...

Source file src/time/time.go

Documentation: time

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar, with
     8  // no leap seconds.
     9  //
    10  // # Monotonic Clocks
    11  //
    12  // Operating systems provide both a “wall clock,” which is subject to
    13  // changes for clock synchronization, and a “monotonic clock,” which is
    14  // not. The general rule is that the wall clock is for telling time and
    15  // the monotonic clock is for measuring time. Rather than split the API,
    16  // in this package the Time returned by time.Now contains both a wall
    17  // clock reading and a monotonic clock reading; later time-telling
    18  // operations use the wall clock reading, but later time-measuring
    19  // operations, specifically comparisons and subtractions, use the
    20  // monotonic clock reading.
    21  //
    22  // For example, this code always computes a positive elapsed time of
    23  // approximately 20 milliseconds, even if the wall clock is changed during
    24  // the operation being timed:
    25  //
    26  //	start := time.Now()
    27  //	... operation that takes 20 milliseconds ...
    28  //	t := time.Now()
    29  //	elapsed := t.Sub(start)
    30  //
    31  // Other idioms, such as time.Since(start), time.Until(deadline), and
    32  // time.Now().Before(deadline), are similarly robust against wall clock
    33  // resets.
    34  //
    35  // The rest of this section gives the precise details of how operations
    36  // use monotonic clocks, but understanding those details is not required
    37  // to use this package.
    38  //
    39  // The Time returned by time.Now contains a monotonic clock reading.
    40  // If Time t has a monotonic clock reading, t.Add adds the same duration to
    41  // both the wall clock and monotonic clock readings to compute the result.
    42  // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
    43  // computations, they always strip any monotonic clock reading from their results.
    44  // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
    45  // of the wall time, they also strip any monotonic clock reading from their results.
    46  // The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
    47  //
    48  // If Times t and u both contain monotonic clock readings, the operations
    49  // t.After(u), t.Before(u), t.Equal(u), t.Compare(u), and t.Sub(u) are carried out
    50  // using the monotonic clock readings alone, ignoring the wall clock
    51  // readings. If either t or u contains no monotonic clock reading, these
    52  // operations fall back to using the wall clock readings.
    53  //
    54  // On some systems the monotonic clock will stop if the computer goes to sleep.
    55  // On such a system, t.Sub(u) may not accurately reflect the actual
    56  // time that passed between t and u.
    57  //
    58  // Because the monotonic clock reading has no meaning outside
    59  // the current process, the serialized forms generated by t.GobEncode,
    60  // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
    61  // clock reading, and t.Format provides no format for it. Similarly, the
    62  // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
    63  // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
    64  // t.UnmarshalJSON, and t.UnmarshalText always create times with
    65  // no monotonic clock reading.
    66  //
    67  // The monotonic clock reading exists only in Time values. It is not
    68  // a part of Duration values or the Unix times returned by t.Unix and
    69  // friends.
    70  //
    71  // Note that the Go == operator compares not just the time instant but
    72  // also the Location and the monotonic clock reading. See the
    73  // documentation for the Time type for a discussion of equality
    74  // testing for Time values.
    75  //
    76  // For debugging, the result of t.String does include the monotonic
    77  // clock reading if present. If t != u because of different monotonic clock readings,
    78  // that difference will be visible when printing t.String() and u.String().
    79  //
    80  // # Timer Resolution
    81  //
    82  // Timer resolution varies depending on the Go runtime, the operating system
    83  // and the underlying hardware.
    84  // On Unix, the resolution is approximately 1ms.
    85  // On Windows, the default resolution is approximately 16ms, but
    86  // a higher resolution may be requested using [golang.org/x/sys/windows.TimeBeginPeriod].
    87  package time
    88  
    89  import (
    90  	"errors"
    91  	_ "unsafe" // for go:linkname
    92  )
    93  
    94  // A Time represents an instant in time with nanosecond precision.
    95  //
    96  // Programs using times should typically store and pass them as values,
    97  // not pointers. That is, time variables and struct fields should be of
    98  // type time.Time, not *time.Time.
    99  //
   100  // A Time value can be used by multiple goroutines simultaneously except
   101  // that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and
   102  // UnmarshalText are not concurrency-safe.
   103  //
   104  // Time instants can be compared using the Before, After, and Equal methods.
   105  // The Sub method subtracts two instants, producing a Duration.
   106  // The Add method adds a Time and a Duration, producing a Time.
   107  //
   108  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
   109  // As this time is unlikely to come up in practice, the IsZero method gives
   110  // a simple way of detecting a time that has not been initialized explicitly.
   111  //
   112  // Each time has an associated Location. The methods Local, UTC, and In return a
   113  // Time with a specific Location. Changing the Location of a Time value with
   114  // these methods does not change the actual instant it represents, only the time
   115  // zone in which to interpret it.
   116  //
   117  // Representations of a Time value saved by the GobEncode, MarshalBinary,
   118  // MarshalJSON, and MarshalText methods store the Time.Location's offset, but not
   119  // the location name. They therefore lose information about Daylight Saving Time.
   120  //
   121  // In addition to the required “wall clock” reading, a Time may contain an optional
   122  // reading of the current process's monotonic clock, to provide additional precision
   123  // for comparison or subtraction.
   124  // See the “Monotonic Clocks” section in the package documentation for details.
   125  //
   126  // Note that the Go == operator compares not just the time instant but also the
   127  // Location and the monotonic clock reading. Therefore, Time values should not
   128  // be used as map or database keys without first guaranteeing that the
   129  // identical Location has been set for all values, which can be achieved
   130  // through use of the UTC or Local method, and that the monotonic clock reading
   131  // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
   132  // to t == u, since t.Equal uses the most accurate comparison available and
   133  // correctly handles the case when only one of its arguments has a monotonic
   134  // clock reading.
   135  type Time struct {
   136  	// wall and ext encode the wall time seconds, wall time nanoseconds,
   137  	// and optional monotonic clock reading in nanoseconds.
   138  	//
   139  	// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
   140  	// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
   141  	// The nanoseconds field is in the range [0, 999999999].
   142  	// If the hasMonotonic bit is 0, then the 33-bit field must be zero
   143  	// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
   144  	// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
   145  	// unsigned wall seconds since Jan 1 year 1885, and ext holds a
   146  	// signed 64-bit monotonic clock reading, nanoseconds since process start.
   147  	wall uint64
   148  	ext  int64
   149  
   150  	// loc specifies the Location that should be used to
   151  	// determine the minute, hour, month, day, and year
   152  	// that correspond to this Time.
   153  	// The nil location means UTC.
   154  	// All UTC times are represented with loc==nil, never loc==&utcLoc.
   155  	loc *Location
   156  }
   157  
   158  const (
   159  	hasMonotonic = 1 << 63
   160  	maxWall      = wallToInternal + (1<<33 - 1) // year 2157
   161  	minWall      = wallToInternal               // year 1885
   162  	nsecMask     = 1<<30 - 1
   163  	nsecShift    = 30
   164  )
   165  
   166  // These helpers for manipulating the wall and monotonic clock readings
   167  // take pointer receivers, even when they don't modify the time,
   168  // to make them cheaper to call.
   169  
   170  // nsec returns the time's nanoseconds.
   171  func (t *Time) nsec() int32 {
   172  	return int32(t.wall & nsecMask)
   173  }
   174  
   175  // sec returns the time's seconds since Jan 1 year 1.
   176  func (t *Time) sec() int64 {
   177  	if t.wall&hasMonotonic != 0 {
   178  		return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
   179  	}
   180  	return t.ext
   181  }
   182  
   183  // unixSec returns the time's seconds since Jan 1 1970 (Unix time).
   184  func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
   185  
   186  // addSec adds d seconds to the time.
