*pageBits)(b).popcntRange(i, n) }
   837  
   838  // SummarizeSlow is a slow but more obviously correct implementation
   839  // of (*pallocBits).summarize. Used for testing.
   840  func SummarizeSlow(b *PallocBits) PallocSum {
   841  	var start, most, end uint
   842  
   843  	const N = uint(len(b)) * 64
   844  	for start < N && (*pageBits)(b).get(start) == 0 {
   845  		start++
   846  	}
   847  	for end < N && (*pageBits)(b).get(N-end-1) == 0 {
   848  		end++
   849  	}
   850  	run := uint(0)
   851  	for i := uint(0); i < N; i++ {
   852  		if (*pageBits)(b).get(i) == 0 {
   853  			run++
   854  		} else {
   855  			run = 0
   856  		}
   857  		most = max(most, run)
   858  	}
   859  	return PackPallocSum(start, most, end)
   860  }
   861  
   862  // Expose non-trivial helpers for testing.
   863  func FindBitRange64(c uint64, n uint) uint { return findBitRange64(c, n) }
   864  
   865  // Given two PallocBits, returns a set of bit ranges where
   866  // they differ.
   867  func DiffPallocBits(a, b *PallocBits) []BitRange {
   868  	ba := (*pageBits)(a)
   869  	bb := (*pageBits)(b)
   870  
   871  	var d []BitRange
   872  	base, size := uint(0), uint(0)
   873  	for i := uint(0); i < uint(len(ba))*64; i++ {
   874  		if ba.get(i) != bb.get(i) {
   875  			if size == 0 {
   876  				base = i
   877  			}
   878  			size++
   879  		} else {
   880  			if size != 0 {
   881  				d = append(d, BitRange{base, size})
   882  			}
   883  			size = 0
   884  		}
   885  	}
   886  	if size != 0 {
   887  		d = append(d, BitRange{base, size})
   888  	}
   889  	return d
   890  }
   891  
   892  // StringifyPallocBits gets the bits in the bit range r from b,
   893  // and returns a string containing the bits as ASCII 0 and 1
   894  // characters.
   895  func StringifyPallocBits(b *PallocBits, r BitRange) string {
   896  	str := ""
   897  	for j := r.I; j < r.I+r.N; j++ {
   898  		if (*pageBits)(b).get(j) != 0 {
   899  			str += "1"
   900  		} else {
   901  			str += "0"
   902  		}
   903  	}
   904  	return str
   905  }
   906  
   907  // Expose pallocData for testing.
   908  type PallocData pallocData
   909  
   910  func (d *PallocData) FindScavengeCandidate(searchIdx uint, min, max uintptr) (uint, uint) {
   911  	return (*pallocData)(d).findScavengeCandidate(searchIdx, min, max)
   912  }
   913  func (d *PallocData) AllocRange(i, n uint) { (*pallocData)(d).allocRange(i, n) }
   914  func (d *PallocData) ScavengedSetRange(i, n uint) {
   915  	(*pallocData)(d).scavenged.setRange(i, n)
   916  }
   917  func (d *PallocData) PallocBits() *PallocBits {
   918  	return (*PallocBits)(&(*pallocData)(d).pallocBits)
   919  }
   920  func (d *PallocData) Scavenged() *PallocBits {
   921  	return (*PallocBits)(&(*pallocData)(d).scavenged)
   922  }
   923  
   924  // Expose fillAligned for testing.
   925  func FillAligned(x uint64, m uint) uint64 { return fillAligned(x, m) }
   926  
   927  // Expose pageCache for testing.
   928  type PageCache pageCache
   929  
   930  const PageCachePages = pageCachePages
   931  
   932  func NewPageCache(base uintptr, cache, scav uint64) PageCache {
   933  	return PageCache(pageCache{base: base, cache: cache, scav: scav})
   934  }
   935  func (c *PageCache) Empty() bool   { return (*pageCache)(c).empty() }
   936  func (c *PageCache) Base() uintptr { return (*pageCache)(c).base }
   937  func (c *PageCache) Cache() uint64 { return (*pageCache)(c).cache }
   938  func (c *PageCache) Scav() uint64  { return (*pageCache)(c).scav }
   939  func (c *PageCache) Alloc(npages uintptr) (uintptr, uintptr) {
   940  	return (*pageCache)(c).alloc(npages)
   941  }
   942  func (c *PageCache) Flush(s *PageAlloc) {
   943  	cp := (*pageCache)(c)
   944  	sp := (*pageAlloc)(s)
   945  
   946  	systemstack(func() {
   947  		// None of the tests need any higher-level locking, so we just
   948  		// take the lock internally.
   949  		lock(sp.mheapLock)
   950  		cp.flush(sp)
   951  		unlock(sp.mheapLock)
   952  	})
   953  }
   954  
   955  // Expose chunk index type.
   956  type ChunkIdx chunkIdx
   957  
   958  // Expose pageAlloc for testing. Note that because pageAlloc is
   959  // not in the heap, so is PageAlloc.
   960  type PageAlloc pageAlloc
   961  
   962  func (p *PageAlloc) Alloc(npages uintptr) (uintptr, uintptr) {
   963  	pp := (*pageAlloc)(p)
   964  
   965  	var addr, scav uintptr
   966  	systemstack(func() {
   967  		// None of the tests need any higher-level locking, so we just
   968  		// take the lock internally.
   969  		lock(pp.mheapLock)
   970  		addr, scav = pp.alloc(npages)
   971  		unlock(pp.mheapLock)
   972  	})
   973  	return addr, scav
   974  }
   975  func (p *PageAlloc) AllocToCache() PageCache {
   976  	pp := (*pageAlloc)(p)
   977  
   978  	var c PageCache
   979  	systemstack(func() {
   980  		// None of the tests need any higher-level locking, so we just
   981  		// take the lock internally.
