...

Source file src/sync/pool.go

Documentation: sync

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package sync
     6  
     7  import (
     8  	"internal/race"
     9  	"runtime"
    10  	"sync/atomic"
    11  	"unsafe"
    12  )
    13  
    14  // A Pool is a set of temporary objects that may be individually saved and
    15  // retrieved.
    16  //
    17  // Any item stored in the Pool may be removed automatically at any time without
    18  // notification. If the Pool holds the only reference when this happens, the
    19  // item might be deallocated.
    20  //
    21  // A Pool is safe for use by multiple goroutines simultaneously.
    22  //
    23  // Pool's purpose is to cache allocated but unused items for later reuse,
    24  // relieving pressure on the garbage collector. That is, it makes it easy to
    25  // build efficient, thread-safe free lists. However, it is not suitable for all
    26  // free lists.
    27  //
    28  // An appropriate use of a Pool is to manage a group of temporary items
    29  // silently shared among and potentially reused by concurrent independent
    30  // clients of a package. Pool provides a way to amortize allocation overhead
    31  // across many clients.
    32  //
    33  // An example of good use of a Pool is in the fmt package, which maintains a
    34  // dynamically-sized store of temporary output buffers. The store scales under
    35  // load (when many goroutines are actively printing) and shrinks when
    36  // quiescent.
    37  //
    38  // On the other hand, a free list maintained as part of a short-lived object is
    39  // not a suitable use for a Pool, since the overhead does not amortize well in
    40  // that scenario. It is more efficient to have such objects implement their own
    41  // free list.
    42  //
    43  // A Pool must not be copied after first use.
    44  //
    45  // In the terminology of the Go memory model, a call to Put(x) “synchronizes before”
    46  // a call to Get returning that same value x.
    47  // Similarly, a call to New returning x “synchronizes before”
    48  // a call to Get returning that same value x.
    49  type Pool struct {
    50  	noCopy noCopy
    51  
    52  	local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
    53  	localSize uintptr        // size of the local array
    54  
    55  	victim     unsafe.Pointer // local from previous cycle
    56  	victimSize uintptr        // size of victims array
    57  
    58  	// New optionally specifies a function to generate
    59  	// a value when Get would otherwise return nil.
    60  	// It may not be changed concurrently with calls to Get.
    61  	New func() any
    62  }
    63  
    64  // Local per-P Pool appendix.
    65  type poolLocalInternal struct {
    66  	private any       // Can be used only by the respective P.
    67  	shared  poolChain // Local P can pushHead/popHead; any P can popTail.
    68  }
    69  
    70  type poolLocal struct {
    71  	poolLocalInternal
    72  
    73  	// Prevents false sharing on widespread platforms with
    74  	// 128 mod (cache line size) = 0 .
    75  	pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
    76  }
    77  
    78  // from runtime
    79  //go:linkname runtime_randn runtime.randn
    80  func runtime_randn(n uint32) uint32
    81  
    82  var poolRaceHash [128]uint64
    83  
    84  // poolRaceAddr returns an address to use as the synchronization point
    85  // for race detector logic. We don't use the actual pointer stored in x
    86  // directly, for fear of conflicting with other synchronization on that address.
    87  // Instead, we hash the pointer to get an index into poolRaceHash.
    88  // See discussion on golang.org/cl/31589.
    89  func poolRaceAddr(x any) unsafe.Pointer {
    90  	ptr := uintptr((*[2]unsafe.Pointer)(unsafe.Pointer(&x))[1])
    91  	h := uint32((uint64(uint32(ptr)) * 0x85ebca6b) >> 16)
    92  	return unsafe.Pointer(&poolRaceHash[h%uint32(len(poolRaceHash))])
    93  }
    94  
    95  // Put adds x to the pool.
    96  func (p *Pool) Put(x any) {
    97  	if x == nil {
    98  		return
    99  	}
   100  	if race.Enabled {
   101  		if runtime_randn(4) == 0 {
   102  			// Randomly drop x on floor.