   187  func (t *Time) addSec(d int64) {
   188  	if t.wall&hasMonotonic != 0 {
   189  		sec := int64(t.wall << 1 >> (nsecShift + 1))
   190  		dsec := sec + d
   191  		if 0 <= dsec && dsec <= 1<<33-1 {
   192  			t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
   193  			return
   194  		}
   195  		// Wall second now out of range for packed field.
   196  		// Move to ext.
   197  		t.stripMono()
   198  	}
   199  
   200  	// Check if the sum of t.ext and d overflows and handle it properly.
   201  	sum := t.ext + d
   202  	if (sum > t.ext) == (d > 0) {
   203  		t.ext = sum
   204  	} else if d > 0 {
   205  		t.ext = 1<<63 - 1
   206  	} else {
   207  		t.ext = -(1<<63 - 1)
   208  	}
   209  }
   210  
   211  // setLoc sets the location associated with the time.
   212  func (t *Time) setLoc(loc *Location) {
   213  	if loc == &utcLoc {
   214  		loc = nil
   215  	}
   216  	t.stripMono()
   217  	t.loc = loc
   218  }
   219  
   220  // stripMono strips the monotonic clock reading in t.
   221  func (t *Time) stripMono() {
   222  	if t.wall&hasMonotonic != 0 {
   223  		t.ext = t.sec()
   224  		t.wall &= nsecMask
   225  	}
   226  }
   227  
   228  // setMono sets the monotonic clock reading in t.
   229  // If t cannot hold a monotonic clock reading,
   230  // because its wall time is too large,
   231  // setMono is a no-op.
   232  func (t *Time) setMono(m int64) {
   233  	if t.wall&hasMonotonic == 0 {
   234  		sec := t.ext
   235  		if sec < minWall || maxWall < sec {
   236  			return
   237  		}
   238  		t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
   239  	}
   240  	t.ext = m
   241  }
   242  
   243  // mono returns t's monotonic clock reading.
   244  // It returns 0 for a missing reading.
   245  // This function is used only for testing,
   246  // so it's OK that technically 0 is a valid
   247  // monotonic clock reading as well.
   248  func (t *Time) mono() int64 {
   249  	if t.wall&hasMonotonic == 0 {
   250  		return 0
   251  	}
   252  	return t.ext
   253  }
   254  
   255  // After reports whether the time instant t is after u.
   256  func (t Time) After(u Time) bool {
   257  	if t.wall&u.wall&hasMonotonic != 0 {
   258  		return t.ext > u.ext
   259  	}
   260  	ts := t.sec()
   261  	us := u.sec()
   262  	return ts > us || ts == us && t.nsec() > u.nsec()
   263  }
   264  
   265  // Before reports whether the time instant t is before u.
   266  func (t Time) Before(u Time) bool {
   267  	if t.wall&u.wall&hasMonotonic != 0 {
   268  		return t.ext < u.ext
   269  	}
   270  	ts := t.sec()
   271  	us := u.sec()
   272  	return ts < us || ts == us && t.nsec() < u.nsec()
   273  }
   274  
   275  // Compare compares the time instant t with u. If t is before u, it returns -1;
   276  // if t is after u, it returns +1; if they're the same, it returns 0.
   277  func (t Time) Compare(u Time) int {
   278  	var tc, uc int64
   279  	if t.wall&u.wall&hasMonotonic != 0 {
   280  		tc, uc = t.ext, u.ext
   281  	} else {
   282  		tc, uc = t.sec(), u.sec()
   283  		if tc == uc {
   284  			tc, uc = int64(t.nsec()), int64(u.nsec())
   285  		}
   286  	}
   287  	switch {
   288  	case tc < uc:
   289  		return -1
   290  	case tc > uc:
   291  		return +1
   292  	}
   293  	return 0
   294  }
   295  
   296  // Equal reports whether t and u represent the same time instant.
   297  // Two times can be equal even if they are in different locations.
   298  // For example, 6:00 +0200 and 4:00 UTC are Equal.
   299  // See the documentation on the Time type for the pitfalls of using == with
   300  // Time values; most code should use Equal instead.
   301  func (t Time) Equal(u Time) bool {
   302  	if t.wall&u.wall&hasMonotonic != 0 {
   303  		return t.ext == u.ext
   304  	}
   305  	return t.sec() == u.sec() && t.nsec() == u.nsec()
   306  }
   307  
   308  // A Month specifies a month of the year (January = 1, ...).
   309  type Month int
   310  
   311  const (
   312  	January Month = 1 + iota
   313  	February
   314  	March
   315  	April
   316  	May
   317  	June
   318  	July
   319  	August
   320  	September
   321  	October
   322  	November
   323  	December
   324  )
   325  
   326  // String returns the English name of the month ("January", "February", ...).
   327  func (m Month) String() string {
   328  	if January <= m && m <= December {
   329  		return longMonthNames[m-1]
   330  	}
   331  	buf := make([]byte, 20)
   332  	n := fmtInt(buf, uint64(m))
   333  	return "%!Month(" + string(buf[n:]) + ")"
   334  }
   335  
   336  // A Weekday specifies a day of the week (Sunday = 0, ...).
   337  type Weekday int
   338  
   339  const (
   340  	Sunday Weekday = iota
   341  	Monday
   342  	Tuesday
   343  	Wednesday
   344  	Thursday
   345  	Friday
   346  	Saturday
   347  )
   348  
   349  // String returns the English name of the day ("Sunday", "Monday", ...).
   350  func (d Weekday) String() string {
   351  	if Sunday <= d && d <= Saturday {
   352  		return longDayNames[d]
   353  	}
   354  	buf := make([]byte, 20)
   355  	n := fmtInt(buf, uint64(d))
   356  	return "%!Weekday(" + string(buf[n:]) + ")"
   357  }
   358  
   359  // Computations on time.
   360  //
   361  // The zero value for a Time is defined to be
   362  //	January 1, year 1, 00:00:00.000000000 UTC
   363  // which (1) looks like a zero, or as close as you can get in a date
   364  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   365  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   366  // non-negative year even in time zones west of UTC, unlike 1-1-0
   367  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   368  //
   369  // The zero Time value does not force a specific epoch for the time
   370  // representation. For example, to use the Unix epoch internally, we
   371  // could define that to distinguish a zero value from Jan 1 1970, that
   372  // time would be represented by sec=-1, nsec=1e9. However, it does
   373  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   374  // epoch, and that's what we do.
   375  //
   376  // The Add and Sub computations are oblivious to the choice of epoch.
   377  //
   378  // The presentation computations - year, month, minute, and so on - all
   379  // rely heavily on division and modulus by positive constants. For
   380  // calendrical calculations we want these divisions to round down, even
   381  // for negative values, so that the remainder is always positive, but
   382  // Go's division (like most hardware division instructions) rounds to
   383  // zero. We can still do those computations and then adjust the result
   384  // for a negative numerator, but it's annoying to write the adjustment
   385  // over and over. Instead, we can change to a different epoch so long
   386  // ago that all the times we care about will be positive, and then round
   387  // to zero and round down coincide. These presentation routines already
   388  // have to add the zone offset, so adding the translation to the
   389  // alternate epoch is cheap. For example, having a non-negative time t
   390  // means that we can write
   391  //
   392  //	sec = t % 60
   393  //
   394  // instead of
   395  //
   396  //	sec = t % 60
   397  //	if sec < 0 {
   398  //		sec += 60
   399  //	}
   400  //
   401  // everywhere.
   402  //
   403  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   404  // printed for 1970-2369 will apply as well to 2370-2769. Even the days
   405  // of the week match up. It simplifies the computations to choose the
   406  // cycle boundaries so that the exceptional years are always delayed as
   407  // long as possible. That means choosing a year equal to 1 mod 400, so
   408  // that the first leap year is the 4th year, the first missed leap year
   409  // is the 100th year, and the missed missed leap year is the 400th year.