   982  		lock(pp.mheapLock)
   983  		c = PageCache(pp.allocToCache())
   984  		unlock(pp.mheapLock)
   985  	})
   986  	return c
   987  }
   988  func (p *PageAlloc) Free(base, npages uintptr) {
   989  	pp := (*pageAlloc)(p)
   990  
   991  	systemstack(func() {
   992  		// None of the tests need any higher-level locking, so we just
   993  		// take the lock internally.
   994  		lock(pp.mheapLock)
   995  		pp.free(base, npages)
   996  		unlock(pp.mheapLock)
   997  	})
   998  }
   999  func (p *PageAlloc) Bounds() (ChunkIdx, ChunkIdx) {
  1000  	return ChunkIdx((*pageAlloc)(p).start), ChunkIdx((*pageAlloc)(p).end)
  1001  }
  1002  func (p *PageAlloc) Scavenge(nbytes uintptr) (r uintptr) {
  1003  	pp := (*pageAlloc)(p)
  1004  	systemstack(func() {
  1005  		r = pp.scavenge(nbytes, nil, true)
  1006  	})
  1007  	return
  1008  }
  1009  func (p *PageAlloc) InUse() []AddrRange {
  1010  	ranges := make([]AddrRange, 0, len(p.inUse.ranges))
  1011  	for _, r := range p.inUse.ranges {
  1012  		ranges = append(ranges, AddrRange{r})
  1013  	}
  1014  	return ranges
  1015  }
  1016  
  1017  // Returns nil if the PallocData's L2 is missing.
  1018  func (p *PageAlloc) PallocData(i ChunkIdx) *PallocData {
  1019  	ci := chunkIdx(i)
  1020  	return (*PallocData)((*pageAlloc)(p).tryChunkOf(ci))
  1021  }
  1022  
  1023  // AddrRange is a wrapper around addrRange for testing.
  1024  type AddrRange struct {
  1025  	addrRange
  1026  }
  1027  
  1028  // MakeAddrRange creates a new address range.
  1029  func MakeAddrRange(base, limit uintptr) AddrRange {
  1030  	return AddrRange{makeAddrRange(base, limit)}
  1031  }
  1032  
  1033  // Base returns the virtual base address of the address range.
  1034  func (a AddrRange) Base() uintptr {
  1035  	return a.addrRange.base.addr()
  1036  }
  1037  
  1038  // Base returns the virtual address of the limit of the address range.
  1039  func (a AddrRange) Limit() uintptr {
  1040  	return a.addrRange.limit.addr()
  1041  }
  1042  
  1043  // Equals returns true if the two address ranges are exactly equal.
  1044  func (a AddrRange) Equals(b AddrRange) bool {
  1045  	return a == b
  1046  }
  1047  
  1048  // Size returns the size in bytes of the address range.
  1049  func (a AddrRange) Size() uintptr {
  1050  	return a.addrRange.size()
  1051  }
  1052  
  1053  // testSysStat is the sysStat passed to test versions of various
  1054  // runtime structures. We do actually have to keep track of this
  1055  // because otherwise memstats.mappedReady won't actually line up
  1056  // with other stats in the runtime during tests.
  1057  var testSysStat = &memstats.other_sys
  1058  
  1059  // AddrRanges is a wrapper around addrRanges for testing.
  1060  type AddrRanges struct {
  1061  	addrRanges
  1062  	mutable bool
  1063  }
  1064  
  1065  // NewAddrRanges creates a new empty addrRanges.
  1066  //
  1067  // Note that this initializes addrRanges just like in the
  1068  // runtime, so its memory is persistentalloc'd. Call this
  1069  // function sparingly since the memory it allocates is
  1070  // leaked.
  1071  //
  1072  // This AddrRanges is mutable, so we can test methods like
  1073  // Add.
  1074  func NewAddrRanges() AddrRanges {
  1075  	r := addrRanges{}
  1076  	r.init(testSysStat)
  1077  	return AddrRanges{r, true}
  1078  }
  1079  
  1080  // MakeAddrRanges creates a new addrRanges populated with
  1081  // the ranges in a.
  1082  //
  1083  // The returned AddrRanges is immutable, so methods like
  1084  // Add will fail.
  1085  func MakeAddrRanges(a ...AddrRange) AddrRanges {
  1086  	// Methods that manipulate the backing store of addrRanges.ranges should
  1087  	// not be used on the result from this function (e.g. add) since they may
  1088  	// trigger reallocation. That would normally be fine, except the new
  1089  	// backing store won't come from the heap, but from persistentalloc, so
  1090  	// we'll leak some memory implicitly.
  1091  	ranges := make([]addrRange, 0, len(a))
  1092  	total := uintptr(0)
  1093  	for _, r := range a {
  1094  		ranges = append(ranges, r.addrRange)
  1095  		total += r.Size()
  1096  	}
  1097  	return AddrRanges{addrRanges{
  1098  		ranges:     ranges,
  1099  		totalBytes: total,
  1100  		sysStat:    testSysStat,
  1101  	}, false}
  1102  }
  1103  
  1104  // Ranges returns a copy of the ranges described by the
  1105  // addrRanges.
  1106  func (a *AddrRanges) Ranges() []AddrRange {
  1107  	result := make([]AddrRange, 0, len(a.addrRanges.ranges))
  1108  	for _, r := range a.addrRanges.ranges {
  1109  		result = append(result, AddrRange{r})
  1110  	}
  1111  	return result
  1112  }
  1113  
  1114  // FindSucc returns the successor to base. See addrRanges.findSucc
  1115  // for more details.
  1116  func (a *AddrRanges) FindSucc(base uintptr) int {
  1117  	return a.findSucc(base)
  1118  }
  1119  
  1120  // Add adds a new AddrRange to the AddrRanges.
  1121  //
  1122  // The AddrRange must be mutable (i.e. created by NewAddrRanges),
  1123  // otherwise this method will throw.
  1124  func (a *AddrRanges) Add(r AddrRange) {
  1125  	if !a.mutable {
  1126  		throw("attempt to mutate immutable AddrRanges")
  1127  	}
  1128  	a.add(r.addrRange)
  1129  }
  1130  
  1131  // TotalBytes returns the totalBytes field of the addrRanges.