   103  			return
   104  		}
   105  		race.ReleaseMerge(poolRaceAddr(x))
   106  		race.Disable()
   107  	}
   108  	l, _ := p.pin()
   109  	if l.private == nil {
   110  		l.private = x
   111  	} else {
   112  		l.shared.pushHead(x)
   113  	}
   114  	runtime_procUnpin()
   115  	if race.Enabled {
   116  		race.Enable()
   117  	}
   118  }
   119  
   120  // Get selects an arbitrary item from the Pool, removes it from the
   121  // Pool, and returns it to the caller.
   122  // Get may choose to ignore the pool and treat it as empty.
   123  // Callers should not assume any relation between values passed to Put and
   124  // the values returned by Get.
   125  //
   126  // If Get would otherwise return nil and p.New is non-nil, Get returns
   127  // the result of calling p.New.
   128  func (p *Pool) Get() any {
   129  	if race.Enabled {
   130  		race.Disable()
   131  	}
   132  	l, pid := p.pin()
   133  	x := l.private
   134  	l.private = nil
   135  	if x == nil {
   136  		// Try to pop the head of the local shard. We prefer
   137  		// the head over the tail for temporal locality of
   138  		// reuse.
   139  		x, _ = l.shared.popHead()
   140  		if x == nil {
   141  			x = p.getSlow(pid)
   142  		}
   143  	}
   144  	runtime_procUnpin()
   145  	if race.Enabled {
   146  		race.Enable()
   147  		if x != nil {
   148  			race.Acquire(poolRaceAddr(x))
   149  		}
   150  	}
   151  	if x == nil && p.New != nil {
   152  		x = p.New()
   153  	}
   154  	return x
   155  }
   156  
   157  func (p *Pool) getSlow(pid int) any {
   158  	// See the comment in pin regarding ordering of the loads.
   159  	size := runtime_LoadAcquintptr(&p.localSize) // load-acquire
   160  	locals := p.local                            // load-consume
   161  	// Try to steal one element from other procs.
   162  	for i := 0; i < int(size); i++ {
   163  		l := indexLocal(locals, (pid+i+1)%int(size))
   164  		if x, _ := l.shared.popTail(); x != nil {
   165  			return x
   166  		}
   167  	}
   168  
   169  	// Try the victim cache. We do this after attempting to steal
   170  	// from all primary caches because we want objects in the
   171  	// victim cache to age out if at all possible.
   172  	size = atomic.LoadUintptr(&p.victimSize)
   173  	if uintptr(pid) >= size {
   174  		return nil
   175  	}
   176  	locals = p.victim
   177  	l := indexLocal(locals, pid)
   178  	if x := l.private; x != nil {
   179  		l.private = nil
   180  		return x
   181  	}
   182  	for i := 0; i < int(size); i++ {
   183  		l := indexLocal(locals, (pid+i)%int(size))
   184  		if x, _ := l.shared.popTail(); x != nil {
   185  			return x
   186  		}
   187  	}
   188  
   189  	// Mark the victim cache as empty for future gets don't bother
   190  	// with it.
   191  	atomic.StoreUintptr(&p.victimSize, 0)
   192  
   193  	return nil
   194  }
   195  
   196  // pin pins the current goroutine to P, disables preemption and
   197  // returns poolLocal pool for the P and the P's id.
   198  // Caller must call runtime_procUnpin() when done with the pool.
   199  func (p *Pool) pin() (*poolLocal, int) {
   200  	// Check whether p is nil to get a panic.
   201  	// Otherwise the nil dereference happens while the m is pinned,
   202  	// causing a fatal error rather than a panic.
   203  	if p == nil {
   204  		panic("nil Pool")
   205  	}
   206  
   207  	pid := runtime_procPin()
   208  	// In pinSlow we store to local and then to localSize, here we load in opposite order.