   410  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   411  // for 2401-2800.
   412  //
   413  // Finally, it's convenient if the delta between the Unix epoch and
   414  // long-ago epoch is representable by an int64 constant.
   415  //
   416  // These three considerations—choose an epoch as early as possible, that
   417  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   418  // earlier than 1970—bring us to the year -292277022399. We refer to
   419  // this year as the absolute zero year, and to times measured as a uint64
   420  // seconds since this year as absolute times.
   421  //
   422  // Times measured as an int64 seconds since the year 1—the representation
   423  // used for Time's sec field—are called internal times.
   424  //
   425  // Times measured as an int64 seconds since the year 1970 are called Unix
   426  // times.
   427  //
   428  // It is tempting to just use the year 1 as the absolute epoch, defining
   429  // that the routines are only valid for years >= 1. However, the
   430  // routines would then be invalid when displaying the epoch in time zones
   431  // west of UTC, since it is year 0. It doesn't seem tenable to say that
   432  // printing the zero time correctly isn't supported in half the time
   433  // zones. By comparison, it's reasonable to mishandle some times in
   434  // the year -292277022399.
   435  //
   436  // All this is opaque to clients of the API and can be changed if a
   437  // better implementation presents itself.
   438  
   439  const (
   440  	// The unsigned zero year for internal calculations.
   441  	// Must be 1 mod 400, and times before it will not compute correctly,
   442  	// but otherwise can be changed at will.
   443  	absoluteZeroYear = -292277022399
   444  
   445  	// The year of the zero Time.
   446  	// Assumed by the unixToInternal computation below.
   447  	internalYear = 1
   448  
   449  	// Offsets to convert between internal and absolute or Unix times.
   450  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   451  	internalToAbsolute       = -absoluteToInternal
   452  
   453  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   454  	internalToUnix int64 = -unixToInternal
   455  
   456  	wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
   457  )
   458  
   459  // IsZero reports whether t represents the zero time instant,
   460  // January 1, year 1, 00:00:00 UTC.
   461  func (t Time) IsZero() bool {
   462  	return t.sec() == 0 && t.nsec() == 0
   463  }
   464  
   465  // abs returns the time t as an absolute time, adjusted by the zone offset.
   466  // It is called when computing a presentation property like Month or Hour.
   467  func (t Time) abs() uint64 {
   468  	l := t.loc
   469  	// Avoid function calls when possible.
   470  	if l == nil || l == &localLoc {
   471  		l = l.get()
   472  	}
   473  	sec := t.unixSec()
   474  	if l != &utcLoc {
   475  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   476  			sec += int64(l.cacheZone.offset)
   477  		} else {
   478  			_, offset, _, _, _ := l.lookup(sec)
   479  			sec += int64(offset)
   480  		}
   481  	}
   482  	return uint64(sec + (unixToInternal + internalToAbsolute))
   483  }
   484  
   485  // locabs is a combination of the Zone and abs methods,
   486  // extracting both return values from a single zone lookup.
   487  func (t Time) locabs() (name string, offset int, abs uint64) {
   488  	l := t.loc
   489  	if l == nil || l == &localLoc {
   490  		l = l.get()
   491  	}
   492  	// Avoid function call if we hit the local time cache.
   493  	sec := t.unixSec()
   494  	if l != &utcLoc {
   495  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   496  			name = l.cacheZone.name
   497  			offset = l.cacheZone.offset
   498  		} else {
   499  			name, offset, _, _, _ = l.lookup(sec)
   500  		}
   501  		sec += int64(offset)
   502  	} else {
   503  		name = "UTC"
   504  	}
   505  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   506  	return
   507  }
   508  
   509  // Date returns the year, month, and day in which t occurs.
   510  func (t Time) Date() (year int, month Month, day int) {
   511  	year, month, day, _ = t.date(true)
   512  	return
   513  }
   514  
   515  // Year returns the year in which t occurs.
   516  func (t Time) Year() int {
   517  	year, _, _, _ := t.date(false)
   518  	return year
   519  }
   520  
   521  // Month returns the month of the year specified by t.
   522  func (t Time) Month() Month {
   523  	_, month, _, _ := t.date(true)
   524  	return month
   525  }
   526  
   527  // Day returns the day of the month specified by t.
   528  func (t Time) Day() int {
   529  	_, _, day, _ := t.date(true)
   530  	return day
   531  }
   532  
   533  // Weekday returns the day of the week specified by t.
   534  func (t Time) Weekday() Weekday {
   535  	return absWeekday(t.abs())
   536  }
   537  
   538  // absWeekday is like Weekday but operates on an absolute time.
   539  func absWeekday(abs uint64) Weekday {
   540  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   541  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   542  	return Weekday(int(sec) / secondsPerDay)
   543  }
   544  
   545  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   546  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   547  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   548  // of year n+1.
   549  func (t Time) ISOWeek() (year, week int) {
   550  	// According to the rule that the first calendar week of a calendar year is
   551  	// the week including the first Thursday of that year, and that the last one is
   552  	// the week immediately preceding the first calendar week of the next calendar year.
   553  	// See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details.
   554  
   555  	// weeks start with Monday
   556  	// Monday Tuesday Wednesday Thursday Friday Saturday Sunday
   557  	// 1      2       3         4        5      6        7
   558  	// +3     +2      +1        0        -1     -2       -3
   559  	// the offset to Thursday
   560  	abs := t.abs()
   561  	d := Thursday - absWeekday(abs)
   562  	// handle Sunday
   563  	if d == 4 {
   564  		d = -3
   565  	}
   566  	// find the Thursday of the calendar week
   567  	abs += uint64(d) * secondsPerDay
   568  	year, _, _, yday := absDate(abs, false)
   569  	return year, yday/7 + 1
   570  }
   571  
   572  // Clock returns the hour, minute, and second within the day specified by t.
   573  func (t Time) Clock() (hour, min, sec int) {
   574  	return absClock(t.abs())
   575  }
   576  
   577  // absClock is like clock but operates on an absolute time.
   578  func absClock(abs uint64) (hour, min, sec int) {
   579  	sec = int(abs % secondsPerDay)
   580  	hour = sec / secondsPerHour
   581  	sec -= hour * secondsPerHour
   582  	min = sec / secondsPerMinute
   583  	sec -= min * secondsPerMinute
   584  	return
   585  }
   586  
   587  // Hour returns the hour within the day specified by t, in the range [0, 23].
   588  func (t Time) Hour() int {
   589  	return int(t.abs()%secondsPerDay) / secondsPerHour
   590  }
   591  
   592  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   593  func (t Time) Minute() int {
   594  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   595  }
   596  
   597  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   598  func (t Time) Second() int {
   599  	return int(t.abs() % secondsPerMinute)
   600  }
   601  
   602  // Nanosecond returns the nanosecond offset within the second specified by t,
   603  // in the range [0, 999999999].
   604  func (t Time) Nanosecond() int {
   605  	return int(t.nsec())
   606  }
   607  
   608  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   609  // and [1,366] in leap years.
   610  func (t Time) YearDay() int {
   611  	_, _, _, yday := t.date(false)
   612  	return yday + 1
   613  }
   614  
   615  // A Duration represents the elapsed time between two instants
   616  // as an int64 nanosecond count. The representation limits the
   617  // largest representable duration to approximately 290 years.
   618  type Duration int64
   619  
   620  const (
   621  	minDuration Duration = -1 << 63
   622  	maxDuration Duration = 1<<63 - 1
   623  )
   624  
   625  // Common durations. There is no definition for units of Day or larger
   626  // to avoid confusion across daylight savings time zone transitions.