  1132  func (a *AddrRanges) TotalBytes() uintptr {
  1133  	return a.addrRanges.totalBytes
  1134  }
  1135  
  1136  // BitRange represents a range over a bitmap.
  1137  type BitRange struct {
  1138  	I, N uint // bit index and length in bits
  1139  }
  1140  
  1141  // NewPageAlloc creates a new page allocator for testing and
  1142  // initializes it with the scav and chunks maps. Each key in these maps
  1143  // represents a chunk index and each value is a series of bit ranges to
  1144  // set within each bitmap's chunk.
  1145  //
  1146  // The initialization of the pageAlloc preserves the invariant that if a
  1147  // scavenged bit is set the alloc bit is necessarily unset, so some
  1148  // of the bits described by scav may be cleared in the final bitmap if
  1149  // ranges in chunks overlap with them.
  1150  //
  1151  // scav is optional, and if nil, the scavenged bitmap will be cleared
  1152  // (as opposed to all 1s, which it usually is). Furthermore, every
  1153  // chunk index in scav must appear in chunks; ones that do not are
  1154  // ignored.
  1155  func NewPageAlloc(chunks, scav map[ChunkIdx][]BitRange) *PageAlloc {
  1156  	p := new(pageAlloc)
  1157  
  1158  	// We've got an entry, so initialize the pageAlloc.
  1159  	p.init(new(mutex), testSysStat, true)
  1160  	lockInit(p.mheapLock, lockRankMheap)
  1161  	for i, init := range chunks {
  1162  		addr := chunkBase(chunkIdx(i))
  1163  
  1164  		// Mark the chunk's existence in the pageAlloc.
  1165  		systemstack(func() {
  1166  			lock(p.mheapLock)
  1167  			p.grow(addr, pallocChunkBytes)
  1168  			unlock(p.mheapLock)
  1169  		})
  1170  
  1171  		// Initialize the bitmap and update pageAlloc metadata.
  1172  		ci := chunkIndex(addr)
  1173  		chunk := p.chunkOf(ci)
  1174  
  1175  		// Clear all the scavenged bits which grow set.
  1176  		chunk.scavenged.clearRange(0, pallocChunkPages)
  1177  
  1178  		// Simulate the allocation and subsequent free of all pages in
  1179  		// the chunk for the scavenge index. This sets the state equivalent
  1180  		// with all pages within the index being free.
  1181  		p.scav.index.alloc(ci, pallocChunkPages)
  1182  		p.scav.index.free(ci, 0, pallocChunkPages)
  1183  
  1184  		// Apply scavenge state if applicable.
  1185  		if scav != nil {
  1186  			if scvg, ok := scav[i]; ok {
  1187  				for _, s := range scvg {
  1188  					// Ignore the case of s.N == 0. setRange doesn't handle
  1189  					// it and it's a no-op anyway.
  1190  					if s.N != 0 {
  1191  						chunk.scavenged.setRange(s.I, s.N)
  1192  					}
  1193  				}
  1194  			}
  1195  		}
  1196  
  1197  		// Apply alloc state.
  1198  		for _, s := range init {
  1199  			// Ignore the case of s.N == 0. allocRange doesn't handle
  1200  			// it and it's a no-op anyway.
  1201  			if s.N != 0 {
  1202  				chunk.allocRange(s.I, s.N)
  1203  
  1204  				// Make sure the scavenge index is updated.
  1205  				p.scav.index.alloc(ci, s.N)
  1206  			}
  1207  		}
  1208  
  1209  		// Update heap metadata for the allocRange calls above.
  1210  		systemstack(func() {
  1211  			lock(p.mheapLock)
  1212  			p.update(addr, pallocChunkPages, false, false)
  1213  			unlock(p.mheapLock)
  1214  		})
  1215  	}
  1216  
  1217  	return (*PageAlloc)(p)
  1218  }
  1219  
  1220  // FreePageAlloc releases hard OS resources owned by the pageAlloc. Once this
  1221  // is called the pageAlloc may no longer be used. The object itself will be
  1222  // collected by the garbage collector once it is no longer live.
  1223  func FreePageAlloc(pp *PageAlloc) {
  1224  	p := (*pageAlloc)(pp)
  1225  
  1226  	// Free all the mapped space for the summary levels.
  1227  	if pageAlloc64Bit != 0 {
  1228  		for l := 0; l < summaryLevels; l++ {
  1229  			sysFreeOS(unsafe.Pointer(&p.summary[l][0]), uintptr(cap(p.summary[l]))*pallocSumBytes)
  1230  		}
  1231  	} else {
  1232  		resSize := uintptr(0)
  1233  		for _, s := range p.summary {
  1234  			resSize += uintptr(cap(s)) * pallocSumBytes
  1235  		}
  1236  		sysFreeOS(unsafe.Pointer(&p.summary[0][0]), alignUp(resSize, physPageSize))
  1237  	}
  1238  
  1239  	// Free extra data structures.
  1240  	sysFreeOS(unsafe.Pointer(&p.scav.index.chunks[0]), uintptr(cap(p.scav.index.chunks))*unsafe.Sizeof(atomicScavChunkData{}))
  1241  
  1242  	// Subtract back out whatever we mapped for the summaries.
  1243  	// sysUsed adds to p.sysStat and memstats.mappedReady no matter what
  1244  	// (and in anger should actually be accounted for), and there's no other
  1245  	// way to figure out how much we actually mapped.
  1246  	gcController.mappedReady.Add(-int64(p.summaryMappedReady))
  1247  	testSysStat.add(-int64(p.summaryMappedReady))
  1248  
  1249  	// Free the mapped space for chunks.
  1250  	for i := range p.chunks {
  1251  		if x := p.chunks[i]; x != nil {
  1252  			p.chunks[i] = nil
  1253  			// This memory comes from sysAlloc and will always be page-aligned.