   209  	// Since we've disabled preemption, GC cannot happen in between.
   210  	// Thus here we must observe local at least as large localSize.
   211  	// We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
   212  	s := runtime_LoadAcquintptr(&p.localSize) // load-acquire
   213  	l := p.local                              // load-consume
   214  	if uintptr(pid) < s {
   215  		return indexLocal(l, pid), pid
   216  	}
   217  	return p.pinSlow()
   218  }
   219  
   220  func (p *Pool) pinSlow() (*poolLocal, int) {
   221  	// Retry under the mutex.
   222  	// Can not lock the mutex while pinned.
   223  	runtime_procUnpin()
   224  	allPoolsMu.Lock()
   225  	defer allPoolsMu.Unlock()
   226  	pid := runtime_procPin()
   227  	// poolCleanup won't be called while we are pinned.
   228  	s := p.localSize
   229  	l := p.local
   230  	if uintptr(pid) < s {
   231  		return indexLocal(l, pid), pid
   232  	}
   233  	if p.local == nil {
   234  		allPools = append(allPools, p)
   235  	}
   236  	// If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
   237  	size := runtime.GOMAXPROCS(0)
   238  	local := make([]poolLocal, size)
   239  	atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-release
   240  	runtime_StoreReluintptr(&p.localSize, uintptr(size))     // store-release
   241  	return &local[pid], pid
   242  }
   243  
   244  func poolCleanup() {
   245  	// This function is called with the world stopped, at the beginning of a garbage collection.
   246  	// It must not allocate and probably should not call any runtime functions.
   247  
   248  	// Because the world is stopped, no pool user can be in a
   249  	// pinned section (in effect, this has all Ps pinned).
   250  
   251  	// Drop victim caches from all pools.
   252  	for _, p := range oldPools {
   253  		p.victim = nil
   254  		p.victimSize = 0
   255  	}
   256  
   257  	// Move primary cache to victim cache.
   258  	for _, p := range allPools {
   259  		p.victim = p.local
   260  		p.victimSize = p.localSize
   261  		p.local = nil
   262  		p.localSize = 0
   263  	}
   264  
   265  	// The pools with non-empty primary caches now have non-empty
   266  	// victim caches and no pools have primary caches.
   267  	oldPools, allPools = allPools, nil
   268  }
   269  
   270  var (
   271  	allPoolsMu Mutex
   272  
   273  	// allPools is the set of pools that have non-empty primary
   274  	// caches. Protected by either 1) allPoolsMu and pinning or 2)
   275  	// STW.
   276  	allPools []*Pool
   277  
   278  	// oldPools is the set of pools that may have non-empty victim
   279  	// caches. Protected by STW.
   280  	oldPools []*Pool
   281  )
   282  
   283  func init() {
   284  	runtime_registerPoolCleanup(poolCleanup)
   285  }
   286  
   287  func indexLocal(l unsafe.Pointer, i int) *poolLocal {
   288  	lp := unsafe.Pointer(uintptr(l) + uintptr(i)*unsafe.Sizeof(poolLocal{}))
   289  	return (*poolLocal)(lp)
   290  }
   291  
   292  // Implemented in runtime.
   293  func runtime_registerPoolCleanup(cleanup func())
   294  func runtime_procPin() int
   295  func runtime_procUnpin()
   296  
   297  // The below are implemented in runtime/internal/atomic and the
   298  // compiler also knows to intrinsify the symbol we linkname into this
   299  // package.
   300  
   301  //go:linkname runtime_LoadAcquintptr runtime/internal/atomic.LoadAcquintptr
   302  func runtime_LoadAcquintptr(ptr *uintptr) uintptr
   303  
   304  //go:linkname runtime_StoreReluintptr runtime/internal/atomic.StoreReluintptr
   305  func runtime_StoreReluintptr(ptr *uintptr, val uintptr) uintptr
   306  

View as plain text