   627  //
   628  // To count the number of units in a Duration, divide:
   629  //
   630  //	second := time.Second
   631  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   632  //
   633  // To convert an integer number of units to a Duration, multiply:
   634  //
   635  //	seconds := 10
   636  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   637  const (
   638  	Nanosecond  Duration = 1
   639  	Microsecond          = 1000 * Nanosecond
   640  	Millisecond          = 1000 * Microsecond
   641  	Second               = 1000 * Millisecond
   642  	Minute               = 60 * Second
   643  	Hour                 = 60 * Minute
   644  )
   645  
   646  // String returns a string representing the duration in the form "72h3m0.5s".
   647  // Leading zero units are omitted. As a special case, durations less than one
   648  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   649  // that the leading digit is non-zero. The zero duration formats as 0s.
   650  func (d Duration) String() string {
   651  	// This is inlinable to take advantage of "function outlining".
   652  	// Thus, the caller can decide whether a string must be heap allocated.
   653  	var arr [32]byte
   654  	n := d.format(&arr)
   655  	return string(arr[n:])
   656  }
   657  
   658  // format formats the representation of d into the end of buf and
   659  // returns the offset of the first character.
   660  func (d Duration) format(buf *[32]byte) int {
   661  	// Largest time is 2540400h10m10.000000000s
   662  	w := len(buf)
   663  
   664  	u := uint64(d)
   665  	neg := d < 0
   666  	if neg {
   667  		u = -u
   668  	}
   669  
   670  	if u < uint64(Second) {
   671  		// Special case: if duration is smaller than a second,
   672  		// use smaller units, like 1.2ms
   673  		var prec int
   674  		w--
   675  		buf[w] = 's'
   676  		w--
   677  		switch {
   678  		case u == 0:
   679  			buf[w] = '0'
   680  			return w
   681  		case u < uint64(Microsecond):
   682  			// print nanoseconds
   683  			prec = 0
   684  			buf[w] = 'n'
   685  		case u < uint64(Millisecond):
   686  			// print microseconds
   687  			prec = 3
   688  			// U+00B5 'µ' micro sign == 0xC2 0xB5
   689  			w-- // Need room for two bytes.
   690  			copy(buf[w:], "µ")
   691  		default:
   692  			// print milliseconds
   693  			prec = 6
   694  			buf[w] = 'm'
   695  		}
   696  		w, u = fmtFrac(buf[:w], u, prec)
   697  		w = fmtInt(buf[:w], u)
   698  	} else {
   699  		w--
   700  		buf[w] = 's'
   701  
   702  		w, u = fmtFrac(buf[:w], u, 9)
   703  
   704  		// u is now integer seconds
   705  		w = fmtInt(buf[:w], u%60)
   706  		u /= 60
   707  
   708  		// u is now integer minutes
   709  		if u > 0 {
   710  			w--
   711  			buf[w] = 'm'
   712  			w = fmtInt(buf[:w], u%60)
   713  			u /= 60
   714  
   715  			// u is now integer hours
   716  			// Stop at hours because days can be different lengths.
   717  			if u > 0 {
   718  				w--
   719  				buf[w] = 'h'
   720  				w = fmtInt(buf[:w], u)
   721  			}
   722  		}
   723  	}
   724  
   725  	if neg {
   726  		w--
   727  		buf[w] = '-'
   728  	}
   729  
   730  	return w
   731  }
   732  
   733  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   734  // tail of buf, omitting trailing zeros. It omits the decimal
   735  // point too when the fraction is 0. It returns the index where the
   736  // output bytes begin and the value v/10**prec.
   737  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   738  	// Omit trailing zeros up to and including decimal point.
   739  	w := len(buf)
   740  	print := false
   741  	for i := 0; i < prec; i++ {
   742  		digit := v % 10
   743  		print = print || digit != 0
   744  		if print {
   745  			w--
   746  			buf[w] = byte(digit) + '0'
   747  		}
   748  		v /= 10
   749  	}
   750  	if print {
   751  		w--
   752  		buf[w] = '.'
   753  	}
   754  	return w, v
   755  }
   756  
   757  // fmtInt formats v into the tail of buf.
   758  // It returns the index where the output begins.
   759  func fmtInt(buf []byte, v uint64) int {
   760  	w := len(buf)
   761  	if v == 0 {
   762  		w--
   763  		buf[w] = '0'
   764  	} else {
   765  		for v > 0 {
   766  			w--
   767  			buf[w] = byte(v%10) + '0'
   768  			v /= 10
   769  		}
   770  	}
   771  	return w
   772  }
   773  
   774  // Nanoseconds returns the duration as an integer nanosecond count.
   775  func (d Duration) Nanoseconds() int64 { return int64(d) }
   776  
   777  // Microseconds returns the duration as an integer microsecond count.
   778  func (d Duration) Microseconds() int64 { return int64(d) / 1e3 }
   779  
   780  // Milliseconds returns the duration as an integer millisecond count.
   781  func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 }
   782  
   783  // These methods return float64 because the dominant
   784  // use case is for printing a floating point number like 1.5s, and
   785  // a truncation to integer would make them not useful in those cases.
   786  // Splitting the integer and fraction ourselves guarantees that
   787  // converting the returned float64 to an integer rounds the same
   788  // way that a pure integer conversion would have, even in cases
   789  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   790  // differently.
   791  
   792  // Seconds returns the duration as a floating point number of seconds.
   793  func (d Duration) Seconds() float64 {
   794  	sec := d / Second
   795  	nsec := d % Second
   796  	return float64(sec) + float64(nsec)/1e9
   797  }
   798  
   799  // Minutes returns the duration as a floating point number of minutes.
   800  func (d Duration) Minutes() float64 {
   801  	min := d / Minute
   802  	nsec := d % Minute
   803  	return float64(min) + float64(nsec)/(60*1e9)
   804  }
   805  
   806  // Hours returns the duration as a floating point number of hours.
   807  func (d Duration) Hours() float64 {
   808  	hour := d / Hour
   809  	nsec := d % Hour
   810  	return float64(hour) + float64(nsec)/(60*60*1e9)
   811  }
   812  
   813  // Truncate returns the result of rounding d toward zero to a multiple of m.
   814  // If m <= 0, Truncate returns d unchanged.
   815  func (d Duration) Truncate(m Duration) Duration {
   816  	if m <= 0 {
   817  		return d
   818  	}
   819  	return d - d%m
   820  }
   821  
   822  // lessThanHalf reports whether x+x < y but avoids overflow,
   823  // assuming x and y are both positive (Duration is signed).
   824  func lessThanHalf(x, y Duration) bool {
   825  	return uint64(x)+uint64(x) < uint64(y)
   826  }
   827  
   828  // Round returns the result of rounding d to the nearest multiple of m.
   829  // The rounding behavior for halfway values is to round away from zero.
   830  // If the result exceeds the maximum (or minimum)
   831  // value that can be stored in a Duration,
   832  // Round returns the maximum (or minimum) duration.
   833  // If m <= 0, Round returns d unchanged.
   834  func (d Duration) Round(m Duration) Duration {
   835  	if m <= 0 {
   836  		return d
   837  	}
   838  	r := d % m
   839  	if d < 0 {
   840  		r = -r
   841  		if lessThanHalf(r, m) {
   842  			return d + r
   843  		}
   844  		if d1 := d - m + r; d1 < d {
   845  			return d1
   846  		}
   847  		return minDuration // overflow
   848  	}
   849  	if lessThanHalf(r, m) {
   850  		return d - r
   851  	}
   852  	if d1 := d + m - r; d1 > d {
   853  		return d1
   854  	}
   855  	return maxDuration // overflow
   856  }
   857  
   858  // Abs returns the absolute value of d.
   859  // As a special case, math.MinInt64 is converted to math.MaxInt64.