  1254  			sysFree(unsafe.Pointer(x), unsafe.Sizeof(*p.chunks[0]), testSysStat)
  1255  		}
  1256  	}
  1257  }
  1258  
  1259  // BaseChunkIdx is a convenient chunkIdx value which works on both
  1260  // 64 bit and 32 bit platforms, allowing the tests to share code
  1261  // between the two.
  1262  //
  1263  // This should not be higher than 0x100*pallocChunkBytes to support
  1264  // mips and mipsle, which only have 31-bit address spaces.
  1265  var BaseChunkIdx = func() ChunkIdx {
  1266  	var prefix uintptr
  1267  	if pageAlloc64Bit != 0 {
  1268  		prefix = 0xc000
  1269  	} else {
  1270  		prefix = 0x100
  1271  	}
  1272  	baseAddr := prefix * pallocChunkBytes
  1273  	if goos.IsAix != 0 {
  1274  		baseAddr += arenaBaseOffset
  1275  	}
  1276  	return ChunkIdx(chunkIndex(baseAddr))
  1277  }()
  1278  
  1279  // PageBase returns an address given a chunk index and a page index
  1280  // relative to that chunk.
  1281  func PageBase(c ChunkIdx, pageIdx uint) uintptr {
  1282  	return chunkBase(chunkIdx(c)) + uintptr(pageIdx)*pageSize
  1283  }
  1284  
  1285  type BitsMismatch struct {
  1286  	Base      uintptr
  1287  	Got, Want uint64
  1288  }
  1289  
  1290  func CheckScavengedBitsCleared(mismatches []BitsMismatch) (n int, ok bool) {
  1291  	ok = true
  1292  
  1293  	// Run on the system stack to avoid stack growth allocation.
  1294  	systemstack(func() {
  1295  		getg().m.mallocing++
  1296  
  1297  		// Lock so that we can safely access the bitmap.
  1298  		lock(&mheap_.lock)
  1299  	chunkLoop:
  1300  		for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
  1301  			chunk := mheap_.pages.tryChunkOf(i)
  1302  			if chunk == nil {
  1303  				continue
  1304  			}
  1305  			for j := 0; j < pallocChunkPages/64; j++ {
  1306  				// Run over each 64-bit bitmap section and ensure
  1307  				// scavenged is being cleared properly on allocation.
  1308  				// If a used bit and scavenged bit are both set, that's
  1309  				// an error, and could indicate a larger problem, or
  1310  				// an accounting problem.
  1311  				want := chunk.scavenged[j] &^ chunk.pallocBits[j]
  1312  				got := chunk.scavenged[j]
  1313  				if want != got {
  1314  					ok = false
  1315  					if n >= len(mismatches) {
  1316  						break chunkLoop
  1317  					}
  1318  					mismatches[n] = BitsMismatch{
  1319  						Base: chunkBase(i) + uintptr(j)*64*pageSize,
  1320  						Got:  got,
  1321  						Want: want,
  1322  					}
  1323  					n++
  1324  				}
  1325  			}
  1326  		}
  1327  		unlock(&mheap_.lock)
  1328  
  1329  		getg().m.mallocing--
  1330  	})
  1331  	return
  1332  }
  1333  
  1334  func PageCachePagesLeaked() (leaked uintptr) {
  1335  	stw := stopTheWorld(stwForTestPageCachePagesLeaked)
  1336  
  1337  	// Walk over destroyed Ps and look for unflushed caches.
  1338  	deadp := allp[len(allp):cap(allp)]
  1339  	for _, p := range deadp {
  1340  		// Since we're going past len(allp) we may see nil Ps.
  1341  		// Just ignore them.
  1342  		if p != nil {
  1343  			leaked += uintptr(sys.OnesCount64(p.pcache.cache))
  1344  		}
  1345  	}
  1346  
  1347  	startTheWorld(stw)
  1348  	return
  1349  }
  1350  
  1351  type Mutex = mutex
  1352  
  1353  var Lock = lock
  1354  var Unlock = unlock
  1355  
  1356  var MutexContended = mutexContended
  1357  
  1358  func SemRootLock(addr *uint32) *mutex {
  1359  	root := semtable.rootFor(addr)
  1360  	return &root.lock
  1361  }
  1362  
  1363  var Semacquire = semacquire
  1364  var Semrelease1 = semrelease1
  1365  
  1366  func SemNwait(addr *uint32) uint32 {
  1367  	root := semtable.rootFor(addr)
  1368  	return root.nwait.Load()
  1369  }
  1370  
  1371  const SemTableSize = semTabSize
  1372  
  1373  // SemTable is a wrapper around semTable exported for testing.
  1374  type SemTable struct {
  1375  	semTable
  1376  }
  1377  
  1378  // Enqueue simulates enqueuing a waiter for a semaphore (or lock) at addr.
  1379  func (t *SemTable) Enqueue(addr *uint32) {
  1380  	s := acquireSudog()
  1381  	s.releasetime = 0
  1382  	s.acquiretime = 0
  1383  	s.ticket = 0
  1384  	t.semTable.rootFor(addr).queue(addr, s, false)
  1385  }
  1386  
  1387  // Dequeue simulates dequeuing a waiter for a semaphore (or lock) at addr.
  1388  //
  1389  // Returns true if there actually was a waiter to be dequeued.
  1390  func (t *SemTable) Dequeue(addr *uint32) bool {
  1391  	s, _, _ := t.semTable.rootFor(addr).dequeue(addr)
  1392  	if s != nil {
  1393  		releaseSudog(s)
  1394  		return true
  1395  	}
  1396  	return false
  1397  }
  1398  
  1399  // mspan wrapper for testing.
  1400  type MSpan mspan
  1401  
  1402  // Allocate an mspan for testing.
  1403  func AllocMSpan() *MSpan {
  1404  	var s *mspan
  1405  	systemstack(func() {
  1406  		lock(&mheap_.lock)
  1407  		s = (*mspan)(mheap_.spanalloc.alloc())
  1408  		unlock(&mheap_.lock)
  1409  	})
  1410  	return (*MSpan)(s)
  1411  }
  1412  
  1413  // Free an allocated mspan.
  1414  func FreeMSpan(s *MSpan) {
  1415  	systemstack(func() {
  1416  		lock(&mheap_.lock)
  1417  		mheap_.spanalloc.free(unsafe.Pointer(s))
  1418  		unlock(&mheap_.lock)
  1419  	})
  1420  }
  1421  
  1422  func MSpanCountAlloc(ms *MSpan, bits []byte) int {
  1423  	s := (*mspan)(ms)
  1424  	s.nelems = uint16(len(bits) * 8)
  1425  	s.gcmarkBits = (*gcBits)(unsafe.Pointer(&bits[0]))
  1426  	result := s.countAlloc()
  1427  	s.gcmarkBits = nil
  1428  	return result
  1429  }
  1430  
  1431  const (
  1432  	TimeHistSubBucketBits = timeHistSubBucketBits
  1433  	TimeHistNumSubBuckets = timeHistNumSubBuckets
  1434  	TimeHistNumBuckets    = timeHistNumBuckets
  1435  	TimeHistMinBucketBits = timeHistMinBucketBits
  1436  	TimeHistMaxBucketBits = timeHistMaxBucketBits
  1437  )
  1438  
  1439  type TimeHistogram timeHistogram
  1440  
  1441  // Counts returns the counts for the given bucket, subBucket indices.
  1442  // Returns true if the bucket was valid, otherwise returns the counts
  1443  // for the overflow bucket if bucket > 0 or the underflow bucket if
  1444  // bucket < 0, and false.
  1445  func (th *TimeHistogram) Count(bucket, subBucket int) (uint64, bool) {
  1446  	t := (*timeHistogram)(th)
  1447  	if bucket < 0 {
  1448  		return t.underflow.Load(), false
  1449  	}
  1450  	i := bucket*TimeHistNumSubBuckets + subBucket
  1451  	if i >= len(t.counts) {
  1452  		return t.overflow.Load(), false
  1453  	}
  1454  	return t.counts[i].Load(), true
  1455  }
  1456  
  1457  func (th *TimeHistogram) Record(duration int64) {
  1458  	(*timeHistogram)(th).record(duration)
  1459  }
  1460  
  1461  var TimeHistogramMetricsBuckets = timeHistogramMetricsBuckets
  1462  
  1463  func SetIntArgRegs(a int) int {
  1464  	lock(&finlock)
  1465  	old := intArgRegs
  1466  	if a >= 0 {
  1467  		intArgRegs = a
  1468  	}
  1469  	unlock(&finlock)
  1470  	return old
  1471  }
  1472  
  1473  func FinalizerGAsleep() bool {
  1474  	return fingStatus.Load()&fingWait != 0
  1475  }
  1476  
  1477  // For GCTestMoveStackOnNextCall, it's important not to introduce an
  1478  // extra layer of call, since then there's a return before the "real"
  1479  // next call.
  1480  var GCTestMoveStackOnNextCall = gcTestMoveStackOnNextCall
  1481  
  1482  // For GCTestIsReachable, it's important that we do this as a call so
  1483  // escape analysis can see through it.
  1484  func GCTestIsReachable(ptrs ...unsafe.Pointer) (mask uint64) {
  1485  	return gcTestIsReachable(ptrs...)
  1486  }
  1487  
  1488  // For GCTestPointerClass, it's important that we do this as a call so
  1489  // escape analysis can see through it.
  1490  //
  1491  // This is nosplit because gcTestPointerClass is.
  1492  //
  1493  //go:nosplit
  1494  func GCTestPointerClass(p unsafe.Pointer) string {
  1495  	return gcTestPointerClass(p)
  1496  }
  1497  
  1498  const Raceenabled = raceenabled
  1499  
  1500  const (
  1501  	GCBackgroundUtilization            = gcBackgroundUtilization
  1502  	GCGoalUtilization                  = gcGoalUtilization
  1503  	DefaultHeapMinimum                 = defaultHeapMinimum
  1504  	MemoryLimitHeapGoalHeadroomPercent = memoryLimitHeapGoalHeadroomPercent
  1505  	MemoryLimitMinHeapGoalHeadroom     = memoryLimitMinHeapGoalHeadroom
  1506  )
  1507  
  1508  type GCController struct {
  1509  	gcControllerState
  1510  }
  1511  
  1512  func NewGCController(gcPercent int, memoryLimit int64) *GCController {
  1513  	// Force the controller to escape. We're going to
  1514  	// do 64-bit atomics on it, and if it gets stack-allocated
  1515  	// on a 32-bit architecture, it may get allocated unaligned
  1516  	// space.
  1517  	g := Escape(new(GCController))
  1518  	g.gcControllerState.test = true // Mark it as a test copy.