   860  func (d Duration) Abs() Duration {
   861  	switch {
   862  	case d >= 0:
   863  		return d
   864  	case d == minDuration:
   865  		return maxDuration
   866  	default:
   867  		return -d
   868  	}
   869  }
   870  
   871  // Add returns the time t+d.
   872  func (t Time) Add(d Duration) Time {
   873  	dsec := int64(d / 1e9)
   874  	nsec := t.nsec() + int32(d%1e9)
   875  	if nsec >= 1e9 {
   876  		dsec++
   877  		nsec -= 1e9
   878  	} else if nsec < 0 {
   879  		dsec--
   880  		nsec += 1e9
   881  	}
   882  	t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
   883  	t.addSec(dsec)
   884  	if t.wall&hasMonotonic != 0 {
   885  		te := t.ext + int64(d)
   886  		if d < 0 && te > t.ext || d > 0 && te < t.ext {
   887  			// Monotonic clock reading now out of range; degrade to wall-only.
   888  			t.stripMono()
   889  		} else {
   890  			t.ext = te
   891  		}
   892  	}
   893  	return t
   894  }
   895  
   896  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   897  // value that can be stored in a Duration, the maximum (or minimum) duration
   898  // will be returned.
   899  // To compute t-d for a duration d, use t.Add(-d).
   900  func (t Time) Sub(u Time) Duration {
   901  	if t.wall&u.wall&hasMonotonic != 0 {
   902  		return subMono(t.ext, u.ext)
   903  	}
   904  	d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
   905  	// Check for overflow or underflow.
   906  	switch {
   907  	case u.Add(d).Equal(t):
   908  		return d // d is correct
   909  	case t.Before(u):
   910  		return minDuration // t - u is negative out of range
   911  	default:
   912  		return maxDuration // t - u is positive out of range
   913  	}
   914  }
   915  
   916  func subMono(t, u int64) Duration {
   917  	d := Duration(t - u)
   918  	if d < 0 && t > u {
   919  		return maxDuration // t - u is positive out of range
   920  	}
   921  	if d > 0 && t < u {
   922  		return minDuration // t - u is negative out of range
   923  	}
   924  	return d
   925  }
   926  
   927  // Since returns the time elapsed since t.
   928  // It is shorthand for time.Now().Sub(t).
   929  func Since(t Time) Duration {
   930  	if t.wall&hasMonotonic != 0 {
   931  		// Common case optimization: if t has monotonic time, then Sub will use only it.
   932  		return subMono(runtimeNano()-startNano, t.ext)
   933  	}
   934  	return Now().Sub(t)
   935  }
   936  
   937  // Until returns the duration until t.
   938  // It is shorthand for t.Sub(time.Now()).
   939  func Until(t Time) Duration {
   940  	if t.wall&hasMonotonic != 0 {
   941  		// Common case optimization: if t has monotonic time, then Sub will use only it.
   942  		return subMono(t.ext, runtimeNano()-startNano)
   943  	}
   944  	return t.Sub(Now())
   945  }
   946  
   947  // AddDate returns the time corresponding to adding the
   948  // given number of years, months, and days to t.
   949  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   950  // returns March 4, 2010.
   951  //
   952  // Note that dates are fundamentally coupled to timezones, and calendrical
   953  // periods like days don't have fixed durations. AddDate uses the Location of
   954  // the Time value to determine these durations. That means that the same
   955  // AddDate arguments can produce a different shift in absolute time depending on
   956  // the base Time value and its Location. For example, AddDate(0, 0, 1) applied
   957  // to 12:00 on March 27 always returns 12:00 on March 28. At some locations and
   958  // in some years this is a 24 hour shift. In others it's a 23 hour shift due to
   959  // daylight savings time transitions.
   960  //
   961  // AddDate normalizes its result in the same way that Date does,
   962  // so, for example, adding one month to October 31 yields
   963  // December 1, the normalized form for November 31.
   964  func (t Time) AddDate(years int, months int, days int) Time {
   965  	year, month, day := t.Date()
   966  	hour, min, sec := t.Clock()
   967  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
   968  }
   969  
   970  const (
   971  	secondsPerMinute = 60
   972  	secondsPerHour   = 60 * secondsPerMinute
   973  	secondsPerDay    = 24 * secondsPerHour
   974  	secondsPerWeek   = 7 * secondsPerDay
   975  	daysPer400Years  = 365*400 + 97
   976  	daysPer100Years  = 365*100 + 24
   977  	daysPer4Years    = 365*4 + 1
   978  )
   979  
   980  // date computes the year, day of year, and when full=true,
   981  // the month and day in which t occurs.
   982  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   983  	return absDate(t.abs(), full)
   984  }
   985  
   986  // absDate is like date but operates on an absolute time.
   987  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   988  	// Split into time and day.
   989  	d := abs / secondsPerDay
   990  
   991  	// Account for 400 year cycles.
   992  	n := d / daysPer400Years
   993  	y := 400 * n
   994  	d -= daysPer400Years * n
   995  
   996  	// Cut off 100-year cycles.
   997  	// The last cycle has one extra leap year, so on the last day
   998  	// of that year, day / daysPer100Years will be 4 instead of 3.
   999  	// Cut it back down to 3 by subtracting n>>2.
  1000  	n = d / daysPer100Years
  1001  	n -= n >> 2
  1002  	y += 100 * n
  1003  	d -= daysPer100Years * n
  1004  
  1005  	// Cut off 4-year cycles.
  1006  	// The last cycle has a missing leap year, which does not
  1007  	// affect the computation.
  1008  	n = d / daysPer4Years
  1009  	y += 4 * n
  1010  	d -= daysPer4Years * n
  1011  
  1012  	// Cut off years within a 4-year cycle.
  1013  	// The last year is a leap year, so on the last day of that year,
  1014  	// day / 365 will be 4 instead of 3. Cut it back down to 3
  1015  	// by subtracting n>>2.
  1016  	n = d / 365
  1017  	n -= n >> 2
  1018  	y += n
  1019  	d -= 365 * n
  1020  
  1021  	year = int(int64(y) + absoluteZeroYear)
  1022  	yday = int(d)
  1023  
  1024  	if !full {
  1025  		return
  1026  	}
  1027  
  1028  	day = yday
  1029  	if isLeap(year) {
  1030  		// Leap year
  1031  		switch {
  1032  		case day > 31+29-1:
  1033  			// After leap day; pretend it wasn't there.
  1034  			day--
  1035  		case day == 31+29-1:
  1036  			// Leap day.
  1037  			month = February
  1038  			day = 29
  1039  			return
  1040  		}
  1041  	}
  1042  
  1043  	// Estimate month on assumption that every month has 31 days.
  1044  	// The estimate may be too low by at most one month, so adjust.
  1045  	month = Month(day / 31)
  1046  	end := int(daysBefore[month+1])
  1047  	var begin int
  1048  	if day >= end {
  1049  		month++
  1050  		begin = end
  1051  	} else {
  1052  		begin = int(daysBefore[month])
  1053  	}
  1054  
  1055  	month++ // because January is 1
  1056  	day = day - begin + 1
  1057  	return
  1058  }
  1059  
  1060  // daysBefore[m] counts the number of days in a non-leap year
  1061  // before month m begins. There is an entry for m=12, counting
  1062  // the number of days before January of next year (365).