  1519  	g.init(int32(gcPercent), memoryLimit)
  1520  	return g
  1521  }
  1522  
  1523  func (c *GCController) StartCycle(stackSize, globalsSize uint64, scannableFrac float64, gomaxprocs int) {
  1524  	trigger, _ := c.trigger()
  1525  	if c.heapMarked > trigger {
  1526  		trigger = c.heapMarked
  1527  	}
  1528  	c.maxStackScan.Store(stackSize)
  1529  	c.globalsScan.Store(globalsSize)
  1530  	c.heapLive.Store(trigger)
  1531  	c.heapScan.Add(int64(float64(trigger-c.heapMarked) * scannableFrac))
  1532  	c.startCycle(0, gomaxprocs, gcTrigger{kind: gcTriggerHeap})
  1533  }
  1534  
  1535  func (c *GCController) AssistWorkPerByte() float64 {
  1536  	return c.assistWorkPerByte.Load()
  1537  }
  1538  
  1539  func (c *GCController) HeapGoal() uint64 {
  1540  	return c.heapGoal()
  1541  }
  1542  
  1543  func (c *GCController) HeapLive() uint64 {
  1544  	return c.heapLive.Load()
  1545  }
  1546  
  1547  func (c *GCController) HeapMarked() uint64 {
  1548  	return c.heapMarked
  1549  }
  1550  
  1551  func (c *GCController) Triggered() uint64 {
  1552  	return c.triggered
  1553  }
  1554  
  1555  type GCControllerReviseDelta struct {
  1556  	HeapLive        int64
  1557  	HeapScan        int64
  1558  	HeapScanWork    int64
  1559  	StackScanWork   int64
  1560  	GlobalsScanWork int64
  1561  }
  1562  
  1563  func (c *GCController) Revise(d GCControllerReviseDelta) {
  1564  	c.heapLive.Add(d.HeapLive)
  1565  	c.heapScan.Add(d.HeapScan)
  1566  	c.heapScanWork.Add(d.HeapScanWork)
  1567  	c.stackScanWork.Add(d.StackScanWork)
  1568  	c.globalsScanWork.Add(d.GlobalsScanWork)
  1569  	c.revise()
  1570  }
  1571  
  1572  func (c *GCController) EndCycle(bytesMarked uint64, assistTime, elapsed int64, gomaxprocs int) {
  1573  	c.assistTime.Store(assistTime)
  1574  	c.endCycle(elapsed, gomaxprocs, false)
  1575  	c.resetLive(bytesMarked)
  1576  	c.commit(false)
  1577  }
  1578  
  1579  func (c *GCController) AddIdleMarkWorker() bool {
  1580  	return c.addIdleMarkWorker()
  1581  }
  1582  
  1583  func (c *GCController) NeedIdleMarkWorker() bool {
  1584  	return c.needIdleMarkWorker()
  1585  }
  1586  
  1587  func (c *GCController) RemoveIdleMarkWorker() {
  1588  	c.removeIdleMarkWorker()
  1589  }
  1590  
  1591  func (c *GCController) SetMaxIdleMarkWorkers(max int32) {
  1592  	c.setMaxIdleMarkWorkers(max)
  1593  }
  1594  
  1595  var alwaysFalse bool
  1596  var escapeSink any
  1597  
  1598  func Escape[T any](x T) T {
  1599  	if alwaysFalse {
  1600  		escapeSink = x
  1601  	}
  1602  	return x
  1603  }
  1604  
  1605  // Acquirem blocks preemption.
  1606  func Acquirem() {
  1607  	acquirem()
  1608  }
  1609  
  1610  func Releasem() {
  1611  	releasem(getg().m)
  1612  }
  1613  
  1614  var Timediv = timediv
  1615  
  1616  type PIController struct {
  1617  	piController
  1618  }
  1619  
  1620  func NewPIController(kp, ti, tt, min, max float64) *PIController {
  1621  	return &PIController{piController{
  1622  		kp:  kp,
  1623  		ti:  ti,
  1624  		tt:  tt,
  1625  		min: min,
  1626  		max: max,
  1627  	}}
  1628  }
  1629  
  1630  func (c *PIController) Next(input, setpoint, period float64) (float64, bool) {
  1631  	return c.piController.next(input, setpoint, period)
  1632  }
  1633  
  1634  const (
  1635  	CapacityPerProc          = capacityPerProc
  1636  	GCCPULimiterUpdatePeriod = gcCPULimiterUpdatePeriod
  1637  )
  1638  
  1639  type GCCPULimiter struct {
  1640  	limiter gcCPULimiterState
  1641  }
  1642  
  1643  func NewGCCPULimiter(now int64, gomaxprocs int32) *GCCPULimiter {
  1644  	// Force the controller to escape. We're going to
  1645  	// do 64-bit atomics on it, and if it gets stack-allocated
  1646  	// on a 32-bit architecture, it may get allocated unaligned
  1647  	// space.
  1648  	l := Escape(new(GCCPULimiter))
  1649  	l.limiter.test = true
  1650  	l.limiter.resetCapacity(now, gomaxprocs)
  1651  	return l
  1652  }
  1653  
  1654  func (l *GCCPULimiter) Fill() uint64 {
  1655  	return l.limiter.bucket.fill
  1656  }
  1657  
  1658  func (l *GCCPULimiter) Capacity() uint64 {
  1659  	return l.limiter.bucket.capacity
  1660  }
  1661  
  1662  func (l *GCCPULimiter) Overflow() uint64 {
  1663  	return l.limiter.overflow
  1664  }
  1665  
  1666  func (l *GCCPULimiter) Limiting() bool {
  1667  	return l.limiter.limiting()
  1668  }
  1669  
  1670  func (l *GCCPULimiter) NeedUpdate(now int64) bool {
  1671  	return l.limiter.needUpdate(now)
  1672  }
  1673  
  1674  func (l *GCCPULimiter) StartGCTransition(enableGC bool, now int64) {
  1675  	l.limiter.startGCTransition(enableGC, now)
  1676  }
  1677  
  1678  func (l *GCCPULimiter) FinishGCTransition(now int64) {
  1679  	l.limiter.finishGCTransition(now)
  1680  }
  1681  
  1682  func (l *GCCPULimiter) Update(now int64) {
  1683  	l.limiter.update(now)
  1684  }
  1685  
  1686  func (l *GCCPULimiter) AddAssistTime(t int64) {
  1687  	l.limiter.addAssistTime(t)
  1688  }
  1689  
  1690  func (l *GCCPULimiter) ResetCapacity(now int64, nprocs int32) {
  1691  	l.limiter.resetCapacity(now, nprocs)
  1692  }
  1693  
  1694  const ScavengePercent = scavengePercent
  1695  
  1696  type Scavenger struct {
  1697  	Sleep      func(int64) int64
  1698  	Scavenge   func(uintptr) (uintptr, int64)
  1699  	ShouldStop func() bool
  1700  	GoMaxProcs func() int32
  1701  
  1702  	released  atomic.Uintptr
  1703  	scavenger scavengerState
  1704  	stop      chan<- struct{}
  1705  	done      <-chan struct{}
  1706  }
  1707  
  1708  func (s *Scavenger) Start() {
  1709  	if s.Sleep == nil || s.Scavenge == nil || s.ShouldStop == nil || s.GoMaxProcs == nil {
  1710  		panic("must populate all stubs")
  1711  	}
  1712  
  1713  	// Install hooks.
  1714  	s.scavenger.sleepStub = s.Sleep
  1715  	s.scavenger.scavenge = s.Scavenge
  1716  	s.scavenger.shouldStop = s.ShouldStop
  1717  	s.scavenger.gomaxprocs = s.GoMaxProcs
  1718  
  1719  	// Start up scavenger goroutine, and wait for it to be ready.
  1720  	stop := make(chan struct{})
  1721  	s.stop = stop
  1722  	done := make(chan struct{})
  1723  	s.done = done
  1724  	go func() {
  1725  		// This should match bgscavenge, loosely.
  1726  		s.scavenger.init()
  1727  		s.scavenger.park()
  1728  		for {
  1729  			select {
  1730  			case <-stop:
  1731  				close(done)
  1732  				return
  1733  			default:
  1734  			}
  1735  			released, workTime := s.scavenger.run()
  1736  			if released == 0 {
  1737  				s.scavenger.park()
  1738  				continue
  1739  			}
  1740  			s.released.Add(released)
  1741  			s.scavenger.sleep(workTime)
  1742  		}
  1743  	}()
  1744  	if !s.BlockUntilParked(1e9 /* 1 second */) {
  1745  		panic("timed out waiting for scavenger to get ready")
  1746  	}
  1747  }
  1748  
  1749  // BlockUntilParked blocks until the scavenger parks, or until
  1750  // timeout is exceeded. Returns true if the scavenger parked.
  1751  //
  1752  // Note that in testing, parked means something slightly different.
  1753  // In anger, the scavenger parks to sleep, too, but in testing,
  1754  // it only parks when it actually has no work to do.
  1755  func (s *Scavenger) BlockUntilParked(timeout int64) bool {
  1756  	// Just spin, waiting for it to park.
  1757  	//
  1758  	// The actual parking process is racy with respect to
  1759  	// wakeups, which is fine, but for testing we need something
  1760  	// a bit more robust.
  1761  	start := nanotime()
  1762  	for nanotime()-start < timeout {
  1763  		lock(&s.scavenger.lock)
  1764  		parked := s.scavenger.parked
  1765  		unlock(&s.scavenger.lock)
  1766  		if parked {
  1767  			return true
  1768  		}
  1769  		Gosched()
  1770  	}
  1771  	return false
  1772  }
  1773  
  1774  // Released returns how many bytes the scavenger released.
  1775  func (s *Scavenger) Released() uintptr {
  1776  	return s.released.Load()
  1777  }
  1778  
  1779  // Wake wakes up a parked scavenger to keep running.
  1780  func (s *Scavenger) Wake() {
  1781  	s.scavenger.wake()
  1782  }
  1783  
  1784  // Stop cleans up the scavenger's resources. The scavenger
  1785  // must be parked for this to work.
  1786  func (s *Scavenger) Stop() {
  1787  	lock(&s.scavenger.lock)
  1788  	parked := s.scavenger.parked
  1789  	unlock(&s.scavenger.lock)
  1790  	if !parked {
  1791  		panic("tried to clean up scavenger that is not parked")
  1792  	}
  1793  	close(s.stop)
  1794  	s.Wake()
  1795  	<-s.done
  1796  }
  1797  
  1798  type ScavengeIndex struct {
  1799  	i scavengeIndex
  1800  }
  1801  
  1802  func NewScavengeIndex(min, max ChunkIdx) *ScavengeIndex {
  1803  	s := new(ScavengeIndex)
  1804  	// This is a bit lazy but we easily guarantee we'll be able
  1805  	// to reference all the relevant chunks. The worst-case
  1806  	// memory usage here is 512 MiB, but tests generally use
  1807  	// small offsets from BaseChunkIdx, which results in ~100s
  1808  	// of KiB in memory use.
  1809  	//
  1810  	// This may still be worth making better, at least by sharing
  1811  	// this fairly large array across calls with a sync.Pool or
  1812  	// something. Currently, when the tests are run serially,
  1813  	// it takes around 0.5s. Not all that much, but if we have
  1814  	// a lot of tests like this it could add up.
  1815  	s.i.chunks = make([]atomicScavChunkData, max)
  1816  	s.i.min.Store(uintptr(min))
  1817  	s.i.max.Store(uintptr(max))
  1818  	s.i.minHeapIdx.Store(uintptr(min))
  1819  	s.i.test = true
  1820  	return s
  1821  }
  1822  
  1823  func (s *ScavengeIndex) Find(force bool) (ChunkIdx, uint) {
  1824  	ci, off := s.i.find(force)
  1825  	return ChunkIdx(ci), off
  1826  }
  1827  
  1828  func (s *ScavengeIndex) AllocRange(base, limit uintptr) {
  1829  	sc, ec := chunkIndex(base), chunkIndex(limit-1)
  1830  	si, ei := chunkPageIndex(base), chunkPageIndex(limit-1)
  1831  
  1832  	if sc == ec {
  1833  		// The range doesn't cross any chunk boundaries.
  1834  		s.i.alloc(sc, ei+1-si)
  1835  	} else {
  1836  		// The range crosses at least one chunk boundary.
  1837  		s.i.alloc(sc, pallocChunkPages-si)
  1838  		for c := sc + 1; c < ec; c++ {
  1839  			s.i.alloc(c, pallocChunkPages)
  1840  		}
  1841  		s.i.alloc(ec, ei+1)
  1842  	}
  1843  }
  1844  
  1845  func (s *ScavengeIndex) FreeRange(base, limit uintptr) {
  1846  	sc, ec := chunkIndex(base), chunkIndex(limit-1)
  1847  	si, ei := chunkPageIndex(base), chunkPageIndex(limit-1)
  1848  
  1849  	if sc == ec {
  1850  		// The range doesn't cross any chunk boundaries.