  1063  var daysBefore = [...]int32{
  1064  	0,
  1065  	31,
  1066  	31 + 28,
  1067  	31 + 28 + 31,
  1068  	31 + 28 + 31 + 30,
  1069  	31 + 28 + 31 + 30 + 31,
  1070  	31 + 28 + 31 + 30 + 31 + 30,
  1071  	31 + 28 + 31 + 30 + 31 + 30 + 31,
  1072  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
  1073  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
  1074  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
  1075  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
  1076  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
  1077  }
  1078  
  1079  func daysIn(m Month, year int) int {
  1080  	if m == February && isLeap(year) {
  1081  		return 29
  1082  	}
  1083  	return int(daysBefore[m] - daysBefore[m-1])
  1084  }
  1085  
  1086  // daysSinceEpoch takes a year and returns the number of days from
  1087  // the absolute epoch to the start of that year.
  1088  // This is basically (year - zeroYear) * 365, but accounting for leap days.
  1089  func daysSinceEpoch(year int) uint64 {
  1090  	y := uint64(int64(year) - absoluteZeroYear)
  1091  
  1092  	// Add in days from 400-year cycles.
  1093  	n := y / 400
  1094  	y -= 400 * n
  1095  	d := daysPer400Years * n
  1096  
  1097  	// Add in 100-year cycles.
  1098  	n = y / 100
  1099  	y -= 100 * n
  1100  	d += daysPer100Years * n
  1101  
  1102  	// Add in 4-year cycles.
  1103  	n = y / 4
  1104  	y -= 4 * n
  1105  	d += daysPer4Years * n
  1106  
  1107  	// Add in non-leap years.
  1108  	n = y
  1109  	d += 365 * n
  1110  
  1111  	return d
  1112  }
  1113  
  1114  // Provided by package runtime.
  1115  func now() (sec int64, nsec int32, mono int64)
  1116  
  1117  // runtimeNano returns the current value of the runtime clock in nanoseconds.
  1118  //
  1119  //go:linkname runtimeNano runtime.nanotime
  1120  func runtimeNano() int64
  1121  
  1122  // Monotonic times are reported as offsets from startNano.
  1123  // We initialize startNano to runtimeNano() - 1 so that on systems where
  1124  // monotonic time resolution is fairly low (e.g. Windows 2008
  1125  // which appears to have a default resolution of 15ms),
  1126  // we avoid ever reporting a monotonic time of 0.
  1127  // (Callers may want to use 0 as "time not set".)
  1128  var startNano int64 = runtimeNano() - 1
  1129  
  1130  // Now returns the current local time.
  1131  func Now() Time {
  1132  	sec, nsec, mono := now()
  1133  	mono -= startNano
  1134  	sec += unixToInternal - minWall
  1135  	if uint64(sec)>>33 != 0 {
  1136  		// Seconds field overflowed the 33 bits available when
  1137  		// storing a monotonic time. This will be true after
  1138  		// March 16, 2157.
  1139  		return Time{uint64(nsec), sec + minWall, Local}
  1140  	}
  1141  	return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
  1142  }
  1143  
  1144  func unixTime(sec int64, nsec int32) Time {
  1145  	return Time{uint64(nsec), sec + unixToInternal, Local}
  1146  }
  1147  
  1148  // UTC returns t with the location set to UTC.
  1149  func (t Time) UTC() Time {
  1150  	t.setLoc(&utcLoc)
  1151  	return t
  1152  }
  1153  
  1154  // Local returns t with the location set to local time.
  1155  func (t Time) Local() Time {
  1156  	t.setLoc(Local)
  1157  	return t
  1158  }
  1159  
  1160  // In returns a copy of t representing the same time instant, but
  1161  // with the copy's location information set to loc for display
  1162  // purposes.
  1163  //
  1164  // In panics if loc is nil.
  1165  func (t Time) In(loc *Location) Time {
  1166  	if loc == nil {
  1167  		panic("time: missing Location in call to Time.In")
  1168  	}
  1169  	t.setLoc(loc)
  1170  	return t
  1171  }
  1172  
  1173  // Location returns the time zone information associated with t.
  1174  func (t Time) Location() *Location {
  1175  	l := t.loc
  1176  	if l == nil {
  1177  		l = UTC
  1178  	}
  1179  	return l
  1180  }
  1181  
  1182  // Zone computes the time zone in effect at time t, returning the abbreviated
  1183  // name of the zone (such as "CET") and its offset in seconds east of UTC.
  1184  func (t Time) Zone() (name string, offset int) {
  1185  	name, offset, _, _, _ = t.loc.lookup(t.unixSec())
  1186  	return
  1187  }
  1188  
  1189  // ZoneBounds returns the bounds of the time zone in effect at time t.
  1190  // The zone begins at start and the next zone begins at end.
  1191  // If the zone begins at the beginning of time, start will be returned as a zero Time.
  1192  // If the zone goes on forever, end will be returned as a zero Time.
  1193  // The Location of the returned times will be the same as t.
  1194  func (t Time) ZoneBounds() (start, end Time) {
  1195  	_, _, startSec, endSec, _ := t.loc.lookup(t.unixSec())
  1196  	if startSec != alpha {
  1197  		start = unixTime(startSec, 0)
  1198  		start.setLoc(t.loc)
  1199  	}
  1200  	if endSec != omega {
  1201  		end = unixTime(endSec, 0)
  1202  		end.setLoc(t.loc)
  1203  	}
  1204  	return
  1205  }
  1206  
  1207  // Unix returns t as a Unix time, the number of seconds elapsed
  1208  // since January 1, 1970 UTC. The result does not depend on the
  1209  // location associated with t.
  1210  // Unix-like operating systems often record time as a 32-bit
  1211  // count of seconds, but since the method here returns a 64-bit
  1212  // value it is valid for billions of years into the past or future.
  1213  func (t Time) Unix() int64 {
  1214  	return t.unixSec()
  1215  }
  1216  
  1217  // UnixMilli returns t as a Unix time, the number of milliseconds elapsed since
  1218  // January 1, 1970 UTC. The result is undefined if the Unix time in
  1219  // milliseconds cannot be represented by an int64 (a date more than 292 million
  1220  // years before or after 1970). The result does not depend on the
  1221  // location associated with t.
  1222  func (t Time) UnixMilli() int64 {
  1223  	return t.unixSec()*1e3 + int64(t.nsec())/1e6
  1224  }
  1225  
  1226  // UnixMicro returns t as a Unix time, the number of microseconds elapsed since
  1227  // January 1, 1970 UTC. The result is undefined if the Unix time in
  1228  // microseconds cannot be represented by an int64 (a date before year -290307 or
  1229  // after year 294246). The result does not depend on the location associated
  1230  // with t.
  1231  func (t Time) UnixMicro() int64 {
  1232  	return t.unixSec()*1e6 + int64(t.nsec())/1e3
  1233  }
  1234  
  1235  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
  1236  // since January 1, 1970 UTC. The result is undefined if the Unix time
  1237  // in nanoseconds cannot be represented by an int64 (a date before the year
  1238  // 1678 or after 2262). Note that this means the result of calling UnixNano
  1239  // on the zero Time is undefined. The result does not depend on the
  1240  // location associated with t.
  1241  func (t Time) UnixNano() int64 {
  1242  	return (t.unixSec())*1e9 + int64(t.nsec())
  1243  }
  1244  
  1245  const (
  1246  	timeBinaryVersionV1 byte = iota + 1 // For general situation
  1247  	timeBinaryVersionV2                 // For LMT only
  1248  )
  1249  
  1250  // MarshalBinary implements the encoding.BinaryMarshaler interface.
  1251  func (t Time) MarshalBinary() ([]byte, error) {
  1252  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
  1253  	var offsetSec int8
  1254  	version := timeBinaryVersionV1
  1255  
  1256  	if t.Location() == UTC {
  1257  		offsetMin = -1
  1258  	} else {
  1259  		_, offset := t.Zone()
  1260  		if offset%60 != 0 {
  1261  			version = timeBinaryVersionV2
  1262  			offsetSec = int8(offset % 60)
  1263  		}
  1264  
  1265  		offset /= 60
  1266  		if offset < -32768 || offset == -1 || offset > 32767 {
  1267  			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
  1268  		}
  1269  		offsetMin = int16(offset)
  1270  	}
  1271  
  1272  	sec := t.sec()
  1273  	nsec := t.nsec()
  1274  	enc := []byte{
  1275  		version,         // byte 0 : version
  1276  		byte(sec >> 56), // bytes 1-8: seconds
  1277  		byte(sec >> 48),
  1278  		byte(sec >> 40),
  1279  		byte(sec >> 32),
  1280  		byte(sec >> 24),
  1281  		byte(sec >> 16),
  1282  		byte(sec >> 8),
  1283  		byte(sec),
  1284  		byte(nsec >> 24), // bytes 9-12: nanoseconds
  1285  		byte(nsec >> 16),
  1286  		byte(nsec >> 8),
  1287  		byte(nsec),
  1288  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
  1289  		byte(offsetMin),
  1290  	}
  1291  	if version == timeBinaryVersionV2 {
  1292  		enc = append(enc, byte(offsetSec))
  1293  	}
  1294  
  1295  	return enc, nil
  1296  }
  1297  
  1298  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
  1299  func (t *Time) UnmarshalBinary(data []byte) error {
  1300  	buf := data
  1301  	if len(buf) == 0 {
  1302  		return errors.New("Time.UnmarshalBinary: no data")
  1303  	}
  1304  
  1305  	version := buf[0]
  1306  	if version != timeBinaryVersionV1 && version != timeBinaryVersionV2 {
  1307  		return errors.New("Time.UnmarshalBinary: unsupported version")
  1308  	}
  1309  
  1310  	wantLen := /*version*/ 1 + /*sec*/ 8 + /*nsec*/ 4 + /*zone offset*/ 2
  1311  	if version == timeBinaryVersionV2 {
  1312  		wantLen++
  1313  	}
  1314  	if len(buf) != wantLen {
  1315  		return errors.New("Time.UnmarshalBinary: invalid length")
  1316  	}
  1317  
  1318  	buf = buf[1:]
  1319  	sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
  1320  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
  1321  
  1322  	buf = buf[8:]
  1323  	nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
  1324  
  1325  	buf = buf[4:]
  1326  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
  1327  	if version == timeBinaryVersionV2 {
  1328  		offset += int(buf[2])
  1329  	}
  1330  
  1331  	*t = Time{}
  1332  	t.wall = uint64(nsec)
  1333  	t.ext = sec
  1334  
  1335  	if offset == -1*60 {
  1336  		t.setLoc(&utcLoc)
  1337  	} else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff {
  1338  		t.setLoc(Local)
  1339  	} else {
  1340  		t.setLoc(FixedZone("", offset))
  1341  	}
  1342  
  1343  	return nil
  1344  }
  1345  
  1346  // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
  1347  // The same semantics will be provided by the generic MarshalBinary, MarshalText,
  1348  // UnmarshalBinary, UnmarshalText.
  1349  
  1350  // GobEncode implements the gob.GobEncoder interface.
  1351  func (t Time) GobEncode() ([]byte, error) {
  1352  	return t.MarshalBinary()
  1353  }
  1354  
  1355  // GobDecode implements the gob.GobDecoder interface.
  1356  func (t *Time) GobDecode(data []byte) error {
  1357  	return t.UnmarshalBinary(data)
  1358  }
  1359  
  1360  // MarshalJSON implements the json.Marshaler interface.
  1361  // The time is a quoted string in the RFC 3339 format with sub-second precision.
  1362  // If the timestamp cannot be represented as valid RFC 3339
  1363  // (e.g., the year is out of range), then an error is reported.
  1364  func (t Time) MarshalJSON() ([]byte, error) {
  1365  	b := make([]byte, 0, len(RFC3339Nano)+len(`""`))
  1366  	b = append(b, '"')
  1367  	b, err := t.appendStrictRFC3339(b)
  1368  	b = append(b, '"')
  1369  	if err != nil {
  1370  		return nil, errors.New("Time.MarshalJSON: " + err.Error())
  1371  	}
  1372  	return b, nil
  1373  }
  1374  
  1375  // UnmarshalJSON implements the json.Unmarshaler interface.
  1376  // The time must be a quoted string in the RFC 3339 format.
  1377  func (t *Time) UnmarshalJSON(data []byte) error {
  1378  	if string(data) == "null" {
  1379  		return nil
  1380  	}
  1381  	// TODO(https://go.dev/issue/47353): Properly unescape a JSON string.
  1382  	if len(data) < 2 || data[0] != '"' || data[len(data)-1] != '"' {
  1383  		return errors.New("Time.UnmarshalJSON: input is not a JSON string")
  1384  	}
  1385  	data = data[len(`"`) : len(data)-len(`"`)]
  1386  	var err error
  1387  	*t, err = parseStrictRFC3339(data)
  1388  	return err
  1389  }
  1390  
  1391  // MarshalText implements the encoding.TextMarshaler interface.
  1392  // The time is formatted in RFC 3339 format with sub-second precision.
  1393  // If the timestamp cannot be represented as valid RFC 3339
  1394  // (e.g., the year is out of range), then an error is reported.
  1395  func (t Time) MarshalText() ([]byte, error) {
  1396  	b := make([]byte, 0, len(RFC3339Nano))
  1397  	b, err := t.appendStrictRFC3339(b)
  1398  	if err != nil {
  1399  		return nil, errors.New("Time.MarshalText: " + err.Error())
  1400  	}
  1401  	return b, nil
  1402  }
  1403  
  1404  // UnmarshalText implements the encoding.TextUnmarshaler interface.
  1405  // The time must be in the RFC 3339 format.
  1406  func (t *Time) UnmarshalText(data []byte) error {
  1407  	var err error
  1408  	*t, err = parseStrictRFC3339(data)
  1409  	return err
  1410  }
  1411  
  1412  // Unix returns the local Time corresponding to the given Unix time,
  1413  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
  1414  // It is valid to pass nsec outside the range [0, 999999999].
  1415  // Not all sec values have a corresponding time value. One such
  1416  // value is 1<<63-1 (the largest int64 value).
  1417  func Unix(sec int64, nsec int64) Time {
  1418  	if nsec < 0 || nsec >= 1e9 {
  1419  		n := nsec / 1e9
  1420  		sec += n
  1421  		nsec -= n * 1e9
  1422  		if nsec < 0 {
  1423  			nsec += 1e9
  1424  			sec--
  1425  		}
  1426  	}
  1427  	return unixTime(sec, int32(nsec))
  1428  }
  1429  
  1430  // UnixMilli returns the local Time corresponding to the given Unix time,
  1431  // msec milliseconds since January 1, 1970 UTC.
  1432  func UnixMilli(msec int64) Time {
  1433  	return Unix(msec/1e3, (msec%1e3)*1e6)
  1434  }
  1435  
  1436  // UnixMicro returns the local Time corresponding to the given Unix time,
  1437  // usec microseconds since January 1, 1970 UTC.
  1438  func UnixMicro(usec int64) Time {
  1439  	return Unix(usec/1e6, (usec%1e6)*1e3)
  1440  }
  1441  
  1442  // IsDST reports whether the time in the configured location is in Daylight Savings Time.