  1851  		s.i.free(sc, si, ei+1-si)
  1852  	} else {
  1853  		// The range crosses at least one chunk boundary.
  1854  		s.i.free(sc, si, pallocChunkPages-si)
  1855  		for c := sc + 1; c < ec; c++ {
  1856  			s.i.free(c, 0, pallocChunkPages)
  1857  		}
  1858  		s.i.free(ec, 0, ei+1)
  1859  	}
  1860  }
  1861  
  1862  func (s *ScavengeIndex) ResetSearchAddrs() {
  1863  	for _, a := range []*atomicOffAddr{&s.i.searchAddrBg, &s.i.searchAddrForce} {
  1864  		addr, marked := a.Load()
  1865  		if marked {
  1866  			a.StoreUnmark(addr, addr)
  1867  		}
  1868  		a.Clear()
  1869  	}
  1870  	s.i.freeHWM = minOffAddr
  1871  }
  1872  
  1873  func (s *ScavengeIndex) NextGen() {
  1874  	s.i.nextGen()
  1875  }
  1876  
  1877  func (s *ScavengeIndex) SetEmpty(ci ChunkIdx) {
  1878  	s.i.setEmpty(chunkIdx(ci))
  1879  }
  1880  
  1881  func CheckPackScavChunkData(gen uint32, inUse, lastInUse uint16, flags uint8) bool {
  1882  	sc0 := scavChunkData{
  1883  		gen:            gen,
  1884  		inUse:          inUse,
  1885  		lastInUse:      lastInUse,
  1886  		scavChunkFlags: scavChunkFlags(flags),
  1887  	}
  1888  	scp := sc0.pack()
  1889  	sc1 := unpackScavChunkData(scp)
  1890  	return sc0 == sc1
  1891  }
  1892  
  1893  const GTrackingPeriod = gTrackingPeriod
  1894  
  1895  var ZeroBase = unsafe.Pointer(&zerobase)
  1896  
  1897  const UserArenaChunkBytes = userArenaChunkBytes
  1898  
  1899  type UserArena struct {
  1900  	arena *userArena
  1901  }
  1902  
  1903  func NewUserArena() *UserArena {
  1904  	return &UserArena{newUserArena()}
  1905  }
  1906  
  1907  func (a *UserArena) New(out *any) {
  1908  	i := efaceOf(out)
  1909  	typ := i._type
  1910  	if typ.Kind_&kindMask != kindPtr {
  1911  		panic("new result of non-ptr type")
  1912  	}
  1913  	typ = (*ptrtype)(unsafe.Pointer(typ)).Elem
  1914  	i.data = a.arena.new(typ)
  1915  }
  1916  
  1917  func (a *UserArena) Slice(sl any, cap int) {
  1918  	a.arena.slice(sl, cap)
  1919  }
  1920  
  1921  func (a *UserArena) Free() {
  1922  	a.arena.free()
  1923  }
  1924  
  1925  func GlobalWaitingArenaChunks() int {
  1926  	n := 0
  1927  	systemstack(func() {
  1928  		lock(&mheap_.lock)
  1929  		for s := mheap_.userArena.quarantineList.first; s != nil; s = s.next {
  1930  			n++
  1931  		}
  1932  		unlock(&mheap_.lock)
  1933  	})
  1934  	return n
  1935  }
  1936  
  1937  func UserArenaClone[T any](s T) T {
  1938  	return arena_heapify(s).(T)
  1939  }
  1940  
  1941  var AlignUp = alignUp
  1942  
  1943  func BlockUntilEmptyFinalizerQueue(timeout int64) bool {
  1944  	return blockUntilEmptyFinalizerQueue(timeout)
  1945  }
  1946  
  1947  func FrameStartLine(f *Frame) int {
  1948  	return f.startLine
  1949  }
  1950  
  1951  // PersistentAlloc allocates some memory that lives outside the Go heap.
  1952  // This memory will never be freed; use sparingly.
  1953  func PersistentAlloc(n uintptr) unsafe.Pointer {
  1954  	return persistentalloc(n, 0, &memstats.other_sys)
  1955  }
  1956  
  1957  // FPCallers works like Callers and uses frame pointer unwinding to populate
  1958  // pcBuf with the return addresses of the physical frames on the stack.
  1959  func FPCallers(pcBuf []uintptr) int {
  1960  	return fpTracebackPCs(unsafe.Pointer(getfp()), pcBuf)
  1961  }
  1962  
  1963  const FramePointerEnabled = framepointer_enabled
  1964  
  1965  var (
  1966  	IsPinned      = isPinned
  1967  	GetPinCounter = pinnerGetPinCounter
  1968  )
  1969  
  1970  func SetPinnerLeakPanic(f func()) {
  1971  	pinnerLeakPanic = f
  1972  }
  1973  func GetPinnerLeakPanic() func() {
  1974  	return pinnerLeakPanic
  1975  }
  1976  
  1977  var testUintptr uintptr
  1978  
  1979  func MyGenericFunc[T any]() {
  1980  	systemstack(func() {
  1981  		testUintptr = 4
  1982  	})
  1983  }
  1984  
  1985  func UnsafePoint(pc uintptr) bool {
  1986  	fi := findfunc(pc)
  1987  	v := pcdatavalue(fi, abi.PCDATA_UnsafePoint, pc)
  1988  	switch v {
  1989  	case abi.UnsafePointUnsafe:
  1990  		return true
  1991  	case abi.UnsafePointSafe:
  1992  		return false
  1993  	case abi.UnsafePointRestart1, abi.UnsafePointRestart2, abi.UnsafePointRestartAtEntry:
  1994  		// These are all interruptible, they just encode a nonstandard
  1995  		// way of recovering when interrupted.
  1996  		return false
  1997  	default:
  1998  		var buf [20]byte
  1999  		panic("invalid unsafe point code " + string(itoa(buf[:], uint64(v))))
  2000  	}
  2001  }
  2002  

View as plain text