  1443  func (t Time) IsDST() bool {
  1444  	_, _, _, _, isDST := t.loc.lookup(t.Unix())
  1445  	return isDST
  1446  }
  1447  
  1448  func isLeap(year int) bool {
  1449  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1450  }
  1451  
  1452  // norm returns nhi, nlo such that
  1453  //
  1454  //	hi * base + lo == nhi * base + nlo
  1455  //	0 <= nlo < base
  1456  func norm(hi, lo, base int) (nhi, nlo int) {
  1457  	if lo < 0 {
  1458  		n := (-lo-1)/base + 1
  1459  		hi -= n
  1460  		lo += n * base
  1461  	}
  1462  	if lo >= base {
  1463  		n := lo / base
  1464  		hi += n
  1465  		lo -= n * base
  1466  	}
  1467  	return hi, lo
  1468  }
  1469  
  1470  // Date returns the Time corresponding to
  1471  //
  1472  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1473  //
  1474  // in the appropriate zone for that time in the given location.
  1475  //
  1476  // The month, day, hour, min, sec, and nsec values may be outside
  1477  // their usual ranges and will be normalized during the conversion.
  1478  // For example, October 32 converts to November 1.
  1479  //
  1480  // A daylight savings time transition skips or repeats times.
  1481  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1482  // while November 6, 2011 1:15am occurred twice. In such cases, the
  1483  // choice of time zone, and therefore the time, is not well-defined.
  1484  // Date returns a time that is correct in one of the two zones involved
  1485  // in the transition, but it does not guarantee which.
  1486  //
  1487  // Date panics if loc is nil.
  1488  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1489  	if loc == nil {
  1490  		panic("time: missing Location in call to Date")
  1491  	}
  1492  
  1493  	// Normalize month, overflowing into year.
  1494  	m := int(month) - 1
  1495  	year, m = norm(year, m, 12)
  1496  	month = Month(m) + 1
  1497  
  1498  	// Normalize nsec, sec, min, hour, overflowing into day.
  1499  	sec, nsec = norm(sec, nsec, 1e9)
  1500  	min, sec = norm(min, sec, 60)
  1501  	hour, min = norm(hour, min, 60)
  1502  	day, hour = norm(day, hour, 24)
  1503  
  1504  	// Compute days since the absolute epoch.
  1505  	d := daysSinceEpoch(year)
  1506  
  1507  	// Add in days before this month.
  1508  	d += uint64(daysBefore[month-1])
  1509  	if isLeap(year) && month >= March {
  1510  		d++ // February 29
  1511  	}
  1512  
  1513  	// Add in days before today.
  1514  	d += uint64(day - 1)
  1515  
  1516  	// Add in time elapsed today.
  1517  	abs := d * secondsPerDay
  1518  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1519  
  1520  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1521  
  1522  	// Look for zone offset for expected time, so we can adjust to UTC.
  1523  	// The lookup function expects UTC, so first we pass unix in the
  1524  	// hope that it will not be too close to a zone transition,
  1525  	// and then adjust if it is.
  1526  	_, offset, start, end, _ := loc.lookup(unix)
  1527  	if offset != 0 {
  1528  		utc := unix - int64(offset)
  1529  		// If utc is valid for the time zone we found, then we have the right offset.
  1530  		// If not, we get the correct offset by looking up utc in the location.
  1531  		if utc < start || utc >= end {
  1532  			_, offset, _, _, _ = loc.lookup(utc)
  1533  		}
  1534  		unix -= int64(offset)
  1535  	}
  1536  
  1537  	t := unixTime(unix, int32(nsec))
  1538  	t.setLoc(loc)
  1539  	return t
  1540  }
  1541  
  1542  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1543  // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
  1544  //
  1545  // Truncate operates on the time as an absolute duration since the
  1546  // zero time; it does not operate on the presentation form of the
  1547  // time. Thus, Truncate(Hour) may return a time with a non-zero
  1548  // minute, depending on the time's Location.
  1549  func (t Time) Truncate(d Duration) Time {
  1550  	t.stripMono()
  1551  	if d <= 0 {
  1552  		return t
  1553  	}
  1554  	_, r := div(t, d)
  1555  	return t.Add(-r)
  1556  }
  1557  
  1558  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1559  // The rounding behavior for halfway values is to round up.
  1560  // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
  1561  //
  1562  // Round operates on the time as an absolute duration since the
  1563  // zero time; it does not operate on the presentation form of the
  1564  // time. Thus, Round(Hour) may return a time with a non-zero
  1565  // minute, depending on the time's Location.
  1566  func (t Time) Round(d Duration) Time {
  1567  	t.stripMono()
  1568  	if d <= 0 {
  1569  		return t
  1570  	}
  1571  	_, r := div(t, d)
  1572  	if lessThanHalf(r, d) {
  1573  		return t.Add(-r)
  1574  	}
  1575  	return t.Add(d - r)
  1576  }
  1577  
  1578  // div divides t by d and returns the quotient parity and remainder.
  1579  // We don't use the quotient parity anymore (round half up instead of round to even)
  1580  // but it's still here in case we change our minds.
  1581  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1582  	neg := false
  1583  	nsec := t.nsec()
  1584  	sec := t.sec()
  1585  	if sec < 0 {
  1586  		// Operate on absolute value.
  1587  		neg = true
  1588  		sec = -sec
  1589  		nsec = -nsec
  1590  		if nsec < 0 {
  1591  			nsec += 1e9
  1592  			sec-- // sec >= 1 before the -- so safe
  1593  		}
  1594  	}
  1595  
  1596  	switch {
  1597  	// Special case: 2d divides 1 second.
  1598  	case d < Second && Second%(d+d) == 0:
  1599  		qmod2 = int(nsec/int32(d)) & 1
  1600  		r = Duration(nsec % int32(d))
  1601  
  1602  	// Special case: d is a multiple of 1 second.
  1603  	case d%Second == 0:
  1604  		d1 := int64(d / Second)
  1605  		qmod2 = int(sec/d1) & 1
  1606  		r = Duration(sec%d1)*Second + Duration(nsec)
  1607  
  1608  	// General case.
  1609  	// This could be faster if more cleverness were applied,
  1610  	// but it's really only here to avoid special case restrictions in the API.
  1611  	// No one will care about these cases.
  1612  	default:
  1613  		// Compute nanoseconds as 128-bit number.
  1614  		sec := uint64(sec)
  1615  		tmp := (sec >> 32) * 1e9
  1616  		u1 := tmp >> 32
  1617  		u0 := tmp << 32
  1618  		tmp = (sec & 0xFFFFFFFF) * 1e9
  1619  		u0x, u0 := u0, u0+tmp
  1620  		if u0 < u0x {
  1621  			u1++
  1622  		}
  1623  		u0x, u0 = u0, u0+uint64(nsec)
  1624  		if u0 < u0x {
  1625  			u1++
  1626  		}
  1627  
  1628  		// Compute remainder by subtracting r<<k for decreasing k.
  1629  		// Quotient parity is whether we subtract on last round.
  1630  		d1 := uint64(d)
  1631  		for d1>>63 != 1 {
  1632  			d1 <<= 1
  1633  		}
  1634  		d0 := uint64(0)
  1635  		for {
  1636  			qmod2 = 0
  1637  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1638  				// subtract
  1639  				qmod2 = 1
  1640  				u0x, u0 = u0, u0-d0
  1641  				if u0 > u0x {
  1642  					u1--
  1643  				}
  1644  				u1 -= d1
  1645  			}
  1646  			if d1 == 0 && d0 == uint64(d) {
  1647  				break
  1648  			}
  1649  			d0 >>= 1
  1650  			d0 |= (d1 & 1) << 63
  1651  			d1 >>= 1
  1652  		}
  1653  		r = Duration(u0)
  1654  	}
  1655  
  1656  	if neg && r != 0 {
  1657  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1658  		//	q*d + r = -t
  1659  		// But the right answers are given by -(q-1), d-r:
  1660  		//	q*d + r = -t
  1661  		//	-q*d - r = t
  1662  		//	-(q-1)*d + (d - r) = t
  1663  		qmod2 ^= 1
  1664  		r = d - r
  1665  	}
  1666  	return
  1667  }
  1668  

View as plain text